Güvenilirliği daha fazla olan besin
kaynaklarına duyulan ihtiyaç, hayvansal ürünlere göre özellikle bitki ve
alglere olan ilgiyi arttırmıştır. Akuakültürde çeşitli kullanım alanları olan
mikroalglerden önemli ölçüde faydalanılmaktadır. Besin olarak kullanılmalarının
yanı sıra salmonlarda pigment kaynağı olarak da değerlendirilmektedir.
Günümüzde büyük ölçekli ve gelişmiş kalite kontrolü ile elde edilebilen
mikroalg üretim sistemlerinin maliyet etkinliğini incelemek için çalışmalar
devam etmektedir. Mikroalglerin kullanımında sürdürülebilirliği sağlamak için;
biyoteknoloji, biyoişleme ve yönetim prosedürleri gibi farklı alanların entegre
olduğu sistemlere dayalı bir yaklaşım gerekmektedir.
Alvarez, J.S., Llamas, A.H., Galindo, J., Fraga, I., Garca, T., & Villarreal, H. (2007). Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti. Aquaculture Research, 38: 689–695. doi: 10.1111/j.1365-2109.2007.01654.x
Anonim. (2015a). BSGM. Retrieved from http://www.tarim.gov.tr/BSGM (15.09.2015).
Anonim. (2015b). Spirulina. Retrieved from http://www.algaeindustrymagazine.com/special-report-spirulina-part-6 (15.09.2015).
Apt, K.E., & Behrens, P.W. (1999). Commercial developments in microalgal biotechnology. Journal of Phycology, 35: 215–226. doi: 10.1046/j.1529-8817.1999.3520215.x
Atalah, E., Herna´ndez Cruz, C.M., Izquierdo, M.S., Rosenlund, G., Caballero, M.J., Valencia, A., & Robaina, L. (2007). Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture, 270: 178–185. doi: http://dx.doi.org/10.1016/j.aquaculture.2007.04.009
Baker, R.T.M. (2002). Canthaxanthin in aquafeed applications: is there any risk? Trends in Food Science Technology, 12: 240–243. doi: http://dx.doi.org/10.1016/S0924-2244(01)00091-7
Borowitzka, M.A. (1997). Microalgae for aquaculture: Opportunities and constraints. Journal of Applied Phycology, 9: 393–401. doi: 10.1023/A:1007921728300
Brown, M.R., Mular, M., Miller, I., Farmer, C., & Trenerry, C. (1999). The vitamin content of microalgae used in aquaculture. Journal of Applied Phycology, 11: 247-255. doi: 10.1023/A:1008075903578
Brown, M.R. (2002). Nutritional value of microalgae for aquculture. In: Cruz-Sua´rez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Corte´s MG, Simoes N (eds) Avances en Nutricio´n Acuı´cola VI. Memorias del VI Simposium Internacional de Nutricio´n. Acuı´cola. 3 al 6 de Septiembre del. ancu´n. Quintana Roo, Me´xico. doi: 10.5772/30576
Chakraborty, R.D., Chakraborty, K., & Radhakrishnan, E.V. (2007). Variation in fatty acids composition of Artemia salina nauplii enriched with microalgae and baker’s yeast for use in larviculture. Journal of Agricultural and Food Chemistry, 55: 4043–4051. doi: 10.1021/jf063654l
Dhont, J., & Van Stappen, G. (2003). Live feeds in marine aquaculture. Blackwell Science Ltd, pp. 65–121.
Dunstan, G.H, Volkman, J.K., Barret, S.M., & Garland, C.D. (1993). Changes in the lipid composition and maximization of the polyunsaturated fatty acid content of three microalgae grown in mass culture. Journal of Applied Phycology, 5: 71–83. doi: 10.1007/BF02182424
Durmaz, Y. (2007). Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture, 272: 717–722. doi: http://dx.doi.org/10.1016/j.aquaculture.2007.07.213
Duru, M.D., & Kargın, Y. (2013). Mikroalglerin Pigment Kaynağı Olarak Balık Yemlerinde Kullanımı. Türk Bilimsel Derlemeler Dergisi, 6(2): 112-118.
Fujii, K., Nakashima, H., Hashidzume, Y., Uchiyama, T., Mishiro, K., & Kadota, Y. (2010). Potential use of the astaxanthin-producing microalga, Monoraphidium sp. GK12, as a functional aquafeed for prawns. Journal of Applied Phycology, 22: 363–369. doi: 10.1007/s10811-009-9468-z
Gagneux-Moreaux, S., Moreau, C., Gonzalez, J.L., & Cosson, R.P. (2007). Diatom artificial medium (DAM): a new artificial medium for the diatom Haslea ostrearia and other marine microalgae. Journal of Applied Phycology, 19: 549–556. doi: 10.1007/s10811-007-9169-4
Gara, B., Shields, R.J., & McEvoy, L. (1998). Feeding strategies to achieve correct metamorphosis of Atlantic halibut, Hippoglossus hippoglossus L., is using enriched Artemia. Aquaculture Research, 29: 935–948. doi: 10.1046/j.1365-2109.1998. 29120935.x
Gentsch, E., Kreibich, T., Hagen, W., & Barbara, N. (2009). Dietary shifts in the copepod Temora longicornis during spring: evidence from stable isotope signatures, fatty acid biomarkers and feding experiments. Journal of Plankton Research, 31: 45–60. doi: 10.1093/plankt/fbn097
Gill, I., & Valivety, R. (1997). Polyunsaturated fatty acids: Part 1. Occurrence, biological activities and applications. Trends in Biotechnology, 15: 401–409. doi: http://dx.doi.org/10.1016/S0167-7799(97)01076-7
Gökpınar, Ş., Koray, T., Akçiçek, E., Göksan, T., & Durmaz, Y. (2006). Algal antioksidanlar. Ege Üniversitesi Su Ürünleri Dergisi, 2 -Ek (1/1): 85-89.
Hemaiswarya, S., Raja, R., Kumar, R.R., Ganesan, V., & Anbazhagan, C. (2011). Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27: 1737–1746. doi: 10.1007/s11274-010-0632-z
Hilmi, Ş. (1994). Oksidanlar ve antioksidanlar. Türk Hastane Tıp Dergisi, 48: 1-2, 44-49.
Hong, H.A., Duc, H.L., & Cutting, S.M. (2005). The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews, 29: 813–835. doi: 10.1016/j.femsre.2004.12.001
Jones, D.A., Kurmaly, K., & Arshad, A. (1987). Penaeid shrimp hatchery trials using microencapsulated diets. Aquaculture, 64: 133-146. doi: 10.1016/0044-8486(87)90349-8
Jones, D.A., Kamarudin, M.S., & Le Vay, L. (1993). The potential for replacement of live feeds in larval culture. Journal of the World Aquaculture Society, 24(2): 199-210. doi: 10.1111/j.1749-7345.1993.tb00009.x
Kang, C.D., & Sim, S.J. (2008). Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnology Letters, 30: 441–444. doi: 10.1007/s10529-007-9578-0
Kargın, Y.H. (2006). Mikroalg Üretimi İçin Fotobiyoreaktör Tasarımları. Ege Journal of Fisheries&Aquatic Sciences, Cilt/Volume 23, Ek/Suppl. (1/2): 327-332.
Knuckey, R.M., Brown, M.R., Barrett, S.M., & Hallegraeff, G.M. (2002). Isolation of new nanoplanktonic diatom strains and their evaluation as diets for the juvenile Pacific oyster. Aquaculture, 211: 253–274. doi: http://dx.doi.org/10.1016/S0044-8486(02)00010-8
Knuckey, R.M., Brown, M.R., Rene´ Robert, R., & Frampton, M.F.D. (2006). Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacultural Engineering, 35(3): 300–313. doi: http://dx.doi.org/10.1016/j.aquaeng. 2006.04.001
Kumlu, M., & Jones, D.A. (1995). Feeding and digestion in the caridean shrimp larva of Palaemon elegans (Rathke) and Macrobrachium rosenbergii (De Man) (Crustacea: Palaemonidae) on live and artificial diets. Aquaculture Nutrition, 1: 3-12. doi: 10.1111/j.1365-2095.1995.tb00029.x
Kumlu, M., & Jones, D.A. (1995). The effect of live and artificial diets on growth, survival and trypsin activity in larvae of Penaeus indicus. Journal of the World Aquaculture Society, 26(4): 406-415. doi: 10.1111/j.1749-7345.1995.tb00836.x
Lavens, P., & Sorgeloos, P. (1996). Manual on the production and use of live food for aquaculture. FAO Fisheries Technical paper. In:Lavens P, Sorgeloos P (eds) Rome. pp. 36–19.
Léger, P., Bengtson, D.A., Sorgeloos, P., Simpson, K.L., & Beck, A.D. (1986). The use and nutritional value of Artemia as a food source. Oceanography and Marine Biology, An Annual Review, 24: 521-623.
Léger, Ph., & Sorgeloos, P. (1992). Optimised feeding regimes in shrimp hatcheries. In: Fast, A. W. and L. J. Lester, (Editors), Marine Shrimp Culture: Principles and Practices, Elsevier, pp. 225-244.
Li, S.S., & Tsai, H.J. (2009). Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish and Shellfish Immunology, 26: 316–325. doi: 10.1016/j.fsi.2008.07.004
Lo´pez Elı´as, J.A., Voltolina, D., Chavira Ortega, C.O., Rodrı´guez, B.B., Sa´enz Gaxiola, L.M., Esquivel, B.C., & Nieves, M. (2003). Mass production of microalgae in six commercial shrimp hatcheries of the Mexican northwest. Aquacultural Engineering, 29: 155–164. doi: http://dx.doi.org/10.1016/S0144-8609(03)00081-5
Lorenz, R.T., & Cysewski, G.R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18: 160–167. doi: http://dx.doi.org/10.1016/S0167-7799(00)01433-5
Martı´nez-Ferna´ndez, E., & Paul, C. (2007). Use of tropical microalgae as food for larvae of the black-lip pearl oyster Pinctada margaritifera. Aquaculture, 263: 220–226. doi: 10.1016/j.aquaculture.2006.09.040
Menasveta, P., Panichayakul, P., Piyativatitvorakul, P., & Piyativatitvorakul, S. (1984). Effect of different diets on survival of giant prawn larvae (Macrobrachium rosenbergii). Journal of the Science Society of Thailand, 10: 179-187.
Muller-Feuga, A. (2000). The role of microalgae in aquaculture: situation and trends. Journal of Applied Phycology, 12: 527–534. doi: http://dx.doi.org/10.1023/A:1008106304417
Muller-Feuga, A., Moal, J., & Kaas, R. (2003). The microalgae of aquaculture. In aquaculture. In: Støttrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Science Ltd., pp. 253–299.
Muller-Feuga, A. (2004). Microalgae for aquaculture: the current global situation and future trends. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, pp. 352–364.
Naz, M., & Gökçek, K. (2006). Fotobiyoreaktörler: Fototropik Mikroorganizmalar için Alternatif Üretim Sistemleri. Ulusal Su Günleri 2004, 6-8 Ekim 2004, İzmir.
Patil, V., Kallqvist, T., Olsen, E., Vogt, G., & Gislerød, H.R. (2007). Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15: 1–9. doi: 10.1007/s10499-006-9060-3
Ponis, E., Robert, R., & Parisi, G. (2003). Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquaculture, 221: 491–505. doi: http://dx.doi.org/10.1016/S0044-8486(03)00075-9
Pulz, O., & Scheibenbogen, K. (1998). Photobioreactors: design and performance with respect to light energy input. Advances in Biochemical Engineering/Biotechnology, 59: 123–151. doi: 10.1007/BFb0102298
Pulz, O. (2001). Photobioreactors: production systems for phototropic microorganisms. Applied Microbiology and Biotechnology, 57: 287–293.doi: 10.1007/s002530100702
Raja, R. (2003). Studies on Dunaliella salina (Dunal) Teod. With special reference to its anticancer properties. Ph.D., thesis, University of Madras, Chennai, India.
Raja, R., Anbazhagan, C., Ganesan, V., & Rengasamy, R. (2004a). Efficacy of Dunaliella salina (Volvocales, Chlorophyta) in salt refinery effluent treatment. Asian Journal of Chemistry, 16: 1081–1088.
Raja, R., Anbazhagan, C., Lakshmi, D., & Rengasamy, R. (2004b). Nutritional studies on Dunaliella salina (Volvocales, Chlorophyta) under laboratory conditions. Seaweed Resources Utilization, 26: 127–146.
Raja, R., Hemaiswarya, S., Balasubramanyam, D., & Rengasamy, R. (2007a). Protective effect of Dunaliella salina (Volvocales, Chlorophyta) on experimentally induced fibrosarcoma on wistar rats. Microbiological Research, 162: 177–184. doi: http://dx.doi.org/10.1016/j.micres.2006.03.009
Raja, R., Hemaiswarya, S., & Rengasamy, R. (2007b). Exploitation of Dunaliella for β-carotene production. Applied Microbiology and Biotechnology, 74: 517–523. doi: 10.1007/s00253-006-0777-8
Raja, R., Hemaiswarya, S., Ashok Kumar, N., Sridhar, S., & Rengasamy, R. (2008). A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, 34: 77–88. doi: http://dx.doi.org/10.1080/10408410802086783
Raja, R. (2009). Microalgae [Pourriel probable] a column in the IInd Chapter in ‘Un monde invisible’ edited by Laurence Bordenave, Publisher: Aubanel-La Martinie`re, La Martinie`re Group, ISBN: 978-2-7006-0670-6, France, pp. 124–126 (French).
Raja, R., & Hemaiswarya, S. (2010). Microalgae and immune potential a chapter in dietary components and immune function–prevention and treatment of disease and cancer. In: Watson RR, Zibadi S, Preedy VR (eds) Humana Press/Springer, ISBN: 978-1-60761- 060-1, USA, pp. 517–529.
Richmond, A. (2004). Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., pp. 1–544.
Robert, R., Parisi, G., Rodolfi, L., Poli, B.M., & Tredici, M.R. (2001). Use of fresh and preserved Tetraselmis suecica for feeding Crassostrea gigas larvae. Aquaculture, 192: 333–346. doi: http://dx.doi.org/10.1016/S0044-8486(00)00456-7
Rodolfi, L., Zittelli, G.C., Barsanti, L., Rosati, G., & Tredici, M.R. (2003). Growth medium recycling in Nannochloropsis sp. mass cultivation, Biomolecular Engineering, 20, pp. 243-248. doi: 10.1016/S1389-0344(03)00063-7
Rosenberg, J.N., Oyler, G.A., Wilkinson, L., & Betenbaugh, M.J. (2008). A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology, 19: 430–436. doi: 10.1016/j.copbio.2008.07.008
Rosenberry, B. (1991). World shrimp farming. Aquaculture Digest, San Diego.
Sanderson, G.W., & Jolly, S.O. (1994). The value of Phaffia yeast as a feed ingredient for Salmonid fish. Aquaculture, 124: 193–200. doi:10.1016/0044-8486(94)90377-8
Sargent, J.R., McEvoy, L.A., & Bell, J.G. (1997). Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155: 117–128. doi: 10.1016/S0044-8486(97)00122-1
Sayre, R.T., Wagner, R.E., Siripornadulsil, S., & Farias, C. (2001). Use of Chlamydomonas reinharditii and other transgenic algae in food or feed for delivery of antigens. International Patent Number W.O. 01/98335 A2.
Sicko-Goad, I., & Andresen, N.A. (1991). Effect of growth and light/dark cycles on diatom lipid content and composition. Journal of Phycology, 27: 710-718. doi: 10.1111/j.0022-3646.1991.00710.x
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101: 87–96. doi: http://dx.doi.org/10.1263/jbb.101.87
Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J., & Masojídek, J. (2003). Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage, Journal of Applied Phycology, 15: 127-136. doi: 10.1023/A:1023854904163
Watanabe, T., Kitajima, C., & Fujita, S. (1983). Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34: 115-143. doi:10.1016/0044-8486(83)90296-X
Wen, Z,Y., & Chen, F. (2003). Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 21: 273–294. doi: http://dx.doi.org/10.1016/S0734-9750(03)00051-X
Wikfors, G.H., & Ohno, M. (2001). Impact of algal research in aquaculture. Jounal of Phycology, 37: 968–974. doi: 10.1046/j.1529-8817.2001.01136.x
Yamasaki, S., Tanabe, K., & Hirata, H. (1989). Efficiency of chilled and frozen Nannochloropsis sp. (Marine Chlorella) for culture of rotifer. Memoirs of Faculty of Fisheries Kagoshima University, 38: 77–82.
Yılmaz, H.K. (2006). Mikroalg Üretimi İçin Fotobiyoreaktör Tasarımları. Ege Üniversitesi Su Ürünleri Dergisi, 23(1/2): 327-332.
Usage of microalgae as a sustainable food source in aquaculture
Year 2017,
Volume: 34 Issue: 3, 347 - 354, 26.09.2017
The need for food sources more
reliability according to animal products has increased interest especially in
plants and in algae. In aquaculture has benefited significantly from microalgae
in the various application areas. They are used as food as well as are
evaluated as sources of pigments in the salmonids. Currently, studies are
underway to examine the cost-effectiveness of microalgae production systems
which can be obtained by large-scale and advanced quality control. In order to
ensure sustainability in the use of microalgae; a systems based approach is
needed which integrates different fields such as biotechnology, bioprocess and
management procedures.
Alvarez, J.S., Llamas, A.H., Galindo, J., Fraga, I., Garca, T., & Villarreal, H. (2007). Substitution of fishmeal with soybean meal in practical diets for juvenile white shrimp Litopenaeus schmitti. Aquaculture Research, 38: 689–695. doi: 10.1111/j.1365-2109.2007.01654.x
Anonim. (2015a). BSGM. Retrieved from http://www.tarim.gov.tr/BSGM (15.09.2015).
Anonim. (2015b). Spirulina. Retrieved from http://www.algaeindustrymagazine.com/special-report-spirulina-part-6 (15.09.2015).
Apt, K.E., & Behrens, P.W. (1999). Commercial developments in microalgal biotechnology. Journal of Phycology, 35: 215–226. doi: 10.1046/j.1529-8817.1999.3520215.x
Atalah, E., Herna´ndez Cruz, C.M., Izquierdo, M.S., Rosenlund, G., Caballero, M.J., Valencia, A., & Robaina, L. (2007). Two microalgae Crypthecodinium cohnii and Phaeodactylum tricornutum as alternative source of essential fatty acids in starter feeds for seabream (Sparus aurata). Aquaculture, 270: 178–185. doi: http://dx.doi.org/10.1016/j.aquaculture.2007.04.009
Baker, R.T.M. (2002). Canthaxanthin in aquafeed applications: is there any risk? Trends in Food Science Technology, 12: 240–243. doi: http://dx.doi.org/10.1016/S0924-2244(01)00091-7
Borowitzka, M.A. (1997). Microalgae for aquaculture: Opportunities and constraints. Journal of Applied Phycology, 9: 393–401. doi: 10.1023/A:1007921728300
Brown, M.R., Mular, M., Miller, I., Farmer, C., & Trenerry, C. (1999). The vitamin content of microalgae used in aquaculture. Journal of Applied Phycology, 11: 247-255. doi: 10.1023/A:1008075903578
Brown, M.R. (2002). Nutritional value of microalgae for aquculture. In: Cruz-Sua´rez LE, Ricque-Marie D, Tapia-Salazar M, Gaxiola-Corte´s MG, Simoes N (eds) Avances en Nutricio´n Acuı´cola VI. Memorias del VI Simposium Internacional de Nutricio´n. Acuı´cola. 3 al 6 de Septiembre del. ancu´n. Quintana Roo, Me´xico. doi: 10.5772/30576
Chakraborty, R.D., Chakraborty, K., & Radhakrishnan, E.V. (2007). Variation in fatty acids composition of Artemia salina nauplii enriched with microalgae and baker’s yeast for use in larviculture. Journal of Agricultural and Food Chemistry, 55: 4043–4051. doi: 10.1021/jf063654l
Dhont, J., & Van Stappen, G. (2003). Live feeds in marine aquaculture. Blackwell Science Ltd, pp. 65–121.
Dunstan, G.H, Volkman, J.K., Barret, S.M., & Garland, C.D. (1993). Changes in the lipid composition and maximization of the polyunsaturated fatty acid content of three microalgae grown in mass culture. Journal of Applied Phycology, 5: 71–83. doi: 10.1007/BF02182424
Durmaz, Y. (2007). Vitamin E (α-tocopherol) production by the marine microalgae Nannochloropsis oculata (Eustigmatophyceae) in nitrogen limitation. Aquaculture, 272: 717–722. doi: http://dx.doi.org/10.1016/j.aquaculture.2007.07.213
Duru, M.D., & Kargın, Y. (2013). Mikroalglerin Pigment Kaynağı Olarak Balık Yemlerinde Kullanımı. Türk Bilimsel Derlemeler Dergisi, 6(2): 112-118.
Fujii, K., Nakashima, H., Hashidzume, Y., Uchiyama, T., Mishiro, K., & Kadota, Y. (2010). Potential use of the astaxanthin-producing microalga, Monoraphidium sp. GK12, as a functional aquafeed for prawns. Journal of Applied Phycology, 22: 363–369. doi: 10.1007/s10811-009-9468-z
Gagneux-Moreaux, S., Moreau, C., Gonzalez, J.L., & Cosson, R.P. (2007). Diatom artificial medium (DAM): a new artificial medium for the diatom Haslea ostrearia and other marine microalgae. Journal of Applied Phycology, 19: 549–556. doi: 10.1007/s10811-007-9169-4
Gara, B., Shields, R.J., & McEvoy, L. (1998). Feeding strategies to achieve correct metamorphosis of Atlantic halibut, Hippoglossus hippoglossus L., is using enriched Artemia. Aquaculture Research, 29: 935–948. doi: 10.1046/j.1365-2109.1998. 29120935.x
Gentsch, E., Kreibich, T., Hagen, W., & Barbara, N. (2009). Dietary shifts in the copepod Temora longicornis during spring: evidence from stable isotope signatures, fatty acid biomarkers and feding experiments. Journal of Plankton Research, 31: 45–60. doi: 10.1093/plankt/fbn097
Gill, I., & Valivety, R. (1997). Polyunsaturated fatty acids: Part 1. Occurrence, biological activities and applications. Trends in Biotechnology, 15: 401–409. doi: http://dx.doi.org/10.1016/S0167-7799(97)01076-7
Gökpınar, Ş., Koray, T., Akçiçek, E., Göksan, T., & Durmaz, Y. (2006). Algal antioksidanlar. Ege Üniversitesi Su Ürünleri Dergisi, 2 -Ek (1/1): 85-89.
Hemaiswarya, S., Raja, R., Kumar, R.R., Ganesan, V., & Anbazhagan, C. (2011). Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27: 1737–1746. doi: 10.1007/s11274-010-0632-z
Hilmi, Ş. (1994). Oksidanlar ve antioksidanlar. Türk Hastane Tıp Dergisi, 48: 1-2, 44-49.
Hong, H.A., Duc, H.L., & Cutting, S.M. (2005). The use of bacterial spore formers as probiotics. FEMS Microbiology Reviews, 29: 813–835. doi: 10.1016/j.femsre.2004.12.001
Jones, D.A., Kurmaly, K., & Arshad, A. (1987). Penaeid shrimp hatchery trials using microencapsulated diets. Aquaculture, 64: 133-146. doi: 10.1016/0044-8486(87)90349-8
Jones, D.A., Kamarudin, M.S., & Le Vay, L. (1993). The potential for replacement of live feeds in larval culture. Journal of the World Aquaculture Society, 24(2): 199-210. doi: 10.1111/j.1749-7345.1993.tb00009.x
Kang, C.D., & Sim, S.J. (2008). Direct extraction of astaxanthin from Haematococcus culture using vegetable oils. Biotechnology Letters, 30: 441–444. doi: 10.1007/s10529-007-9578-0
Kargın, Y.H. (2006). Mikroalg Üretimi İçin Fotobiyoreaktör Tasarımları. Ege Journal of Fisheries&Aquatic Sciences, Cilt/Volume 23, Ek/Suppl. (1/2): 327-332.
Knuckey, R.M., Brown, M.R., Barrett, S.M., & Hallegraeff, G.M. (2002). Isolation of new nanoplanktonic diatom strains and their evaluation as diets for the juvenile Pacific oyster. Aquaculture, 211: 253–274. doi: http://dx.doi.org/10.1016/S0044-8486(02)00010-8
Knuckey, R.M., Brown, M.R., Rene´ Robert, R., & Frampton, M.F.D. (2006). Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquacultural Engineering, 35(3): 300–313. doi: http://dx.doi.org/10.1016/j.aquaeng. 2006.04.001
Kumlu, M., & Jones, D.A. (1995). Feeding and digestion in the caridean shrimp larva of Palaemon elegans (Rathke) and Macrobrachium rosenbergii (De Man) (Crustacea: Palaemonidae) on live and artificial diets. Aquaculture Nutrition, 1: 3-12. doi: 10.1111/j.1365-2095.1995.tb00029.x
Kumlu, M., & Jones, D.A. (1995). The effect of live and artificial diets on growth, survival and trypsin activity in larvae of Penaeus indicus. Journal of the World Aquaculture Society, 26(4): 406-415. doi: 10.1111/j.1749-7345.1995.tb00836.x
Lavens, P., & Sorgeloos, P. (1996). Manual on the production and use of live food for aquaculture. FAO Fisheries Technical paper. In:Lavens P, Sorgeloos P (eds) Rome. pp. 36–19.
Léger, P., Bengtson, D.A., Sorgeloos, P., Simpson, K.L., & Beck, A.D. (1986). The use and nutritional value of Artemia as a food source. Oceanography and Marine Biology, An Annual Review, 24: 521-623.
Léger, Ph., & Sorgeloos, P. (1992). Optimised feeding regimes in shrimp hatcheries. In: Fast, A. W. and L. J. Lester, (Editors), Marine Shrimp Culture: Principles and Practices, Elsevier, pp. 225-244.
Li, S.S., & Tsai, H.J. (2009). Transgenic microalgae as a non-antibiotic bactericide producer to defend against bacterial pathogen infection in the fish digestive tract. Fish and Shellfish Immunology, 26: 316–325. doi: 10.1016/j.fsi.2008.07.004
Lo´pez Elı´as, J.A., Voltolina, D., Chavira Ortega, C.O., Rodrı´guez, B.B., Sa´enz Gaxiola, L.M., Esquivel, B.C., & Nieves, M. (2003). Mass production of microalgae in six commercial shrimp hatcheries of the Mexican northwest. Aquacultural Engineering, 29: 155–164. doi: http://dx.doi.org/10.1016/S0144-8609(03)00081-5
Lorenz, R.T., & Cysewski, G.R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18: 160–167. doi: http://dx.doi.org/10.1016/S0167-7799(00)01433-5
Martı´nez-Ferna´ndez, E., & Paul, C. (2007). Use of tropical microalgae as food for larvae of the black-lip pearl oyster Pinctada margaritifera. Aquaculture, 263: 220–226. doi: 10.1016/j.aquaculture.2006.09.040
Menasveta, P., Panichayakul, P., Piyativatitvorakul, P., & Piyativatitvorakul, S. (1984). Effect of different diets on survival of giant prawn larvae (Macrobrachium rosenbergii). Journal of the Science Society of Thailand, 10: 179-187.
Muller-Feuga, A. (2000). The role of microalgae in aquaculture: situation and trends. Journal of Applied Phycology, 12: 527–534. doi: http://dx.doi.org/10.1023/A:1008106304417
Muller-Feuga, A., Moal, J., & Kaas, R. (2003). The microalgae of aquaculture. In aquaculture. In: Støttrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Science Ltd., pp. 253–299.
Muller-Feuga, A. (2004). Microalgae for aquaculture: the current global situation and future trends. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, pp. 352–364.
Naz, M., & Gökçek, K. (2006). Fotobiyoreaktörler: Fototropik Mikroorganizmalar için Alternatif Üretim Sistemleri. Ulusal Su Günleri 2004, 6-8 Ekim 2004, İzmir.
Patil, V., Kallqvist, T., Olsen, E., Vogt, G., & Gislerød, H.R. (2007). Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquaculture International, 15: 1–9. doi: 10.1007/s10499-006-9060-3
Ponis, E., Robert, R., & Parisi, G. (2003). Nutritional value of fresh and concentrated algal diets for larval and juvenile Pacific oysters (Crassostrea gigas). Aquaculture, 221: 491–505. doi: http://dx.doi.org/10.1016/S0044-8486(03)00075-9
Pulz, O., & Scheibenbogen, K. (1998). Photobioreactors: design and performance with respect to light energy input. Advances in Biochemical Engineering/Biotechnology, 59: 123–151. doi: 10.1007/BFb0102298
Pulz, O. (2001). Photobioreactors: production systems for phototropic microorganisms. Applied Microbiology and Biotechnology, 57: 287–293.doi: 10.1007/s002530100702
Raja, R. (2003). Studies on Dunaliella salina (Dunal) Teod. With special reference to its anticancer properties. Ph.D., thesis, University of Madras, Chennai, India.
Raja, R., Anbazhagan, C., Ganesan, V., & Rengasamy, R. (2004a). Efficacy of Dunaliella salina (Volvocales, Chlorophyta) in salt refinery effluent treatment. Asian Journal of Chemistry, 16: 1081–1088.
Raja, R., Anbazhagan, C., Lakshmi, D., & Rengasamy, R. (2004b). Nutritional studies on Dunaliella salina (Volvocales, Chlorophyta) under laboratory conditions. Seaweed Resources Utilization, 26: 127–146.
Raja, R., Hemaiswarya, S., Balasubramanyam, D., & Rengasamy, R. (2007a). Protective effect of Dunaliella salina (Volvocales, Chlorophyta) on experimentally induced fibrosarcoma on wistar rats. Microbiological Research, 162: 177–184. doi: http://dx.doi.org/10.1016/j.micres.2006.03.009
Raja, R., Hemaiswarya, S., & Rengasamy, R. (2007b). Exploitation of Dunaliella for β-carotene production. Applied Microbiology and Biotechnology, 74: 517–523. doi: 10.1007/s00253-006-0777-8
Raja, R., Hemaiswarya, S., Ashok Kumar, N., Sridhar, S., & Rengasamy, R. (2008). A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, 34: 77–88. doi: http://dx.doi.org/10.1080/10408410802086783
Raja, R. (2009). Microalgae [Pourriel probable] a column in the IInd Chapter in ‘Un monde invisible’ edited by Laurence Bordenave, Publisher: Aubanel-La Martinie`re, La Martinie`re Group, ISBN: 978-2-7006-0670-6, France, pp. 124–126 (French).
Raja, R., & Hemaiswarya, S. (2010). Microalgae and immune potential a chapter in dietary components and immune function–prevention and treatment of disease and cancer. In: Watson RR, Zibadi S, Preedy VR (eds) Humana Press/Springer, ISBN: 978-1-60761- 060-1, USA, pp. 517–529.
Richmond, A. (2004). Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd., pp. 1–544.
Robert, R., Parisi, G., Rodolfi, L., Poli, B.M., & Tredici, M.R. (2001). Use of fresh and preserved Tetraselmis suecica for feeding Crassostrea gigas larvae. Aquaculture, 192: 333–346. doi: http://dx.doi.org/10.1016/S0044-8486(00)00456-7
Rodolfi, L., Zittelli, G.C., Barsanti, L., Rosati, G., & Tredici, M.R. (2003). Growth medium recycling in Nannochloropsis sp. mass cultivation, Biomolecular Engineering, 20, pp. 243-248. doi: 10.1016/S1389-0344(03)00063-7
Rosenberg, J.N., Oyler, G.A., Wilkinson, L., & Betenbaugh, M.J. (2008). A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Current Opinion in Biotechnology, 19: 430–436. doi: 10.1016/j.copbio.2008.07.008
Rosenberry, B. (1991). World shrimp farming. Aquaculture Digest, San Diego.
Sanderson, G.W., & Jolly, S.O. (1994). The value of Phaffia yeast as a feed ingredient for Salmonid fish. Aquaculture, 124: 193–200. doi:10.1016/0044-8486(94)90377-8
Sargent, J.R., McEvoy, L.A., & Bell, J.G. (1997). Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture, 155: 117–128. doi: 10.1016/S0044-8486(97)00122-1
Sayre, R.T., Wagner, R.E., Siripornadulsil, S., & Farias, C. (2001). Use of Chlamydomonas reinharditii and other transgenic algae in food or feed for delivery of antigens. International Patent Number W.O. 01/98335 A2.
Sicko-Goad, I., & Andresen, N.A. (1991). Effect of growth and light/dark cycles on diatom lipid content and composition. Journal of Phycology, 27: 710-718. doi: 10.1111/j.0022-3646.1991.00710.x
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101: 87–96. doi: http://dx.doi.org/10.1263/jbb.101.87
Torzillo, G., Goksan, T., Faraloni, C., Kopecky, J., & Masojídek, J. (2003). Interplay between photochemical activities and pigment composition in an outdoor culture of Haematococcus pluvialis during the shift from the green to red stage, Journal of Applied Phycology, 15: 127-136. doi: 10.1023/A:1023854904163
Watanabe, T., Kitajima, C., & Fujita, S. (1983). Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34: 115-143. doi:10.1016/0044-8486(83)90296-X
Wen, Z,Y., & Chen, F. (2003). Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 21: 273–294. doi: http://dx.doi.org/10.1016/S0734-9750(03)00051-X
Wikfors, G.H., & Ohno, M. (2001). Impact of algal research in aquaculture. Jounal of Phycology, 37: 968–974. doi: 10.1046/j.1529-8817.2001.01136.x
Yamasaki, S., Tanabe, K., & Hirata, H. (1989). Efficiency of chilled and frozen Nannochloropsis sp. (Marine Chlorella) for culture of rotifer. Memoirs of Faculty of Fisheries Kagoshima University, 38: 77–82.
Yılmaz, H.K. (2006). Mikroalg Üretimi İçin Fotobiyoreaktör Tasarımları. Ege Üniversitesi Su Ürünleri Dergisi, 23(1/2): 327-332.
Özçiçek, E., Can, E., Yılmaz, K., Seyhaneyıldız Can, Ş. (2017). Usage of microalgae as a sustainable food source in aquaculture. Ege Journal of Fisheries and Aquatic Sciences, 34(3), 347-354. https://doi.org/10.12714/egejfas.2017.34.3.15