Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Different Carbon Sources on Growth and Some Innate Immune Responses of Russian Sturgeon (Acipenser gueldenstaedtii) in Biofloc Systems

Yıl 2023, Cilt: 12 Sayı: 2, 162 - 171, 30.06.2023
https://doi.org/10.33714/masteb.1229189

Öz

The Russian sturgeon (Acipenser gueldenstaedtii) species is in high demand owing to its valuable caviar. Therefore, it is in danger of extinction. Since the Russian sturgeon reaches sexual maturity late in its life cycle, this species has a high economic cost for farmers. However, this high cost can be reduced with an environmentally friendly system called biofloc technology. This study compared the growth performance and health indicators of biofloc groups using different carbon sources such as starch (BS), molasses (BM) and dextrose (BD). In the 60-day study, fish with an average initial weight of 106.44±5.79 g were stocked in tanks at a density of 21 fish/tank (0.4 m3/tank). The water temperature was set at 19 ℃ degrees throughout the study. On the 30th and 60th days of the experiment, fish were weighted to measure the growth parameters and sampled for immune indices. No mortality was observed in any group throughout the study. A between group comparison of weight gain revealed that BS and BM (105.51±2.26; 100.50±2.18) performed better than the control (BC, without external carbon sources) and BD groups (95.90±2.09; 87.36±2.18) (P<0.05). Furthermore, FCR and SGR were calculated from the data obtained at the end of the experiment, and the data shows that the BS and BM groups were statistically more effective than the other groups. Moreover, a comparison of NBT, lysozyme and myeloperoxidase enzyme activities indicated that all BFT groups had a stronger immune system than the control group (P<0.05). According to the results, the immune-enhancing effect of BFT for sturgeon was determined, and it was reported that BS and BM are more suitable for use in this species in terms of FCR and SGR, as they result an economic and environmentally friendly production.

Teşekkür

This research which was a part of the Ph.D. thesis of İrfan Selçuk Yazıcı and was funded by the General Directorate of Agricultural Research and Policies (Republic of Turkey Ministry of Agriculture and Forestry, Türkiye) (Project name: Development of Aquaculture Techniques in Sturgeons).

Kaynakça

  • Adineh, H., Naderi, M., Hamidi, M. K., & Harsij, M. (2019). Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish & Shellfish Immunology, 95, 440-448. https://doi.org/10.1016/j.fsi.2019.10.057
  • Aghabarari, M., Abdali, S., & Yousefi Jourdehi, A. (2021). The effect of Biofloc system on water quality, growth and hematological indices of Juvenile great sturgeon (Huso huso). Iranian Journal of Fisheries Sciences, 20(5), 1467-1482.
  • Ahmad, I., Babitha Rani, A. M., Verma, A. K., & Maqsood, M. (2017). Biofloc technology: An emerging avenue in aquatic animal healthcare and nutrition. Aquaculture International, 25(3), 1215-1226. https://doi.org/10.1007/s10499-016-0108-8
  • Asaduzzaman, M., Wahab, M. A., Verdegem, M. C. J., Huque, S., Salam, M. A., & Azim, M. E. (2008). C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280(1-4), 117-123. https://doi.org/10.1016/j.aquaculture.2008.04.019
  • Assefa, A., & Abunna, F. (2018). Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Veterinary Medicine International, 2018, 5432497. https://doi.org/10.1155/2018/5432497
  • Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X
  • Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4), 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025
  • Avnimelech, Y. (2015). Biofloc technology: A practical hand book. World Aquaculture Society.
  • Bossier, P., & Ekasari, J. (2017). Biofloc technology application in aquaculture to support sustainable development goals. Microbial Biotechnology, 10(5), 1012-1016. https://doi.org/10.1111/1751-7915.12836
  • Bronzi, P., Chebanov, M., Michaels, J. T., Wei, Q., Rosenthal, H., & Gessner, J. (2019). Sturgeon meat and caviar production: Global update 2017. Journal of Applied Ichthyology, 35(1), 257-266. https://doi.org/10.1111/jai.13870
  • Das, R., Raman, R. P., Saha, H., & Singh, R. (2015). Effect of Ocimum sanctum Linn. (Tulsi) extract on the immunity and survival of Labeo rohita (Hamilton) infected with Aeromonas hydrophila. Aquaculture Research, 46(5), 1111-1121. https://doi.org/10.1111/are.12264
  • Dauda, A. B., Romano, N., Ebrahimi, M., Teh, J. C., Ajadi, A., Chong, C. M., Karim, M., Natrah, I., & Kamarudin, M. S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483, 120–130. https://doi.org/10.1016/j.aquaculture.2017.10.016
  • Durigon, E. G., Lazzari, R., Uczay, J., de Alcântara Lopes, D. L., Jerônimo, G. T., Sgnaulin, T., & Emerenciano, M. G. C. (2020). Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquaculture and Fisheries, 5(1), 42-51. https://doi.org/10.1016/j.aaf.2019.07.001
  • Ekasari, J., Azhar, M. H., Surawidjaja, E. H., Nuryati, S., De Schryver, P., & Bossier, P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish & Shellfish Immunology, 41(2), 332-339. https://doi.org/10.1016/j.fsi.2014.09.004
  • Ellis, R. H., Hong, T. D., & Roberts, E. H. (1990). An intermediate category of seed storage behaviour? I. Coffee. Journal of Experimental Botany, 41(9), 1167-1174. https://doi.org/10.1093/jxb/41.9.1167
  • Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M., & Miranda-Baeza, A. (2017). Biofloc technology (BFT): A tool for water quality management in aquaculture (pp. 92-109). In Tutu, H. (Ed.)., Water quality. IntechOpen. https://doi.org/10.5772/66416
  • Gupta, S. K., Pal, A. K., Sahu, N. P., Dalvi, R., Kumar, V., & Mukherjee, S. C. (2008). Microbial levan in the diet of Labeo rohita Hamilton juveniles: Effect on non‐specific immunity and histopathological changes after challenge with Aeromonas hydrophila. Journal of Fish Diseases, 31(9), 649-657. https://doi.org/10.1111/j.1365-2761.2008.00939.x
  • Hoang, M. N., Nguyen, P. N., & Bossier, P. (2020). Water quality, animal performance, nutrient budgets and microbial community in the biofloc-based polyculture system of white shrimp, Litopenaeus vannamei and gray mullet, Mugil cephalus. Aquaculture, 515, 734610. https://doi.org/10.1016/j.aquaculture.2019.734610
  • Jeney, G. (Ed.). (2017). Fish diseases: prevention and control strategies. Academic Press.
  • Ju, Z. Y., Forster, I., Conquest, L., & Dominy, W. (2008). Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquaculture Nutrition, 14(6), 533–543. https://doi.org/10.1111/j.1365-2095.2007.00559.x
  • Khanjani, M. H., Sajjadi, M. M., Alizadeh, M., & Sourinejad, I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48(4), 1491-1501. https://doi.org/10.1111/are.12985
  • Khanjani, M. H., & Sharifinia, M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Reviews in Aquaculture, 12(3), 1836-1850. https://doi.org/10.1111/raq.12412
  • Khanjani, M. H., Alizadeh, M., & Sharifinia, M. (2021). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquaculture International, 29(1), 307-321. https://doi.org/10.2478/aoas-2022-0025
  • Khanjani, M. H., Mohammadi, A., & Emerenciano, M. G. C. (2022). Microorganisms in biofloc aquaculture system. Aquaculture Reports, 26, 101300. https://doi.org/10.1016/j.aqrep.2022.101300
  • Komara, A. M., El‐Sayed, A. F. M., Hamdan, A. M., & Makled, S. O. (2022). Use of two freshwater macrophytes, water hyacinth (Eichhornia crassipes) and coontail (Ceratophyllum demersum), as carbohydrate sources in biofloc system for Nile tilapia (Oreochromis niloticus). Aquaculture Research, 53(8), 3112-3126. https://doi.org/10.1111/are.15824
  • Korchunov A. A. (2012). Dynamics of the biochemical composition of the body and sex products of the sterlet (Acipencer ruthenus Linnaeus, 1758) from natural populations and cultivated fish (pp. 136-143). Series Fisheries No:1. Publishing House of ASTU. [in Russian].
  • Liu, H., Li, H., Wei, H., Zhu, X., Han, D., Jin, J., ... & Xie, S. (2019). Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture, 506, 256-269. https://doi.org/10.1016/j.aquaculture.2019.03.031
  • Mansour, A. T., & Esteban, M. Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 64, 202-209. https://doi.org/10.1016/j.fsi.2017.03.025
  • Maqsood, S., Samoon, M. H., & Singh, P. (2009). Immunomodulatory and growth promoting effect of dietary levamisole in Cyprinus carpio fingerlings against the challenge of Aeromonas hydrophila. Turkish Journal of Fisheries and Aquatic Sciences, 9(1), 111-120.
  • Mirzakhani, N., Ebrahimi, E., Jalali, S. A. H., & Ekasari, J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512, 734235. https://doi.org/10.1016/j.aquaculture.2019.734235
  • Misra, C. K., Das, B. K., Mukherjee, S. C., & Pattnaik, P. (2006). Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture, 255(1-4), 82-94. https://doi.org/10.1016/j.aquaculture.2005.12.009
  • Mugwanya, M., Dawood, M. A., Kimera, F., & Sewilam, H. (2021). Biofloc systems for sustainable production of economically important aquatic species: A review. Sustainability, 13(13), 7255. https://doi.org/10.3390/su13137255
  • Najdegerami, E. H., Bakhshi, F., & Lakani, F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry, 42(2), 457-465. https://doi.org/10.1007/s10695-015-0151-9
  • Ogello, E. O., Outa, N. O., Obiero, K. O., Kyule, D. N., & Munguti, J. M. (2021). The prospects of biofloc technology (BFT) for sustainable aquaculture development. Scientific African, 14, e01053. https://doi.org/10.1016/j.sciaf.2021.e01053
  • Panigrahi, A., Sundaram, M., Saranya, C., Swain, S., Dash, R. R., & Dayal, J. S. (2019). Carbohydrate sources deferentially influence growth performances, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under biofloc system. Fish & shellfish immunology, 86, 1207-1216. https://doi.org/10.1016/j.fsi.2018.12.040
  • Pérez-Rostro, C. I., Pérez-Fuentes, J. A., & Hernández-Vergara, M. P. (2014). Biofloc, a technical alternative for culturing Malaysian prawn Macrobrachium rosenbergii (pp. 267-283). In Hernandez-Vergara, M. (Ed.), Sustainable aquaculture techniques. IntechOpen. https://doi.org/10.5772/57501
  • Quade, M. J., & Roth, J. A. (1997). A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Veterinary Immunology and Immunopathology, 58(3-4), 239-248. https://doi.org/10.1016/S0165-2427(97)00048-2
  • Şener, E., Yıldız, M., & Savaş, E. (2006). Effect of vegetable protein and oil supplementation on growth performance and body composition of Russian sturgeon juveniles (Acipenser gueldenstaedtii Brandt, 1833) at low temperatures. Turkish Journal of Fisheries and Aquatic Sciences, 6(1), 23-27.
  • Siwicki, A. K., & Anderson, D. P. (1993). Immunostimulation in fish: measuring the effects of stimulants by serological and immunological methods. Proceedings of The Nordic Symposium on Fish Immunology, Sweden, pp. 1-17.
  • Sytova, M. V. (2017). Security and information support for traceability of aquaculture products. VNIRO Publishing House (p. 157), Moscow, Russia. UDK 664.951: 658.562.6 [639.3/6: 004]. (In Russian).
  • Vasilyeva, L. M., Elhetawy, A. I. G., Sudakova, N. V., & Astafyeva, S. S. (2019). History, current status and prospects of sturgeon aquaculture in Russia. Aquaculture Research, 50(4), 979-993. https://doi.org/10.1111/are.13997
  • Xu, W. J., & Pan, L. Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356, 147-152. https://doi.org/10.1016/j.aquaculture.2012.05.022
  • Zhang, P., Cao, S., Zou, T., Han, D., Liu, H., Jin, J., Yang, Y., Zhu, X., Xie, S., & Zhou, W. (2018). Effects of dietary yeast culture on growth performance, immune response and disease resistance of gibel carp (Carassius auratus gibelio CAS Ⅲ). Fish & Shellfish Immunology, 82, 400-407. https://doi.org/10.1016/j.fsi.2018.08.044
  • Zhao, Y., Xue, B., Bi, C., Ren, X., & Liu, Y. (2022). Influence mechanisms of macro‐infrastructure on micro‐environments in the recirculating aquaculture system and biofloc technology system. Reviews in Aquaculture, 15(3), 991-1009. https://doi.org/10.1111/raq.12713
Yıl 2023, Cilt: 12 Sayı: 2, 162 - 171, 30.06.2023
https://doi.org/10.33714/masteb.1229189

Öz

Kaynakça

  • Adineh, H., Naderi, M., Hamidi, M. K., & Harsij, M. (2019). Biofloc technology improves growth, innate immune responses, oxidative status, and resistance to acute stress in common carp (Cyprinus carpio) under high stocking density. Fish & Shellfish Immunology, 95, 440-448. https://doi.org/10.1016/j.fsi.2019.10.057
  • Aghabarari, M., Abdali, S., & Yousefi Jourdehi, A. (2021). The effect of Biofloc system on water quality, growth and hematological indices of Juvenile great sturgeon (Huso huso). Iranian Journal of Fisheries Sciences, 20(5), 1467-1482.
  • Ahmad, I., Babitha Rani, A. M., Verma, A. K., & Maqsood, M. (2017). Biofloc technology: An emerging avenue in aquatic animal healthcare and nutrition. Aquaculture International, 25(3), 1215-1226. https://doi.org/10.1007/s10499-016-0108-8
  • Asaduzzaman, M., Wahab, M. A., Verdegem, M. C. J., Huque, S., Salam, M. A., & Azim, M. E. (2008). C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture, 280(1-4), 117-123. https://doi.org/10.1016/j.aquaculture.2008.04.019
  • Assefa, A., & Abunna, F. (2018). Maintenance of fish health in aquaculture: review of epidemiological approaches for prevention and control of infectious disease of fish. Veterinary Medicine International, 2018, 5432497. https://doi.org/10.1155/2018/5432497
  • Avnimelech, Y. (1999). Carbon/nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4), 227-235. https://doi.org/10.1016/S0044-8486(99)00085-X
  • Avnimelech, Y. (2007). Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4), 140-147. https://doi.org/10.1016/j.aquaculture.2006.11.025
  • Avnimelech, Y. (2015). Biofloc technology: A practical hand book. World Aquaculture Society.
  • Bossier, P., & Ekasari, J. (2017). Biofloc technology application in aquaculture to support sustainable development goals. Microbial Biotechnology, 10(5), 1012-1016. https://doi.org/10.1111/1751-7915.12836
  • Bronzi, P., Chebanov, M., Michaels, J. T., Wei, Q., Rosenthal, H., & Gessner, J. (2019). Sturgeon meat and caviar production: Global update 2017. Journal of Applied Ichthyology, 35(1), 257-266. https://doi.org/10.1111/jai.13870
  • Das, R., Raman, R. P., Saha, H., & Singh, R. (2015). Effect of Ocimum sanctum Linn. (Tulsi) extract on the immunity and survival of Labeo rohita (Hamilton) infected with Aeromonas hydrophila. Aquaculture Research, 46(5), 1111-1121. https://doi.org/10.1111/are.12264
  • Dauda, A. B., Romano, N., Ebrahimi, M., Teh, J. C., Ajadi, A., Chong, C. M., Karim, M., Natrah, I., & Kamarudin, M. S. (2018). Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerol-based biofloc systems. Aquaculture, 483, 120–130. https://doi.org/10.1016/j.aquaculture.2017.10.016
  • Durigon, E. G., Lazzari, R., Uczay, J., de Alcântara Lopes, D. L., Jerônimo, G. T., Sgnaulin, T., & Emerenciano, M. G. C. (2020). Biofloc technology (BFT): Adjusting the levels of digestible protein and digestible energy in diets of Nile tilapia juveniles raised in brackish water. Aquaculture and Fisheries, 5(1), 42-51. https://doi.org/10.1016/j.aaf.2019.07.001
  • Ekasari, J., Azhar, M. H., Surawidjaja, E. H., Nuryati, S., De Schryver, P., & Bossier, P. (2014). Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish & Shellfish Immunology, 41(2), 332-339. https://doi.org/10.1016/j.fsi.2014.09.004
  • Ellis, R. H., Hong, T. D., & Roberts, E. H. (1990). An intermediate category of seed storage behaviour? I. Coffee. Journal of Experimental Botany, 41(9), 1167-1174. https://doi.org/10.1093/jxb/41.9.1167
  • Emerenciano, M. G. C., Martínez-Córdova, L. R., Martínez-Porchas, M., & Miranda-Baeza, A. (2017). Biofloc technology (BFT): A tool for water quality management in aquaculture (pp. 92-109). In Tutu, H. (Ed.)., Water quality. IntechOpen. https://doi.org/10.5772/66416
  • Gupta, S. K., Pal, A. K., Sahu, N. P., Dalvi, R., Kumar, V., & Mukherjee, S. C. (2008). Microbial levan in the diet of Labeo rohita Hamilton juveniles: Effect on non‐specific immunity and histopathological changes after challenge with Aeromonas hydrophila. Journal of Fish Diseases, 31(9), 649-657. https://doi.org/10.1111/j.1365-2761.2008.00939.x
  • Hoang, M. N., Nguyen, P. N., & Bossier, P. (2020). Water quality, animal performance, nutrient budgets and microbial community in the biofloc-based polyculture system of white shrimp, Litopenaeus vannamei and gray mullet, Mugil cephalus. Aquaculture, 515, 734610. https://doi.org/10.1016/j.aquaculture.2019.734610
  • Jeney, G. (Ed.). (2017). Fish diseases: prevention and control strategies. Academic Press.
  • Ju, Z. Y., Forster, I., Conquest, L., & Dominy, W. (2008). Enhanced growth effects on shrimp (Litopenaeus vannamei) from inclusion of whole shrimp floc or floc fractions to a formulated diet. Aquaculture Nutrition, 14(6), 533–543. https://doi.org/10.1111/j.1365-2095.2007.00559.x
  • Khanjani, M. H., Sajjadi, M. M., Alizadeh, M., & Sourinejad, I. (2017). Nursery performance of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultivated in a biofloc system: the effect of adding different carbon sources. Aquaculture Research, 48(4), 1491-1501. https://doi.org/10.1111/are.12985
  • Khanjani, M. H., & Sharifinia, M. (2020). Biofloc technology as a promising tool to improve aquaculture production. Reviews in Aquaculture, 12(3), 1836-1850. https://doi.org/10.1111/raq.12412
  • Khanjani, M. H., Alizadeh, M., & Sharifinia, M. (2021). Effects of different carbon sources on water quality, biofloc quality, and growth performance of Nile tilapia (Oreochromis niloticus) fingerlings in a heterotrophic culture system. Aquaculture International, 29(1), 307-321. https://doi.org/10.2478/aoas-2022-0025
  • Khanjani, M. H., Mohammadi, A., & Emerenciano, M. G. C. (2022). Microorganisms in biofloc aquaculture system. Aquaculture Reports, 26, 101300. https://doi.org/10.1016/j.aqrep.2022.101300
  • Komara, A. M., El‐Sayed, A. F. M., Hamdan, A. M., & Makled, S. O. (2022). Use of two freshwater macrophytes, water hyacinth (Eichhornia crassipes) and coontail (Ceratophyllum demersum), as carbohydrate sources in biofloc system for Nile tilapia (Oreochromis niloticus). Aquaculture Research, 53(8), 3112-3126. https://doi.org/10.1111/are.15824
  • Korchunov A. A. (2012). Dynamics of the biochemical composition of the body and sex products of the sterlet (Acipencer ruthenus Linnaeus, 1758) from natural populations and cultivated fish (pp. 136-143). Series Fisheries No:1. Publishing House of ASTU. [in Russian].
  • Liu, H., Li, H., Wei, H., Zhu, X., Han, D., Jin, J., ... & Xie, S. (2019). Biofloc formation improves water quality and fish yield in a freshwater pond aquaculture system. Aquaculture, 506, 256-269. https://doi.org/10.1016/j.aquaculture.2019.03.031
  • Mansour, A. T., & Esteban, M. Á. (2017). Effects of carbon sources and plant protein levels in a biofloc system on growth performance, and the immune and antioxidant status of Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 64, 202-209. https://doi.org/10.1016/j.fsi.2017.03.025
  • Maqsood, S., Samoon, M. H., & Singh, P. (2009). Immunomodulatory and growth promoting effect of dietary levamisole in Cyprinus carpio fingerlings against the challenge of Aeromonas hydrophila. Turkish Journal of Fisheries and Aquatic Sciences, 9(1), 111-120.
  • Mirzakhani, N., Ebrahimi, E., Jalali, S. A. H., & Ekasari, J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromis niloticus) fry cultured in biofloc systems with different carbon sources and input C:N ratios. Aquaculture, 512, 734235. https://doi.org/10.1016/j.aquaculture.2019.734235
  • Misra, C. K., Das, B. K., Mukherjee, S. C., & Pattnaik, P. (2006). Effect of long term administration of dietary β-glucan on immunity, growth and survival of Labeo rohita fingerlings. Aquaculture, 255(1-4), 82-94. https://doi.org/10.1016/j.aquaculture.2005.12.009
  • Mugwanya, M., Dawood, M. A., Kimera, F., & Sewilam, H. (2021). Biofloc systems for sustainable production of economically important aquatic species: A review. Sustainability, 13(13), 7255. https://doi.org/10.3390/su13137255
  • Najdegerami, E. H., Bakhshi, F., & Lakani, F. B. (2016). Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry, 42(2), 457-465. https://doi.org/10.1007/s10695-015-0151-9
  • Ogello, E. O., Outa, N. O., Obiero, K. O., Kyule, D. N., & Munguti, J. M. (2021). The prospects of biofloc technology (BFT) for sustainable aquaculture development. Scientific African, 14, e01053. https://doi.org/10.1016/j.sciaf.2021.e01053
  • Panigrahi, A., Sundaram, M., Saranya, C., Swain, S., Dash, R. R., & Dayal, J. S. (2019). Carbohydrate sources deferentially influence growth performances, microbial dynamics and immunomodulation in Pacific white shrimp (Litopenaeus vannamei) under biofloc system. Fish & shellfish immunology, 86, 1207-1216. https://doi.org/10.1016/j.fsi.2018.12.040
  • Pérez-Rostro, C. I., Pérez-Fuentes, J. A., & Hernández-Vergara, M. P. (2014). Biofloc, a technical alternative for culturing Malaysian prawn Macrobrachium rosenbergii (pp. 267-283). In Hernandez-Vergara, M. (Ed.), Sustainable aquaculture techniques. IntechOpen. https://doi.org/10.5772/57501
  • Quade, M. J., & Roth, J. A. (1997). A rapid, direct assay to measure degranulation of bovine neutrophil primary granules. Veterinary Immunology and Immunopathology, 58(3-4), 239-248. https://doi.org/10.1016/S0165-2427(97)00048-2
  • Şener, E., Yıldız, M., & Savaş, E. (2006). Effect of vegetable protein and oil supplementation on growth performance and body composition of Russian sturgeon juveniles (Acipenser gueldenstaedtii Brandt, 1833) at low temperatures. Turkish Journal of Fisheries and Aquatic Sciences, 6(1), 23-27.
  • Siwicki, A. K., & Anderson, D. P. (1993). Immunostimulation in fish: measuring the effects of stimulants by serological and immunological methods. Proceedings of The Nordic Symposium on Fish Immunology, Sweden, pp. 1-17.
  • Sytova, M. V. (2017). Security and information support for traceability of aquaculture products. VNIRO Publishing House (p. 157), Moscow, Russia. UDK 664.951: 658.562.6 [639.3/6: 004]. (In Russian).
  • Vasilyeva, L. M., Elhetawy, A. I. G., Sudakova, N. V., & Astafyeva, S. S. (2019). History, current status and prospects of sturgeon aquaculture in Russia. Aquaculture Research, 50(4), 979-993. https://doi.org/10.1111/are.13997
  • Xu, W. J., & Pan, L. Q. (2012). Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture, 356, 147-152. https://doi.org/10.1016/j.aquaculture.2012.05.022
  • Zhang, P., Cao, S., Zou, T., Han, D., Liu, H., Jin, J., Yang, Y., Zhu, X., Xie, S., & Zhou, W. (2018). Effects of dietary yeast culture on growth performance, immune response and disease resistance of gibel carp (Carassius auratus gibelio CAS Ⅲ). Fish & Shellfish Immunology, 82, 400-407. https://doi.org/10.1016/j.fsi.2018.08.044
  • Zhao, Y., Xue, B., Bi, C., Ren, X., & Liu, Y. (2022). Influence mechanisms of macro‐infrastructure on micro‐environments in the recirculating aquaculture system and biofloc technology system. Reviews in Aquaculture, 15(3), 991-1009. https://doi.org/10.1111/raq.12713
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Balıkçılık Yönetimi
Bölüm Makaleler
Yazarlar

İrfan Selçuk Yazıcı 0000-0002-7427-3445

Selçuk Berber 0000-0003-1123-7217

Tuna Özcelep Bu kişi benim 0000-0002-0341-305X

Erken Görünüm Tarihi 20 Haziran 2023
Yayımlanma Tarihi 30 Haziran 2023
Gönderilme Tarihi 4 Ocak 2023
Kabul Tarihi 28 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 12 Sayı: 2

Kaynak Göster

APA Yazıcı, İ. S., Berber, S., & Özcelep, T. (2023). Effects of Different Carbon Sources on Growth and Some Innate Immune Responses of Russian Sturgeon (Acipenser gueldenstaedtii) in Biofloc Systems. Marine Science and Technology Bulletin, 12(2), 162-171. https://doi.org/10.33714/masteb.1229189
AMA Yazıcı İS, Berber S, Özcelep T. Effects of Different Carbon Sources on Growth and Some Innate Immune Responses of Russian Sturgeon (Acipenser gueldenstaedtii) in Biofloc Systems. Mar. Sci. Tech. Bull. Haziran 2023;12(2):162-171. doi:10.33714/masteb.1229189
Chicago Yazıcı, İrfan Selçuk, Selçuk Berber, ve Tuna Özcelep. “Effects of Different Carbon Sources on Growth and Some Innate Immune Responses of Russian Sturgeon (Acipenser Gueldenstaedtii) in Biofloc Systems”. Marine Science and Technology Bulletin 12, sy. 2 (Haziran 2023): 162-71. https://doi.org/10.33714/masteb.1229189.
EndNote Yazıcı İS, Berber S, Özcelep T (01 Haziran 2023) Effects of Different Carbon Sources on Growth and Some Innate Immune Responses of Russian Sturgeon (Acipenser gueldenstaedtii) in Biofloc Systems. Marine Science and Technology Bulletin 12 2 162–171.
IEEE İ. S. Yazıcı, S. Berber, ve T. Özcelep, “Effects of Different Carbon Sources on Growth and Some Innate Immune Responses of Russian Sturgeon (Acipenser gueldenstaedtii) in Biofloc Systems”, Mar. Sci. Tech. Bull., c. 12, sy. 2, ss. 162–171, 2023, doi: 10.33714/masteb.1229189.
ISNAD Yazıcı, İrfan Selçuk vd. “Effects of Different Carbon Sources on Growth and Some Innate Immune Responses of Russian Sturgeon (Acipenser Gueldenstaedtii) in Biofloc Systems”. Marine Science and Technology Bulletin 12/2 (Haziran 2023), 162-171. https://doi.org/10.33714/masteb.1229189.
JAMA Yazıcı İS, Berber S, Özcelep T. Effects of Different Carbon Sources on Growth and Some Innate Immune Responses of Russian Sturgeon (Acipenser gueldenstaedtii) in Biofloc Systems. Mar. Sci. Tech. Bull. 2023;12:162–171.
MLA Yazıcı, İrfan Selçuk vd. “Effects of Different Carbon Sources on Growth and Some Innate Immune Responses of Russian Sturgeon (Acipenser Gueldenstaedtii) in Biofloc Systems”. Marine Science and Technology Bulletin, c. 12, sy. 2, 2023, ss. 162-71, doi:10.33714/masteb.1229189.
Vancouver Yazıcı İS, Berber S, Özcelep T. Effects of Different Carbon Sources on Growth and Some Innate Immune Responses of Russian Sturgeon (Acipenser gueldenstaedtii) in Biofloc Systems. Mar. Sci. Tech. Bull. 2023;12(2):162-71.

27116