Araştırma Makalesi
BibTex RIS Kaynak Göster

Cıva toksisitesi üzerine selenyumun koruyucu rolünün Oreochromis niloticus (Linnaeus, 1758)’ta katalaz, süperoksit dismutaz ve malondialdehit parametreleri ile değerlendirilmesi

Yıl 2019, Cilt: 36 Sayı: 3, 245 - 253, 15.09.2019
https://doi.org/10.12714/egejfas.2019.36.3.05

Öz

Bu araştırmada cıva (Hg) toksisitesini ve bu toksisite üzerine selenyumun (Se) koruyucu rolünü belirlemek için Oreochromis niloticus’un dokularındaki oksidatif stres parametreleri çalışılmıştır. Bu amaçla balıklar 4 ve 21 günlük sürelerle 0.01 ve 0.05 ppm Hg ile 0.01+0.01 ve 0.05+0.05 ppm Hg+Se karışımlarının etkisine bırakılmış ve solungaç ve karaciğer süperoksit dismutaz (SOD) ve katalaz (CAT) aktiviteleri ile malondialdehit (MDA) düzeyleri belirlenmiştir. Hg’nin tek başına ve Se ile birlikte etkisinde incelenen oksidatif stres parametrelerinde dokuya, ortam derişimine ve etki süresine bağlı olarak önemli değişimlerin meydana geldiği belirlenmiştir. Cıvanın tek başına ve cıva+selenyum karışımının etkisinde özellikle de yüksek ortam derişimlerinde solungaç ve karaciğer SOD ve CAT aktiviteleri, 4 günlük süre sonunda anlamlı bir artış gösterirken (P˂0.05); 21 günlük süre sonunda ise anlamlı bir azalma göstermiştir (P˂0.05). Hg ve Hg+Se karışımının etkisinde her iki dokuda 4 günlük süre sonunda tüm ortam derişimlerinde önemli bir değişim göstermeyen (P˃0.05) MDA düzeyinin, 21 günlük süre sonunda yüksek ortam derişimlerinde anlamlı bir artış gösterdiği saptanmıştır (P˂0.05). Sonuç olarak O. niloticus’ta belirlenen SOD ve CAT aktiviteleri ile MDA düzeylerindeki artış veya azalışların cıva+selenyum karışımına oranla cıvanın tek başına etkisinde daha fazla olduğu ve selenyumun cıvanın oksidatif toksisitesi üzerine koruyucu bir etkiye sahip olduğu belirlenmiştir.

Destekleyen Kurum

Adıyaman Üniversitesi

Proje Numarası

FEFYL2014-0010

Teşekkür

Bu çalışma yüksek lisans tez çalışması olup FEFYL2014-0010 nolu Adıyaman Üniversitesi (ADYÜ) Bilimsel Araştırma Projesi ile yürütülmüş olup ADYÜ Bilimsel Araştırma Projeleri Koordinasyon Biriminin değerli yöneticilerine ve çalışanlarına teşekkür ederiz.

Kaynakça

  • Agenyc for Toxic Subtances and Disease Registry (ATSDR). (2018). Priority list of hazardous substances, Available at: http://www.atsdr.cdc.gov/cercla/05list.html. Accessed October, 05, 2018.
  • Bainy, A.C.D., Saito, E., Carvalho, P.S.M., & Junqueira, V.B.C. (1996). Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquatic Toxicology, 34, 151–62. https://doi.org/10.1016/0166-445X(95)00036-4
  • Banerjee, B.D., Seth, V., Bhattacharya, A., Pasha, S.T., & Chakraborty, A.K. (1999). Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicology Letters, 107, 33–47. DOI: 10.1016/S0378-4274(99)00029-6
  • Beck, M.A., Levandert, O.A., & Handy, J. (2003). Selenium deficiency and viral infection. The Journal of Nutrition, 133, 1463-1467. DOI: 10.1093/jn/133.5.1463S
  • Berntssen, M.H.G., Aatland, A., & Handy, R.D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquatic Toxicology, 65, 55-72. DOI: 10.1016/S0166-445X(03)00104-8
  • Carvalho, C.D.S., Bernusso, V.A., Araujo, H.S.S., Espindola, E.L.G., & Fernandes, M.N. (2012). Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere, 89, 60–69. DOI: 10.1016/j.chemosphere.2012.04.013
  • Chien, L.C., Yeh, C.Y., Huang, S.Y., Shieh, M.J., & Han, B.C. (2003). Pharmacokinetic model of daily selenium intake from contaminated seafood in Taiwa. Science of The Total Environment, 311, 57-64. DOI: 10.1016/S0048-9697(03)00134-7
  • Diez, S. (2008). Human health effects of methylmercury exposure. Reviews of Environmental Contamination and Toxicology, 198, 113–132. DOI: 10.1007/978-0-387-09647-6-3
  • Dimitrova, M.S.T., Tsnova, V., & Velcheva, V. (1994). Combined effect of zinc and lead on the hepatic superoxide dismutase- catalase system in carp (Cyprinus carpio). Comparative Biochemistry and Physiology, 108C, 43-46. DOI: 10.1016/1367-8280(94)90087-6
  • Dubovskiy, I.M., Martemyanov, V.V., Vorontsova, Y.L., Rantala, M.J., Gryzanova, E.V., & Glupov, V.V. (2008). Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comparative Biochemistry and Physiology, 148C, 1–5. DOI: 10.1016/j.cbpc.2008.02.003
  • Ishikawa, N.M., Ranzani-Paiva, M.J.T., Lombardi, J.V., & Ferreira, C.M. (2007). Hematological parameters in Nile tilapia, Oreochromis niloticus exposed to sub-letal concentrations of mercury. Brazilian Archives of Biology and Technology, 50, 619-626.
  • El-Gazzar, A.M., Ashry, K.E., & El-Sayed, Y.S. (2014). Physiological and oxidative stress biomarkers in the freshwater Nile tilapia, Oreochromis niloticus L., exposed to sublethal doses of cadmium. Alexandria Journal of Veterinary Sciences, 40, 29-43. DOI: 10.5455/ajvs.48333
  • Fernandes, C., Fontainhas-Fernandes, A., Ferreira, M., & Salgado, M.A. (2008). Oxidative stress response in gill and liver of Liza saliens, from the Esmoriz–Paramos Coastal Lagoon Portugal. Archives of Environmental Contamination and Toxicology, 55, 262–269. DOI: 10.1007/s00244-007-9108-z
  • Fırat, Ö., & Kargin, F. (2010). Effects of zinc and cadmium on erythrocyte antioxidant systems of a freshwater fish Oreochromis niloticus. Journal of Biochemical and Molecular Toxicology, 24(4), 223-229. DOI: 10.1002/jbt.20327
  • Fırat, Ö., Cogun, H.Y., Yüzereroğlu, T.A., Gök, G., Fırat, Ö., Kargin, F., & Kötemen, Y. (2011). A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiology and Biochemistry, 37, 657-666. DOI: 10.1007/s10695-011-9466-3
  • Fırat,Ö., A. & Şahin İnandı, A. (2016). Investigation of combined effect of zeolite and mercury toxicity on some serum biochemical parameters of Oreochromis niloticus. Ege Journal of Fisheries and Aquatic Sciences, 33(3), 251-257. DOI: 10.12714/egejfas.2016.33.3.09
  • Firidin, G., Kargin, F., Fırat, Ö., Cogun, H.Y., Fırat, Ö., Firidin, B., & Yüzereroğlu, T.A. (2015). Antioxidant defence systems, lipid peroxidation and acetylcholinesterase activity of Oreochromis niloticus exposed to mercury and mercury+selenium. Fresenius Environmental Bulletin, 24(5), 1958-1965.
  • Hu, H. (2000). Exposure to metals. Primary Care, 27, 983–996. DOI: 0.1016/S0095-4543(05)70185-8
  • Karadag, H., Fırat, Ö,. & Fırat, Ö. (2014). Use of oxidative stress biomarkers in Cyprinus carpio L. for the evaluation of water pollution in Ataturk Dam Lake (Adiyaman, Turkey). Bulletin of Environmental Contamination and Toxicology, 92, 289-293. DOI: 10.1007/s00128-013-1187-0
  • Lartillot, S., Kadziora, P., & Athios, A. (1988). Purification and characterization of new fungal catalase. Preparative Biochemistry, 18, 241-246.
  • Lopez-Lopez, E., Sedeno-Diaz, J.E., Soto, C., & Favari, L. (2011). Responses of antioxidant enzymes, lipid peroxidation, and Na+/K+-ATPase in liver of the fish Goodea atripinnis exposed to Lake Yuriria water. Fish Physiology and Biochemistry, 37, 511–522. DOI: 10.1007/s10695-010-9453-0
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurements with the folin phenol reagent. The Journal of Biological Chemistry, 193, 265-275.
  • Min, E.Y., & Kang, J.C. (2008). Effect of waterborne benomyl on the hematological and antioxidant parameters of the Nile tilapia, Oreochromis niloticus. Pesticide Biochemistry and Physiology, 92, 138–143. DOI: 10.1016/j.pestbp.2008.07.007
  • Monteiro, D.A., Rantin, F.T., & Kalinin, A.L. (2009). The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxa, Brycon cephalus (Gunther, 1869) exposed to organophosphate insecticide Folisuper 600 BR- (methyl parathion). Comparative Biochemistry and Physiology, 149C, 40–49. DOI: 10.1016/j.cbpc.2008.06.012
  • Nogueira, C.W., Quinhones, E.B., Jung, E.A.C., Zeni, G., & Rocha, J.B.T. (2003). Anti-inflammatory and antinociceptive activity of biphenyl diselenide. Inflammation Research, 52, 56–63. DOI: 10.1007/s000110300001
  • Pathiratne, A., Chandrasekera, L.W.H.U., & Pathiratne, K.A.S. (2009). Use of biomarkers in Nile tilapia (Oreochromis niloticus) to assess the impacts of pollution in Bolgoda Lake, an urban water body in Sri Lanka. Environmental Monitoring and Assessment, 156, 361–375. DOI: 10.1007/s10661-008-0490-4
  • Perottoni, J., Lobato, L.P., Silveira, A., Rocha, J.B.T., & Emanuelli, T. (2004). Effects of mercury and selenite on d-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats. Environmental Research, 95, 166–173. DOI: 10.1016/j.envres.2003.08.007
  • Plessi, M., Bertelli, D., & Monzani, A. (2001). Mercury and selenium content in selected seafood. Journal of Food Composition and Analysis, 14, 461-467. DOI: 10.1006/jfca.2001.1003
  • Ranzani-Paiva, M.J.T., Lombardi, J.V., & Gonçalves, A. (2011). Acute toxicity of sodium selenite and sodium selenate to tilapia, Oreochromis niloticus, fingerlings. Boletim do Instituto de Pesca, 37(2), 191 – 197.
  • Rayman, M. (2000). The importance of selenium to human health. Lancet, 356, 233–241.
  • Regoli, F., & Principato, G. (1995). Gluatathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metal under field and laboratory conditions: Implications for the use of biochemical biomarkers. Aquatic Toxicology, 31, 143–164. DOI:10.1016/0166-445X(94)00064-W
  • Stohs, S.J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metals ions. Free Radical Biology and Medicine, 2, 321–336.
  • Su, L., Wang, M., Yin, S., Wang, H., Chen, L., Sun, L., & Ruan, D. (2008). The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotoxicology and Environmental Safety, 70, 483-489. DOI: 10.1016/j.ecoenv.2007.05.018
  • Sun, Y., Oberley, L.W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34, 497-500.
  • Talas, Z.S., Orun, I., Ozdemir, I., Erdoğan, K., Alkan, A., & Yılmaz, I. (2008). Antioxidative role of selenium against the toxic effect of heavy metals (Cd+2, Cr+3) on liver of rainbow trout (Oncorhynchus mykiss Walbaum 1792). Fish Physiology and Biochemistry, 34, 217-222. DOI: 10.1007/s10695-007-9179-9
  • Van Dyk, J.C., Pieterse, G.M., & Van Vuren, J.H.J. (2007). Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicology and Environmental Safety, 66, 432–440. DOI: 10.1016/j.ecoenv.2005.10.012
  • Verlecar, X.N., Jena, K.B., & Chainy, G.B.N. (2008). Modulation of antioxidant defenses in digestive gland of Perna viridis (L.), on mercury exposure. Chemosphere, 71, 1977–1985. DOI: 10.1016/j.chemosphere.2007.12.014
  • Verma, R.S., Mehta, A., & Srivastava, N. (2007). In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins. Pesticide Biochemistry and Physiology, 88, 191–196. DOI:10.1016/j.pestbp.2006.11.002

Evaluation of protective role of selenium on mercury toxicity by superoxide dismutase, catalase and malondialdehyde parameters in Oreochromis niloticus (Linnaeus, 1758)

Yıl 2019, Cilt: 36 Sayı: 3, 245 - 253, 15.09.2019
https://doi.org/10.12714/egejfas.2019.36.3.05

Öz

In this research, to determine toxicity of mercury (Hg) and whether selenium (Se) has any role in protection of this toxicity, it was investigated the alterations in oxidative stress parameters in tissues of Oreochromis niloticus. For this purpose, fish were exposed to 0.01 and 0.05 ppm Hg and 0.01 ppm Hg+0.01 ppm Se and 0.05 ppm Hg+0.05 ppm Se for 4 and 21 days and activities of superoxide dismutase (SOD) and catalase (CAT) and levels of malondialdehyde (MDA) in gill and liver were determined. It was observed significant changes in all analyzed parameters due to tissue, medium concentration and exposure period in the exposure of mercury alone and Hg+Se mixtures. In Hg alone, and in combination with Se especially in their higher medium concentrations, activities of SOD and CAT in the gill and liver significantly increased at 4 days (P˂0.05), while they significantly decreased at 21 days (P˂0.05). In the exposure of Hg and Hg+Se and in the both tissues, it not determined significant alteration in the MDA levels at 4 days (P˃0.05), while they elevated in their higher concentrations at 21 days (P˂0.05). In conclusion, it was determined the increases or decreases in activities of SOD and CAT and levels of MDA in O. niloticus were higher in the Hg alone than Hg+Se mixtures and selenium has a protective effect on oxidative toxicity of mercury

Proje Numarası

FEFYL2014-0010

Kaynakça

  • Agenyc for Toxic Subtances and Disease Registry (ATSDR). (2018). Priority list of hazardous substances, Available at: http://www.atsdr.cdc.gov/cercla/05list.html. Accessed October, 05, 2018.
  • Bainy, A.C.D., Saito, E., Carvalho, P.S.M., & Junqueira, V.B.C. (1996). Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquatic Toxicology, 34, 151–62. https://doi.org/10.1016/0166-445X(95)00036-4
  • Banerjee, B.D., Seth, V., Bhattacharya, A., Pasha, S.T., & Chakraborty, A.K. (1999). Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicology Letters, 107, 33–47. DOI: 10.1016/S0378-4274(99)00029-6
  • Beck, M.A., Levandert, O.A., & Handy, J. (2003). Selenium deficiency and viral infection. The Journal of Nutrition, 133, 1463-1467. DOI: 10.1093/jn/133.5.1463S
  • Berntssen, M.H.G., Aatland, A., & Handy, R.D. (2003). Chronic dietary mercury exposure causes oxidative stress, brain lesions, and altered behaviour in Atlantic salmon (Salmo salar) parr. Aquatic Toxicology, 65, 55-72. DOI: 10.1016/S0166-445X(03)00104-8
  • Carvalho, C.D.S., Bernusso, V.A., Araujo, H.S.S., Espindola, E.L.G., & Fernandes, M.N. (2012). Biomarker responses as indication of contaminant effects in Oreochromis niloticus. Chemosphere, 89, 60–69. DOI: 10.1016/j.chemosphere.2012.04.013
  • Chien, L.C., Yeh, C.Y., Huang, S.Y., Shieh, M.J., & Han, B.C. (2003). Pharmacokinetic model of daily selenium intake from contaminated seafood in Taiwa. Science of The Total Environment, 311, 57-64. DOI: 10.1016/S0048-9697(03)00134-7
  • Diez, S. (2008). Human health effects of methylmercury exposure. Reviews of Environmental Contamination and Toxicology, 198, 113–132. DOI: 10.1007/978-0-387-09647-6-3
  • Dimitrova, M.S.T., Tsnova, V., & Velcheva, V. (1994). Combined effect of zinc and lead on the hepatic superoxide dismutase- catalase system in carp (Cyprinus carpio). Comparative Biochemistry and Physiology, 108C, 43-46. DOI: 10.1016/1367-8280(94)90087-6
  • Dubovskiy, I.M., Martemyanov, V.V., Vorontsova, Y.L., Rantala, M.J., Gryzanova, E.V., & Glupov, V.V. (2008). Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae). Comparative Biochemistry and Physiology, 148C, 1–5. DOI: 10.1016/j.cbpc.2008.02.003
  • Ishikawa, N.M., Ranzani-Paiva, M.J.T., Lombardi, J.V., & Ferreira, C.M. (2007). Hematological parameters in Nile tilapia, Oreochromis niloticus exposed to sub-letal concentrations of mercury. Brazilian Archives of Biology and Technology, 50, 619-626.
  • El-Gazzar, A.M., Ashry, K.E., & El-Sayed, Y.S. (2014). Physiological and oxidative stress biomarkers in the freshwater Nile tilapia, Oreochromis niloticus L., exposed to sublethal doses of cadmium. Alexandria Journal of Veterinary Sciences, 40, 29-43. DOI: 10.5455/ajvs.48333
  • Fernandes, C., Fontainhas-Fernandes, A., Ferreira, M., & Salgado, M.A. (2008). Oxidative stress response in gill and liver of Liza saliens, from the Esmoriz–Paramos Coastal Lagoon Portugal. Archives of Environmental Contamination and Toxicology, 55, 262–269. DOI: 10.1007/s00244-007-9108-z
  • Fırat, Ö., & Kargin, F. (2010). Effects of zinc and cadmium on erythrocyte antioxidant systems of a freshwater fish Oreochromis niloticus. Journal of Biochemical and Molecular Toxicology, 24(4), 223-229. DOI: 10.1002/jbt.20327
  • Fırat, Ö., Cogun, H.Y., Yüzereroğlu, T.A., Gök, G., Fırat, Ö., Kargin, F., & Kötemen, Y. (2011). A comparative study on the effects of a pesticide (cypermethrin) and two metals (copper, lead) to serum biochemistry of Nile tilapia, Oreochromis niloticus. Fish Physiology and Biochemistry, 37, 657-666. DOI: 10.1007/s10695-011-9466-3
  • Fırat,Ö., A. & Şahin İnandı, A. (2016). Investigation of combined effect of zeolite and mercury toxicity on some serum biochemical parameters of Oreochromis niloticus. Ege Journal of Fisheries and Aquatic Sciences, 33(3), 251-257. DOI: 10.12714/egejfas.2016.33.3.09
  • Firidin, G., Kargin, F., Fırat, Ö., Cogun, H.Y., Fırat, Ö., Firidin, B., & Yüzereroğlu, T.A. (2015). Antioxidant defence systems, lipid peroxidation and acetylcholinesterase activity of Oreochromis niloticus exposed to mercury and mercury+selenium. Fresenius Environmental Bulletin, 24(5), 1958-1965.
  • Hu, H. (2000). Exposure to metals. Primary Care, 27, 983–996. DOI: 0.1016/S0095-4543(05)70185-8
  • Karadag, H., Fırat, Ö,. & Fırat, Ö. (2014). Use of oxidative stress biomarkers in Cyprinus carpio L. for the evaluation of water pollution in Ataturk Dam Lake (Adiyaman, Turkey). Bulletin of Environmental Contamination and Toxicology, 92, 289-293. DOI: 10.1007/s00128-013-1187-0
  • Lartillot, S., Kadziora, P., & Athios, A. (1988). Purification and characterization of new fungal catalase. Preparative Biochemistry, 18, 241-246.
  • Lopez-Lopez, E., Sedeno-Diaz, J.E., Soto, C., & Favari, L. (2011). Responses of antioxidant enzymes, lipid peroxidation, and Na+/K+-ATPase in liver of the fish Goodea atripinnis exposed to Lake Yuriria water. Fish Physiology and Biochemistry, 37, 511–522. DOI: 10.1007/s10695-010-9453-0
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurements with the folin phenol reagent. The Journal of Biological Chemistry, 193, 265-275.
  • Min, E.Y., & Kang, J.C. (2008). Effect of waterborne benomyl on the hematological and antioxidant parameters of the Nile tilapia, Oreochromis niloticus. Pesticide Biochemistry and Physiology, 92, 138–143. DOI: 10.1016/j.pestbp.2008.07.007
  • Monteiro, D.A., Rantin, F.T., & Kalinin, A.L. (2009). The effects of selenium on oxidative stress biomarkers in the freshwater characid fish matrinxa, Brycon cephalus (Gunther, 1869) exposed to organophosphate insecticide Folisuper 600 BR- (methyl parathion). Comparative Biochemistry and Physiology, 149C, 40–49. DOI: 10.1016/j.cbpc.2008.06.012
  • Nogueira, C.W., Quinhones, E.B., Jung, E.A.C., Zeni, G., & Rocha, J.B.T. (2003). Anti-inflammatory and antinociceptive activity of biphenyl diselenide. Inflammation Research, 52, 56–63. DOI: 10.1007/s000110300001
  • Pathiratne, A., Chandrasekera, L.W.H.U., & Pathiratne, K.A.S. (2009). Use of biomarkers in Nile tilapia (Oreochromis niloticus) to assess the impacts of pollution in Bolgoda Lake, an urban water body in Sri Lanka. Environmental Monitoring and Assessment, 156, 361–375. DOI: 10.1007/s10661-008-0490-4
  • Perottoni, J., Lobato, L.P., Silveira, A., Rocha, J.B.T., & Emanuelli, T. (2004). Effects of mercury and selenite on d-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats. Environmental Research, 95, 166–173. DOI: 10.1016/j.envres.2003.08.007
  • Plessi, M., Bertelli, D., & Monzani, A. (2001). Mercury and selenium content in selected seafood. Journal of Food Composition and Analysis, 14, 461-467. DOI: 10.1006/jfca.2001.1003
  • Ranzani-Paiva, M.J.T., Lombardi, J.V., & Gonçalves, A. (2011). Acute toxicity of sodium selenite and sodium selenate to tilapia, Oreochromis niloticus, fingerlings. Boletim do Instituto de Pesca, 37(2), 191 – 197.
  • Rayman, M. (2000). The importance of selenium to human health. Lancet, 356, 233–241.
  • Regoli, F., & Principato, G. (1995). Gluatathione, glutathione-dependent and antioxidant enzymes in mussel, Mytilus galloprovincialis, exposed to metal under field and laboratory conditions: Implications for the use of biochemical biomarkers. Aquatic Toxicology, 31, 143–164. DOI:10.1016/0166-445X(94)00064-W
  • Stohs, S.J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metals ions. Free Radical Biology and Medicine, 2, 321–336.
  • Su, L., Wang, M., Yin, S., Wang, H., Chen, L., Sun, L., & Ruan, D. (2008). The interaction of selenium and mercury in the accumulations and oxidative stress of rat tissues. Ecotoxicology and Environmental Safety, 70, 483-489. DOI: 10.1016/j.ecoenv.2007.05.018
  • Sun, Y., Oberley, L.W., & Li, Y. (1988). A simple method for clinical assay of superoxide dismutase. Clinical Chemistry, 34, 497-500.
  • Talas, Z.S., Orun, I., Ozdemir, I., Erdoğan, K., Alkan, A., & Yılmaz, I. (2008). Antioxidative role of selenium against the toxic effect of heavy metals (Cd+2, Cr+3) on liver of rainbow trout (Oncorhynchus mykiss Walbaum 1792). Fish Physiology and Biochemistry, 34, 217-222. DOI: 10.1007/s10695-007-9179-9
  • Van Dyk, J.C., Pieterse, G.M., & Van Vuren, J.H.J. (2007). Histological changes in the liver of Oreochromis mossambicus (Cichlidae) after exposure to cadmium and zinc. Ecotoxicology and Environmental Safety, 66, 432–440. DOI: 10.1016/j.ecoenv.2005.10.012
  • Verlecar, X.N., Jena, K.B., & Chainy, G.B.N. (2008). Modulation of antioxidant defenses in digestive gland of Perna viridis (L.), on mercury exposure. Chemosphere, 71, 1977–1985. DOI: 10.1016/j.chemosphere.2007.12.014
  • Verma, R.S., Mehta, A., & Srivastava, N. (2007). In vivo chlorpyrifos induced oxidative stress: Attenuation by antioxidant vitamins. Pesticide Biochemistry and Physiology, 88, 191–196. DOI:10.1016/j.pestbp.2006.11.002
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Özgür Fırat 0000-0002-9683-8945

Özlem Kaya 0000-0002-2885-1865

Proje Numarası FEFYL2014-0010
Yayımlanma Tarihi 15 Eylül 2019
Gönderilme Tarihi 25 Ocak 2019
Yayımlandığı Sayı Yıl 2019Cilt: 36 Sayı: 3

Kaynak Göster

APA Fırat, Ö., & Kaya, Ö. (2019). Cıva toksisitesi üzerine selenyumun koruyucu rolünün Oreochromis niloticus (Linnaeus, 1758)’ta katalaz, süperoksit dismutaz ve malondialdehit parametreleri ile değerlendirilmesi. Ege Journal of Fisheries and Aquatic Sciences, 36(3), 245-253. https://doi.org/10.12714/egejfas.2019.36.3.05