Araştırma Makalesi
BibTex RIS Kaynak Göster

Changes of oil and fatty acid ratios during germination of industrial hemp (Cannabis sativa L.) seeds

Yıl 2023, Cilt: 16 Sayı: 1, 56 - 62, 15.04.2023
https://doi.org/10.46309/biodicon.2022.1205855

Öz

This study aimed to investigate the change of oil ratio and fatty acid contents during germination of industrial hemp seeds. Oil content and fatty acid contents were determined from the samples taken at 0 (control), 24, 48, 72 and 96 hours from industrial hemp (Cannabis sativa L. cv. Vezir-55) seeds germinated under controlled conditions. The effects of germination hours on behenic, lignoceric, linoleic, palmitic, gamma-linolenic acid ratios and polyunsaturated fatty acid ratios were statistically significant. The lowest and highest values for these parameters were determined as 0.22-0.35%, 0.40-0.70%, 47.33-49.11%, 7.96-9.01%, 1.29-1.61% and 69.96-71.69%, respectively. Seed oil ratio, arachidic, eicosapentaenoic, lauric, alpha-linolenic, margaric, myristic, oleic, palmitoleic, ricinoleic, stearic acid ratios and saturated and monounsaturated fatty acids ratios were not affected by germination hours. According to the values obtained in the study, changes in the ratio of fatty acids during germination were similar to previous studies, while the selective use and synthesis of fatty acids by the seed differed according to the plant species.

Kaynakça

  • [1] Vandenhove, H., & Van Hees, M. (2005). Fibre crops as alternative land use for radioactively contaminated arable land. Journal of Environmental Radioactivity, 81(2-3), 131-141.
  • [2] Salentijn, E. M., Zhang, Q., Amaducci, S., Yang, M., & Trindade, L. M. (2015). New developments in fiber hemp (Cannabis sativa L.) breeding. Industrial Crops and Products, 68, 32-41.
  • [3] Fike, J. (2016). Industrial hemp: renewed opportunities for an ancient crop. Critical Reviews in Plant Sciences, 35(5-6), 406-424.
  • [4] Mert, M. (2020). Lif bitkileri (3. Baskı). Ankara: Nobel Yayınları.
  • [5] Leson, G., & Pless, P. (2002). Hemp seed and hemp oil. Cannabis and cannabinoids: Pharmacology, Toxicology and Therapeutic Potential, 411-425.
  • [6] Erasmus, U. (1999). Fats that heal, fats that kill. Burnaby: Alive Books.
  • [7] Leizer, C., Ribnicky, D., Poulev, A., Dushenkov, S., & Raskin, I. (2000). The composition of hemp seed oil and its potential as an important source of nutrition. Journal of Nutraceuticals, Functional & Medical Foods, 2(4), 35-53.
  • [8] Simopoulos, A. P. (1994). Fatty acids: Functional Foods: Designer Foods, Pharmafoods, Nutraceuticals. New York: Chapman & Hall.
  • [9] ISTA (1996). International Rules for Seed Testing. Rules. Seed Science and Technology 24. Supplement.
  • [10] Ertekin, İ., Atış, İ., Yılmaz, Ş., Can, E., & Kızılşimşek M. (2019). Comparison of shrub leaves in terms of chemical composition and nutritive value. KSU Journal of Natural Sciences, 22, 781-786.
  • [11] Türkmen, M. & Koçer, O. (2021). Variation of components in laurel (Laurus nobilis L.) fixed oil extracted by different methods. International Journal of Chemistry and Technology, 5(2), 167-171.
  • [12] IBM Corp. Released. (2016). IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.
  • [13] Yaniv, Z., Shabelsky, E., Schafferman, D., Granot, I., & Kipnis, T. (1998). Oil and fatty acid changes in Sinapis and Crambe seeds during germination and early development. Industrial Crops and Products, 9(1), 1-8.
  • [14] Cho, B. M., Yoon, S. K., & Kim, W. J. (1985). Changes in amino acids and fatty acids composition during germination of rapeseed. Korean Journal of Food Science and Technology, 17(5), 371-376.
  • [15] Wanasundara, P. K. J. P. D., Wanasundara, U. N., & Shahidi, F. (1999). Changes in flax (Linum usitatissimum L.) seed lipids during germination. Journal of the American Oil Chemists' Society, 76(1), 41-48.
  • [16] Mostafa, M. M., Rahma, E. H., & Rady, A. H. (1987). Chemical and nutritional changes in soybean during germination. Food Chemistry, 23(4), 257-275.
  • [17] Türkmen, M., Eren, Y., Aygün, Y. Z. & Ertekin, E. N. (2022). Determination of seed yield, quality and fixed oil components of different basil (Ocimum basilicum L.) genotypes: Evaluation of fatty acid profile by PCA biplot analysis. Journal of Advanced Research in Natural and Applied Sciences. 8(3), 453-462. DOI: 10.28979/jarnas.1052498
  • [18] Ertekin, E. N. & Bilgen, M. (2021). Bazı ağır metallerin at dişi mısır (Zea mays L.)’da çimlenme ve erken fide gelişimi üzerine etkileri. Biyolojik Çeşitlilik ve Koruma, 14 (2), 198-207. DOI: 10.46309/biodicon.2021.889901
  • [19] Aygün, C., Olgun, M., Sever, A. L., Kara, İ., Erdoğdu, İ. & Atalay, A. K. (2011). Evaluation of germinabilities of different shrubs by some methods. Biyolojik Çeşitlilik ve Koruma, 4(3), 1-6.

Endüstriyel kenevir (Cannabis sativa L.) tohumlarının çimlenme süresince yağ ve yağ asidi oranlarının değişimleri

Yıl 2023, Cilt: 16 Sayı: 1, 56 - 62, 15.04.2023
https://doi.org/10.46309/biodicon.2022.1205855

Öz

Bu çalışma endüstriyel kenevir tohumlarının çimlenmesi boyunca yağ oranı ve yağ asidi içeriklerinin değişimini incelemeyi amaçlamıştır. Kontrollü koşullarda çimlenen endüstriyel kenevir (Cannabis sativa L. çeşit Vezir-55) tohumlarından 0 (kontrol), 24, 48, 72 ve 96. saatlerde alınan örneklerden yağ elde edilerek yağ oranı ve yağ asidi içerikleri tayin edilmiştir. Behenik, lignoserik, linoleik, palmitik, gamma-linolenik asit oranları ve çoklu doymamış yağ oranları üzerine çimlenme saatlerinin etkisi istatistiksel olarak önemli bulunmuştur. Bu parametreler için en düşük ve yüksek değerler sırasıyla %0.22-0.35, %0.40-0.70, %47.33-49.11, %9.96-9.01, %1.29-1.61 ve %69.96-71.69 olarak tespit edilmiştir. Tohumdaki yağ oranı, araşidik, eykosapentaenoik, laurik, alfa-linolenik, margarik, miristik, oleik, palmitoleik, risinoleik, stearik asit oranları ve doymuş ve tekli doymamış yağ asitleri oranları ise çimlenme saatlerinden etkilenmemiştir. Çalışmada elde edilen değerlere göre çimlenme sırasında yağ asitleri oranlarında değişimler olduğu önceki çalışmalarla benzerlik gösterirken yağ asitlerinin tohum tarafından seçici kullanımı ve sentezlenmesinin bitki türüne göre farklılık gösterdiği sonucuna varılmıştır.

Kaynakça

  • [1] Vandenhove, H., & Van Hees, M. (2005). Fibre crops as alternative land use for radioactively contaminated arable land. Journal of Environmental Radioactivity, 81(2-3), 131-141.
  • [2] Salentijn, E. M., Zhang, Q., Amaducci, S., Yang, M., & Trindade, L. M. (2015). New developments in fiber hemp (Cannabis sativa L.) breeding. Industrial Crops and Products, 68, 32-41.
  • [3] Fike, J. (2016). Industrial hemp: renewed opportunities for an ancient crop. Critical Reviews in Plant Sciences, 35(5-6), 406-424.
  • [4] Mert, M. (2020). Lif bitkileri (3. Baskı). Ankara: Nobel Yayınları.
  • [5] Leson, G., & Pless, P. (2002). Hemp seed and hemp oil. Cannabis and cannabinoids: Pharmacology, Toxicology and Therapeutic Potential, 411-425.
  • [6] Erasmus, U. (1999). Fats that heal, fats that kill. Burnaby: Alive Books.
  • [7] Leizer, C., Ribnicky, D., Poulev, A., Dushenkov, S., & Raskin, I. (2000). The composition of hemp seed oil and its potential as an important source of nutrition. Journal of Nutraceuticals, Functional & Medical Foods, 2(4), 35-53.
  • [8] Simopoulos, A. P. (1994). Fatty acids: Functional Foods: Designer Foods, Pharmafoods, Nutraceuticals. New York: Chapman & Hall.
  • [9] ISTA (1996). International Rules for Seed Testing. Rules. Seed Science and Technology 24. Supplement.
  • [10] Ertekin, İ., Atış, İ., Yılmaz, Ş., Can, E., & Kızılşimşek M. (2019). Comparison of shrub leaves in terms of chemical composition and nutritive value. KSU Journal of Natural Sciences, 22, 781-786.
  • [11] Türkmen, M. & Koçer, O. (2021). Variation of components in laurel (Laurus nobilis L.) fixed oil extracted by different methods. International Journal of Chemistry and Technology, 5(2), 167-171.
  • [12] IBM Corp. Released. (2016). IBM SPSS Statistics for Windows, Version 24.0. Armonk, NY: IBM Corp.
  • [13] Yaniv, Z., Shabelsky, E., Schafferman, D., Granot, I., & Kipnis, T. (1998). Oil and fatty acid changes in Sinapis and Crambe seeds during germination and early development. Industrial Crops and Products, 9(1), 1-8.
  • [14] Cho, B. M., Yoon, S. K., & Kim, W. J. (1985). Changes in amino acids and fatty acids composition during germination of rapeseed. Korean Journal of Food Science and Technology, 17(5), 371-376.
  • [15] Wanasundara, P. K. J. P. D., Wanasundara, U. N., & Shahidi, F. (1999). Changes in flax (Linum usitatissimum L.) seed lipids during germination. Journal of the American Oil Chemists' Society, 76(1), 41-48.
  • [16] Mostafa, M. M., Rahma, E. H., & Rady, A. H. (1987). Chemical and nutritional changes in soybean during germination. Food Chemistry, 23(4), 257-275.
  • [17] Türkmen, M., Eren, Y., Aygün, Y. Z. & Ertekin, E. N. (2022). Determination of seed yield, quality and fixed oil components of different basil (Ocimum basilicum L.) genotypes: Evaluation of fatty acid profile by PCA biplot analysis. Journal of Advanced Research in Natural and Applied Sciences. 8(3), 453-462. DOI: 10.28979/jarnas.1052498
  • [18] Ertekin, E. N. & Bilgen, M. (2021). Bazı ağır metallerin at dişi mısır (Zea mays L.)’da çimlenme ve erken fide gelişimi üzerine etkileri. Biyolojik Çeşitlilik ve Koruma, 14 (2), 198-207. DOI: 10.46309/biodicon.2021.889901
  • [19] Aygün, C., Olgun, M., Sever, A. L., Kara, İ., Erdoğdu, İ. & Atalay, A. K. (2011). Evaluation of germinabilities of different shrubs by some methods. Biyolojik Çeşitlilik ve Koruma, 4(3), 1-6.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Yusuf Ziya Aygün 0000-0001-9842-006X

Mehmet Mert 0000-0002-0457-0532

Erken Görünüm Tarihi 14 Nisan 2023
Yayımlanma Tarihi 15 Nisan 2023
Gönderilme Tarihi 16 Kasım 2022
Kabul Tarihi 14 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 16 Sayı: 1

Kaynak Göster

APA Aygün, Y. Z., & Mert, M. (2023). Endüstriyel kenevir (Cannabis sativa L.) tohumlarının çimlenme süresince yağ ve yağ asidi oranlarının değişimleri. Biological Diversity and Conservation, 16(1), 56-62. https://doi.org/10.46309/biodicon.2022.1205855

18385183861838718388183892276122760