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ABSTRACT 
 
Shaded-pole induction motors (SPIMs) are often preferred in small power applications owing 
to their ability to work with single-phase power source, simple structure and low-cost 
properties. Such motors are within the class easy to manufacture, but the most difficult to 
analyze mathematically due to the fact that they have a variable air gap and elliptical rotating 
magnetic field, which leads to highly complex inductance calculations. Considering that the 
identification accuracy of phase variables is directly related to the correct knowledge of 
inductances in AC machines, the authors of this article attempt to realize a neural network (NN)-
based inductance estimation in-between the stator and rotor, and also in-between the shading 
ring (shaded-pole winding) and rotor loop for an industrial SPIM. For this aim, corresponding 
inductance measurements are made first experimentally in terms of each 3.6º electrical position, 
and as such, a total of 101 data samples have been collected. %70 of them are considered as 
training data to train the NN while the remainder is adopted for testing the generation capability 
of NN. Results in comparison with the actual values have affirmed the excellence performance 
of the introduced NN in simultaneous estimation of the concerned two important inductances. 
 
Keywords: Shaded-pole induction motors, shaded-pole, rotor loop, neural network, inductance 
estimation 
 
1. INTRODUCTION 
 
Shaded-pole induction motors (SPIMs) have a salient pole stator and a squirrel cage rotor. 
Although SPIMs have a simple structure in terms of manufacturing, the analysis of these 
machines is known to be quite hard owing to the elliptically rotating magnetic field generated 
in the machine air gap. There is no universally accepted technique for modelling this type of 
motor and implementing the motor performance analysis [1, 2]. The mutual inductances of 
SPIMs between stator and rotor loop, and also between shading ring and rotor loop are 
significant and exhibit a nonlinear variation depending upon the rotor angular position and 
motor phase current. 
 
Artificial neural networks (ANNs) or neural networks (NNs) in short, are computing systems 
dedicated to mimic the essential behavior of biological neural system, which have seen much 
attention due to their capabilities in solving nonlinear problems by learning ability. They have 
some other unique properties such as excellent generalizing and learning capability from 
experience and examples, adaptation to changing situations, massive parallelism, and 
identification without exact knowledge. Via many nonlinear computational elements operating 
in parallel and connected to each other in between layers with intensive interconnections, NNs 
are able to accomplish the task of approximating the nonlinear behavior between input and 
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output data of a nonlinear model without prior knowledge about those data. They are very 
efficient and useful when the equations representing the respective model are nonlinear, 
complex, distributed in nature, and particularly vague or totally unknown with uncertain 
parameters [3]. As an alternative to neural network-based modelling, there are also studies 
adopting fuzzy logic for prediction of output parameters of a process according to its input 
parameters [4-8]. However, there are many parameters to be considered during the design of 
fuzzy logic system such as scaling factors, fuzzy-expert rules, membership functions etc. 
Determination of these parameters is still an ill-defined problem and based upon the experiences 
and knowledge of a skilled operator who gives several manual iterations over the considered 
system. Therefore, development of fuzzy-based prediction algorithm is tedious and time-
consuming. 
 
NNs have proved their remarkable contribution in a variety of applications, such as cover 
pattern recognition, control, diagnostic problems, fault detection, power electronics, 
forecasting, and function approximation. Since the topic of this paper is related to the estimation 
property of neural network, giving some introductory literature survey about this topic would 
be to the point. So far NN approach has been successfully employed in various estimation 
problems, such as estimating the output power and efficiency of a new-designed axial flux 
permanent magnet synchronous generator based on its rotational speed and the load connected 
to its terminals [3], online estimation for the rotor and stator resistances of an induction motor 
[9], predicting burr height produced in a sheet metal blanking process according to tool wear 
state and punch-die clearance [10], estimation of the distorted waveforms in power electronics 
[11], wind power generation estimation as a diagnostics tool [12], position estimation task in a 
speed sensorless switched reluctance motor drive system [13], finding the optimal tilt angle of 
PV panels in order to maximize the solar power from the sun [14], prediction of the nonlinear 
behavior of a newly designed wind energy harvester [15], and estimation of the clearance effect 
on blanking force, smooth sheared/fractured rate and burr height in the blanking process of 
CuZn30 sheet metal [16]. Nonetheless, the utilization of NN strategy to resolve the estimation 
concern of varying inductance parameters of a shaded-pole induction motor (CPIM) is currently 
open in the literature. That being said, this research paper may be considered as the first 
contribution of NN to estimate the challenging inductance values of a CPIM, which exhibit a 
nonlinear behavior in nature depending upon the angular position. 
 
In the present paper, a total of 101 data samples including mutual inductance between stator 
and rotor (Mar) and between shading ring and one rotor loop (Mbr) have been collected from the 
experimental test bench with respect to the angular rotor position (θ) in steps of 3.6°. 70 samples 
of the observed data is used as the training data to train the developed network while the 
remaining samples are reserved for testing the generalization ability of previously trained 
network. For training, a well-known back propagation (BP) learning algorithm is employed. At 
the end of the study, outputs of the network, which are the predicted inductance values, are 
compared to their actual values for the test data, and the results have demonstrated that 
presented NN is able to establish a promising relationship among the outputs (Mar and Mbr) and 
the input variable of rotor position. 
 
2. SHADED POLE INDUCTION MOTOR 
 
Single-phase asynchronous motors are widely preferred for small power applications as they 
operate on single-phase grid with a robust and low-cost structure, which is manufactured easily 
and requires less maintenance. Their size increases at high powers, which degrades the ability 
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of these machines to compete with their three-phase counterparts owing to the increased cost 
[17]. They have an important advantage of being fed from a single-phase grid without need for 
a drive. Nonetheless, the inability to alter the direction of angular rotation, low starting torque 
along with low efficiency are among the main disadvantages of SPIMs with single shading ring 
[18-20]. The electrical and physical specifications of SPIM that we consider in this article are 
reported in Table 1.  

Table 1. SPIM Parameters under consideration. 

Parameter Value Parameter Value 
Nominal power, W 15 Rotor type Squirrel cage 
Nominal voltage, V 220 Rotor radius, mm 22 
Nominal current, A 0.375 Slot number 26 

Frequency, Hz 50 Stator winding number of turns 580 
Pole number 4 Core depth, mm 25 

Rotor speed, rpm 1305 Core size, mm 25×25 
 
In AC machines, the identification accuracy of phase variables is directly related to the correct 
knowledge of inductances. Calculation of the inductances of SPIMs with variable air gap is 
quite difficult, and due to the variation of reluctance and saturation effect of the material used 
in the core, inductance in electric machinery is a nonlinear function of rotor position and phase 
current [21]. Inductance values in-between stator and rotor, and also in-between shading ring 
(shaded-pole winding) and rotor loop are acquired using a principle in [1], and they are used as 
the same in this article. In this sense, a lookup table that contains 101 data samples including 
the corresponding inductance values as output and rotor position as input is generated in which 
the sampling period of rotor position is 3.6°. In order to obtain the inductances at certain steps 
without disrupting the air gap, the test setup shown in Fig. 1 is established. In this setup, the 
SPIM is mechanically coupled to a PIC 16F877A controlled stepper motor which has a 1.8° 
step angle (200 steps/revolution). This means an electrical angle of 3.6° in SPIM. 
 

 
Figure 1. Test setup for the determination of mutual inductance. 

 
The respective changes of stator-rotor loop mutual inductance (Mar, mH) and shading ring-rotor 
loop mutual inductance (Mbr, µH) as a function of angular rotor position are given in Fig. 2. 
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  (a)  (b) 

Figure 2. Mutual inductance variation in a) stator-rotor loop b) shading ring-rotor loop. 
 
 
3. THE DEVELOPED NEURAL NETWORK 
 
One of the distinct characteristics of the NN is its ability to learn and generalize from experience 
and examples and to adapt to changing situations. NNs are able to map causal models (i.e. 
mapping from cause to effect for estimation and prediction) and inverse mapping (i.e. mapping 
from effect to possible cause). A NN is basically expressed by three kinds of parameters: 
 

1. The interconnection pattern between different layers of nodes (or neurons, 
biologically) 

2. The learning process for adjusting the weights of interconnections 
3. The activation function that transforms a node’s weighted input to its respective 

output 
 
These parameters can be explained as follows: the connection weights connecting nodes in 
different layers each other influence the network performance crucially. Each node is usually 
connected with all of the previous and the next layer nodes. Modelling the relationship between 
the input and output patterns is realized by the training progress. Therefore, the input-output 
pattern matching is enabled when the network is trained successfully. The NN training progress 
essentially involves presenting a set of examples with known outputs and calculating error 
between the actual output pattern and the desired output pattern [10]. The connection weights 
are adjusted iteratively by an algorithm, i.e. BP algorithm until the presented input-output 
pattern matching is completed in a certain success in that the error falls below an acceptable 
value for the whole training sets. After the training is successfully finished, the generalization 
capability of the network is tested with examples that are not applied to the network before 
during training. A satisfactorily trained network is expected to be able not only to remember all 
the training examples, but to predict the required output adequately for an unseen input data 
which is onto the universe covered by the example patterns. Finally, the ability of a network to 
imitate nonlinear mapping property closely corresponds to the nonlinearity of the selected 
activation function. There are many types of transfer functions, such as threshold type, signum 
type or linear threshold type, or they can vary nonlinearly in a continuous form, such as sigmoid, 
inverse-tan, hyperbolic or Gaussian type. More particularly, user-defined activation functions 
can be declared for specific applications.  
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In our analysis, a three-layer network as illustrated in Fig. 3 is arranged with feedforward 
architecture which is the most widely use scheme today. The nodes of this network are indicated 
by the circles and the weights by the dots in the connections. The input variable is rotor position 
(θ, degree) while the quantities to be estimated from the input variable are selected as stator-
rotor loop mutual inductance (Mar, mH) and shading ring-rotor loop mutual inductance (Mbr, 
µH), respectively. There are 18 neurons in the 1st hidden layer with hyperbolic tangent 
activation function, 11 neurons in the 2nd hidden layer with linear activation function which is 
also used for the output node. The input and output layers have nodes equal to the respective 
number of variables. Thus, such particular network can be defined as 1-18-11-2 network. There 
is not a systematic way for deciding the number of hidden layers, the number of nodes and the 
type of activation functions. They are usually selected in an arbitrary fashion depending on both 
the complexity of problem being solved and the desired accuracy. In this paper, we used the 
trial and error method by observing the network testing performance. 
 

 
Figure 3. The developed 1-18-11-2 network configuration. 

 
The aforementioned design is trained by employing BP algorithm. As the rotor position varies 
from 0° to 360°, which is a relatively greater range with respect to those of the NN output 
values, the range of the rotor position is transformed into the interval of [0, 1] prior to training 
process using Eq. 1. Such data normalization has proved to be useful and effective for the 
betterment of network estimation performance and also simplifying the computations 
significantly. In this equation, 𝑥" and 𝑥# are the actual and normalized value of a variable while 
𝑥$%& and 𝑥$'# symbolize the maximum and minimum values of the respective variable. 

 𝑥# =
&)*&+,-

&+./*&+,-
 (1) 

As mentioned earlier, the total number of collected experimental data is 101, which is 
graphically visualized with regard to the rotor position in Fig. 2. The number of training samples 
that we use during training is 70 which are picked up homogenously from the whole 
experimental dataset, and the trained network is tested by the remaining 31 samples which are 
not used during training. For convenience, six of the training and test data are tabulated in Table 
2. 
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Table 2. Twelve examples in the experimental dataset used for training and test 
purposes. 

Dataset θ (degree) Mar (mH) Mbr (µH) 

Training set 

0.0 −0.009069 −0.015221 
25.2 −0.143319 −0.357259 

100.8 −0.185018 −0.056588 
198.0 −0.133576 −0.241127 
277.2 −0.186357 −0.061289 
360.0 −0.007714 −0.029547 

Test set 

7.2 −0.065789 −0.060707 
64.8 −0.181039 −0.121772 

144.0 −0.179756 −0.039397 
237.6 −0.179861 −0.249365 
306.0 −0.186357 −0.044769 
342.0 −0.134794 −0.035367 

 
Moreover, to provide a better picture concerning the training samples and test samples observed 
for Mar and Mbr, their evolution with respect to the rotor position is depicted in Fig. 4, where 
the training samples are specified by blue “○” marks and test samples by red “□” marks. 

 
  (a) (b) 

Figure 4. Collected training and test samples for (a) Mar (b) Mbr. 
 
 
4. INDUCTANCE ESTIMATION RESULTS AND PERFORMANCE ASSESSMENT 
 
After the network is trained successfully, the network learning and generalizing capability of 
rotor position-inductance relations are checked for the case the test data includes unseen input 
rotor position values and the corresponding inductance values as output. To attain a well 
performed NN, we choose very small learning and momentum rates, and a very large number 
of training epochs which help the training error to converge gradually toward a minimal value 
in a stable trend. Fig. 5 shows the performance assessment criterion, namely, root mean-squared 
error (RMSE) for the training data as a function of iteration number. In line with what we desire, 
the RMSE drops from 0.6964 abruptly at first, then it approaches to a value of 0.01194 without 
any undesirable oscillation, signifying that the NN learns and gains the generalization property 
of rotor position-inductance relations as the training progresses. Also notice that after iteration 
1×106, the error curve becomes almost stabile, and only very small amount of improvement is 
achieved after this point. If the training time is a concern and/or the results are satisfactory, the 
training process could be terminated here. 
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Figure 5. Root mean-squared error during training as a function of iteration number. 

 
The experimental and the predicted values of stator-rotor loop mutual inductance by the 
designed NN model are shown in Fig. 6(a) in a superimposed manner for the test data. In 
addition, the percentage difference DMN between the measured inductance LM and the predicted 
inductance LN by the NN model (DMN = (LM − LN)/ LM %) is also given in Fig. 6(b) for each test 
sample. As seen from Fig. 6(a), there is a promising matching between the experimental results 
and the NN estimation. Except for the few cases, the percentage error rates are found to be very 
low. The mean error rate is calculated as 5.7% and it is to be noted that most of the error values 
favorably fall behind that mean error line. 

 
  (a) (b) 

Figure 6. Testing results for the estimation of Mar (a) experimental and NN estimated Mar 
variation (b) percentage error. 

 
Finally, the NN estimation results regarding the shading ring-rotor loop mutual inductance 
along with the experimental observations are presented in Fig. 7(a), from which it is evident 
that the NN estimation curve is in good agreement with the experimental results. It is 
remarkable from Fig. 7(b) that the presented approach can estimate the shading ring-rotor loop 
mutual inductance value with a mean error rate of 14.7%. Similar to the previous case, many 
of the error values are far below the mean error line. 
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  (a) (b) 

Figure 7. Testing results for the estimation of Mbr (a) experimental and NN estimated Mbr 
variation (b) percentage error. 

 
 
4. CONCLUSIONS 
 
Due to the ability to work with single-phase power source, simple structure and low-cost 
properties, SPIMs are still in use today in small power applications. Since they have a variable 
air gap and elliptical rotating magnetic field, inductance calculations of such motors, which 
influence the identification accuracy of phase variables, are highly complex. For this reason, 
two important inductance parameters, such as stator-rotor loop mutual inductance (Mar) and 
shading ring-rotor loop mutual inductance (Mbr.) are estimated with respect to the angular 
position θ in this paper by the employment of NN strategy. A three-layer feedforward NN is 
designed in which rotor position is the input while the respective outputs are Mar and Mbr. Based 
on the real data collected from the experimental setup, the presented NN is trained by BP 
algorithm on a forward manner, which has produced satisfactory training results. Obtained 
results affirm the reliability and excellence of the proposed neural modeling in predicting the 
experimental test results with mean error rates less than 15%. Increasing the number of 
sampling data and iteration number can improve the results further. Moreover, more nodes can 
be included in the hidden layers and other activation function can be tried out in lieu of 
hyperbolic tangent and linear activation function. 
 
Author Note: This research work was presented as an oral paper at the 3rd International Energy 
& Engineering Congress (UEMK2018). 
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