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Abstract: Ulva sp., a green macroalgae known as sea lettuce, is rich in polysaccharides, proteins, minerals, and bioactive compounds with antimutagenic, 
anticoagulant, anticancer, anti-inflammatory, antibacterial, and nutraceutical properties. Its abundance along the Aegean Sea coast poses an environmental 
challenge, as it is often disposed of as waste. However, Ulva sp. holds potential for high-value products in cosmetics and dietary supplements. Optimizing the 
extraction of its bioactive compounds using response surface methodology involved adjusting ethanol concentration, solid/liquid ratio, and extraction time. Key 
responses evaluated included yield, total polysaccharides, total protein, total phenol, total antioxidant activity, alpha-glucosidase inhibitory activity, and yeast 
cell glucose uptake. In this study, extraction yields ranged from 0.86% to 22.47% based on variations in extraction conditions. The highest total protein content 
was 106.88 mg BSA/g dry extract, while the polysaccharide content was determined to be 15.42%. The highest values for total phenol content and antioxidant 
capacity were found to be 82.15 mg GAE/g dry extract and 63.63 mg Trolox/g dry extract, respectively. The determination of the total amounts of antioxidants 
and phenolic compounds in extracts may expand their potential applications. In addition, the potential application of Ulva sp extracts as inhibitors for the 
treatment of diabetes has been demonstrated through experiments assessing both alpha-glucosidase enzyme inhibition and glucose uptake in yeast cells. 
The results support an environmentally friendly approach for the utilization of Ulva sp. from waste into valuable antidiabetic products. 
Keywords: Ulva sp., response surface methodology, optimization, bioactivity, characterization 

Öz: Deniz marulu olarak bilinen yeşil bir makroalg olan Ulva sp., antimutajenik, antikoagülan, antikanser, antiinflamatuar, antibakteriyel ve nutrasötik özelliklere 
sahip polisakkaritler, proteinler, mineraller ve biyoaktif bileşikler açısından zengindir. Ege Denizi kıyılarında bol miktarda bulunması, genellikle atık olarak 
atıldığı için çevresel bir zorluk oluşturmaktadır. Ancak Ulva sp. kozmetiklerde ve diyet takviyelerinde yüksek değerli ürünler için potansiyel taşımaktadır. Tepki 
yüzey metodolojisi kullanılarak biyoaktif bileşiklerinin ekstraksiyonunun optimize edilmesi, etanol konsantrasyonunun, katı/sıvı oranının ve ekstraksiyon 
süresinin ayarlanmasını içermektedir. Değerlendirilen temel tepkiler arasında verim, toplam polisakkaritler, toplam protein, toplam fenol, toplam antioksidan 
aktivite, alfa-glukozidaz inhibitör aktivitesi ve maya hücresi glikoz alımı yer almıştır. Bu çalışmada, ekstraksiyon koşullarındaki değişikliklere bağlı olarak 
ekstraksiyon verimleri %0,86 ile %22,47 arasında değişmiştir. En yüksek toplam protein içeriği 106.88 mg BSA/g kuru ekstre iken, polisakkarit içeriği %15.42 
olarak belirlendi. Toplam fenol içeriği ve antioksidan kapasitesi için en yüksek değerler sırasıyla 82.15 mg GAE/g kuru ekstre ve 63.63 mg Trolox/g kuru ekstre 
olarak bulundu. Ekstraktlardaki toplam antioksidan ve fenolik bileşik miktarlarının belirlenmesi, potansiyel uygulamalarını genişletebilir. Ayrıca, Ulva sp. 
ekstraktlarının diyabet tedavisinde inhibitör olarak potansiyel uygulaması, hem alfa-glukozidaz enzim inhibisyonunu hem de maya hücrelerinde glikoz alımını 
değerlendiren deneyler yoluyla gösterilmiştir. Sonuçlar, Ulva sp.'nin atıktan değerli antidiyabetik ürünlere dönüştürülmesi için çevre dostu bir yaklaşımı 
desteklemektedir. 
Anahtar kelimeler: Ulva sp., tepki yüzey metodolojisi, optimizasyon, biyoaktivite, karakterizasyon 

INTRODUCTION 
The oceans, teeming with life, offer a wealth of resources 

with diverse applications in medicine, cosmetics, and food. 
Among these resources, macroalgae, classified into 
Chlorophyta, Rhodophyta, and Ochrophyta, stand out for their 
rich content of dietary fiber, proteins, vitamins, and minerals, 
alongside unique secondary metabolites (Milchakova, 2011). 
The marine environment, boasting vast biological diversity, hosts 
valuable bioactive compounds, that hold potential therapeutic 
applications in addressing human diseases like cancer, 
inflammatory conditions, and viral infections (Nayak et al., 2021). 
This has fueled a growing interest in harnessing macroalgae as 
the source of bioactive compounds for various health benefits. 

Macroalgae extracts, sourced from various species, exhibit 

potent pharmacological properties against viral, bacterial, and 
fungal infections, including common ailments like colds and flu. 
Notably rich in antioxidants, brown algae and other macroalgae 
species contain compounds such as sulfated polysaccharides, 
carotenoids, sterols, peptides, and mycosporine-like amino 
acids, contributing to their remarkable therapeutic potential 
(Plaza et al., 2008). 

Ulva sp., commonly known as sea lettuce, represent a 
ubiquitous presence worldwide, displaying two main 
morphologies: tubular monostromatic and leafy distromatic, 
with some species exhibiting both forms. This diversity arises 
from genetic variability and environmental conditions, 
necessitating genetic-based identification methods. Out of 
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approximately 400 identified Ulva sp., only about 40 have been 
taxonomically recognized through genetic analysis (Alsufyani 
et al., 2020; Fort et al., 2022). 

Ulva sp., renowned for their abundant and nutrient-rich 
biomass, hold immense potential for various industrial 
applications (Trivedi et al., 2016). Their composition, 
encompassing proteins, carbohydrates, polysaccharides, 
minerals, and lipids, exhibits variations influenced by species, 
populations, and environmental factors like temperature and 
salinity (Rasyid, 2017). 

Ulva sp. also contain flavonoid and phenolic compounds, 
with water-extracted Ulva lactuca exhibiting significant phenol 
and flavonoid content. Notably, phenolic compound levels 
exhibit seasonal variations, peaking during the summer 
months. 

In addition to their nutritional composition, Ulva sp. 
demonstrate diverse biological activities, including antioxidant 
(Hassan et al., 2011; Yaich et al., 2017), anti-inflammatory 
(Wekre et al., 2019), antibacterial (Alghazeer et al., 2013), 
antitumor (Abd-Ellatef et al., 2017; Arsianti et al., 2016), anti-
hyperlipidemic (Pengzhan et al., 2003), hypocholesterolemic 
(Hassan et al., 2011), hepatoprotective (Devaki et al., 2009), 
cytotoxic (Alves et al., 2013), antifungal (Tüney et al., 2006), 
antiviral (Chiu et al., 2012), anti-parasitic (Spavieri et al., 2010), 
insecticidal (Abbassy et al., 2014), and plant growth activities 
(Hassan and Ghareib, 2009). 

Ulva sp. exhibit antibacterial potential, offering a renewable 
and sustainable source of antibacterial compounds crucial for 
combating antibiotic resistance (Alghazeer et al., 2013). 
However, the biological activities of Ulva extracts varies 
significantly, influenced by extraction methods, solvents, 
physiological conditions of Ulva sp., and harvesting times. 

In the realm of antidiabetic activity, Ulva sp. demonstrate 
promise as natural antidiabetic agents, with studies highlighting 
their antioxidant properties and ability to inhibit carbohydrate-
hydrolyzing enzymes. Polysaccharides from Ulva lactuca, for 
instance, have been shown to effectively lower blood glucose 
levels and inhibit enzyme activity in diabetic animal models 
(Belhadj et al., 2021), while Ulva extract-loaded nanoparticles 
exhibit anti-inflammatory and hypoglycemic effects (Al-Malki et 
al., 2019). Moreover, Ulva water-ethanol extracts have 
demonstrated efficacy in reducing insulin resistance and 
cholesterol levels, showcasing anti-diabetic and anti-
atherosclerotic effects (Labbaci and Boukortt, 2020). 

The selection of extraction parameters is based on the 
most critical conditions which affect the biological activities of 
Ulva sp. The most important parameters for extraction 
optimization were identified as solid/liquid ratio, time, and 
solvent type based on a systematic literature review and our 
preliminary experimental results in extraction processes. In this 
study, different biological activities were reported for extracts 
obtained by optimization of each of these conditions. The 
effective extraction of bioactive compounds from Ulva depends 

on developing suitable extraction methods. Extraction 
optimization is crucial to maximize the yield of these 
substances, as improper conditions can lead to their loss or 
degradation. Therefore, the quality and bioavailability of Ulva 
extracts are directly tied to the careful optimization of extraction 
parameters, ensuring the full utilization of their benefits and 
facilitating their industrial application. 

In this study, the extraction conditions for obtaining 
chemical and bioactive compounds from Ulva sp. were 
optimized using response surface methodology, with ethanol 
concentration, solid/liquid ratio, and extraction time as 
independent variables. Various responses including yield, total 
polysaccharides, total protein, total phenol, total antioxidant 
activity, alpha-glucosidase enzyme inhibitory activity, and 
yeast cell glucose uptake for the obtained extracts were 
evaluated during the optimization process. 

MATERIALS AND METHODS 
Materials 
In the study, sea lettuce was collected from the Izmir Gulf 

on Saturday, October 1, 2022, departing from the 
Karşıyaka/Izmir coast by boat, at the coordinates 38°27'48.0''N 
27°04'03.4''E (Figure 1). 

 
Figure 1. Images of sea lettuces collected with nets from seawater 

The collected sea lettuce was quickly brought to the 
laboratory and washed first with tap water and then with 
distilled water. Afterward, it was spread onto filter papers for 
drying. The longest intact sea lettuce, found in a single piece, 
was 71 cm in length. The shortest one was around 30 cm. The 
examination revealed that all samples exhibited morphological 
similarities. However, genetic tests are required for species 
identification. 

Design of experiments 
The Box-Behnken Design (BBD) was used to perform 

Response Surface Methodology (RSM) by using Design Expert 
13.0.5.0 software from Stat-Ease Inc. Three independent 
variables (A: Extraction time (hours), B: Solid/liquid ratio, C: 
Ethanol (%)) at three levels each were investigated for the 
optimization of the extraction process (Table 1). Following the 
extraction, the yield (%) (R1), total polysaccharide content (%) 
(R2), total phenol content (mg GAE/g dry extract) (R3), total 
protein (mg BSA/g dry extract) (R4), total antioxidant capacity 
(mg Trolox/g dry extract) (R5), alpha-glucosidase inhibition 
activity (mg/ml) (R6), and yeast cell glucose uptake inhibition 
activity (at constant concentration of 10 mg/ml) (R7) were 
evaluated as responses. 
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Table 1. Experimental ranges and levels of independent extraction 
variables 

Factor 
Factor Levels 

- 0 + 
A: Extraction Time (hours) 8 16 24 
B: Solid/Liquid Ratio 20 30 40 
C: Ethanol Percentage 0 50 100 

Extraction of Ulva 

The study involved processing dried Ulva sp. for grinding 
to reduce particle size. Extraction experiments, designed via 
Design-Expert®, varied extraction time, solid-liquid ratio, and 
ethanol-water ratio while keeping other factors constant. 
Extraction was performed in a cooled stirred incubator (NB-
T205LF, N-BIOTEK), followed by concentration and alcohol 
removal using a rotary vacuum evaporator (LabTech) before 
freeze-drying (Telstar Lyoquest). The resulting powder extracts 
were weighed to calculate yield. Response Surface 
Methodology (RSM) with statistical analysis determined the 
suitable extraction model based on significance levels, lack of 
fit, regression coefficients, and predicted values within 
confidence intervals, affirming the model's adequacy for the 
study (Ummat et al., 2021). 

Total phenol content 
The phenolic content was analyzed using the Folin-

Ciocalteu colorimetric method (Singleton and Rossi, 1965) with 
gallic acid as the standard. Samples were prepared and added 
to 96-well plates, with a control group using methanol. Folin-
Ciocalteu reagent and sodium carbonate solution were added 
sequentially, followed by incubation and absorbance 
measurement at 725 nm. The phenolic content was quantified 
in gallic acid equivalents (GAE), using a gallic acid standard 
calibration curve (y=5.436x + 0.0095; R2 = 0.9992). 

Total antioxidant capacity 
The Trolox equivalent antioxidant capacity was determined 

following the method described by Miller et al. (1993). An 
ABTS-potassium persulfate solution was incubated to trigger 
the reaction, and its absorbance was adjusted to 0.7 using a 
spectrophotometer. Extracts at the same concentration were 
added to 96-well plates along with ABTS solution, incubated in 
darkness, and absorbance was measured at 734 nm after 30 
minutes. Trolox Equivalent Antioxidant Capacity (TEAC) was 
calculated based on the absorbance of a Trolox standard curve 
(y =8578.8x - 1.5223; R2 = 0.9935).  

Total protein content 
The total protein content was determined using the 

Bicinchoninic Acid Protein based on the assay kit instruction 
(BCA Assay kit, Sigma-Aldrich, Přerovská et al., 2022). The 
protein content was calculated using a BSA calibration curve 
(y = 0.0011x + 0.0314; R2 = 0.9938). 

Total polysaccharide content 

The determination of total polysaccharide content was 

performed using the method proposed by He et al. (2018). After 
creating a standard curve with a reference glucose solution 
(103 µg/mL) (y = 11.478x + 0.0449; R2 = 0.9986), samples 
were prepared. The samples were treated with a 5% phenol 
solution and sulfuric acid and then kept in boiling water for 20 
minutes. They were subsequently cooled in an ice bath for 5 
minutes. Absorbance was then measured at 488 nm. 

Alpha-glucosidase enzyme inhibition assay 

Samples were dissolved in 5% DMSO, while alpha-
glucosidase enzyme and 4-Nitrophenyl-alpha-D-
glucopyranoside substrate were prepared in 0.1 M phosphate 
buffer (pH 6.9). Acarbose and samples were added to a 96-
well plate in triplicates, followed by enzyme addition and 
incubation at 37°C for 15 minutes. The substrate was then 
added and further incubated for 10 minutes before stopping the 
reaction with sodium carbonate solution. Absorbance at 405 
nm was measured using a microplate reader (Lankatillake et 
al., 2021). Results were given in terms of IC50 values (mg/ml). 

Yeast cell glucose uptake test 

The experiment involved suspending washed yeast cells in 
pure water to a 10% v/v final volume. Glucose solution and 
yeast solution were added to Falcon tubes for standard 
concentration and positive control, with acarbose solutions 
added for different concentrations. The tubes were then 
incubated at 37°C in a shaking incubator, followed by 
centrifugation and transfer of supernatant to test tubes. Acetate 
buffer and DNS solution were added to the test tubes, which 
were then boiled and cooled before measuring absorbance at 
540 nm using a spectrophotometer. The results were 
calculated based on the acarbose standart curve (y= 0.0597 – 
0.0033; R2 = 0.9831). 

RESULTS 

Table 2 shows the final version of the experimental matrix 
with 17 runs obtained by implementing the Box-Behnken 
method, where 3 independent variables and 5 center points. 

Yield of extraction 

A quadratic model was selected for optimizing yield (%) 
based on the sequential sum of squares and lack of fit tests. 
The ANOVA results highlight the model's high significance with 
a Model F-value of 58.38 and a low probability of occurrence 
at 0.01%. Key variables like A-Time, C-Ethanol, A², and C² are 
deemed important for yield prediction. The equations created 
with the quadratic model, which was used to determine the 
independent variables affecting the extraction yield (%) through 
the sequential model sum of squares and lack of fit test, are 
provided below in encoded variables: 

Yield % = 6.03 + 0.2955*A + 0.5973*B – 9.35*C – 0.242*AB + 
0.208*AC – 0.8685*BC + 2.74*A2 + 3.09*C2 

The three-dimensional surface plots of yield (%) have been 
generated using the obtained model from the analysis. These 
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graphs (Figure 2a-b-c) demonstrate the effect of combinations 
of the two variables on yield while keeping one factor at the 
center point (0) of the experimental design constant. Upon 

examining Figure 2a-c, although the changes in solid/liquid 
ratio and time are similar, it is evident that the percentage 
of ethanol is the most influential factor on yield. 

Table 2. Final version of the experimental matrix with obtained results 
 Factors*  Responses** 

Run F1 F2 F3  R1 R2 R3 R4 R5 R6 R7 
1 16 30 50  6.074 7.3 52.51 59.76 52.82 1.2 39.68 
2 24 30 100  1.68 4.24 58.2 106.88 37.25 0.82 36.84 
3 8 30 100  1.064 1.03 70.14 74.82 28.22 0.61 34.05 
4 24 20 50  9.2 7.025 53.38 90.42 57.27 0.8 42.13 
5 16 40 0  19.09 13.2 24.91 53.1 55.46 1.28 12.47 
6 8 30 0  22.47 11.09 18.4 75.67 42.6 0.65 14.02 
7 16 40 100  0.94 6.13 70.39 103.628 34.1 0.64 23.65 
8 24 30 0  22.254 12.54 24.38 80.25 56.36 1.6 25.81 
9 16 30 50  6.36 7.35 47.81 68.42 47.88 1.67 35.81 

10 8 20 50  7.734 6.88 53.72 62.78 45.07 0.45 28 
11 16 30 50  6.658 7.1 44.52 56.77 46.13 1.1 38.3 
12 16 20 100  0.856 6.93 82.15 69.1 51.96 1.2 38.12 
13 16 20 0  15.532 15.42 29.17 94.07 63.63 1.46 18.91 
14 16 30 50  6.208 7.5 48.61 56.82 49.98 1.3 36.55 
15 8 40 50  8.786 6.34 47.37 49.19 42.63 0.17 26.12 
16 16 30 50  4.889 5.08 45.63 60.82 44.12 1.18 35.3 
17 24 40 50  9.284 9.96 58.6 90.16 49.71 0.35 18.58 

*F1: A: Extraction Time (hours); F2: B: Solid/Liquid Ratio; F3: C: Ethanol % 
**R1: Yield %; R2 Total Polysaccharide Content %; R3: Total Phenol Content (mg GAE/g Dry Extract); R4: Total Protein Content (mg BSA/g Dry Extract); R5: Total Antioxidant Capacity 
(mg Trolox/g Dry Extract); R6: Alpha-glucosidase Inhibition IC50 (mg/ml); R7: Yeast Cell Glucose Uptake %

 
Figure 2. Response surface plots for the effects of independent variables on extraction yield. (a) A (Time, hours) vs B (Solid/Liquid Ratio), C 

(Ethanol, %):50; (b) A (Time, hours) vs C (Ethanol, %), B (Solid/Liquid Ratio):30; (c) B (Solid/Liquid Ratio) vs C (Ethanol, %), A (Time, 
hours): 16.  
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Total polysaccharide content 
A quadratic model was chosen for optimizing total 

polysaccharides (%) based on the sequential model sum of 
squares and lack of fit tests. The ANOVA results highlight a 
significant Model F value of 20.34 (p < 0.01), indicating the model's 
robustness, while the lack of fit's F value of 1.29 (p = 40.55%) is 
deemed insignificant. The quadratic model equations created for 
the independent variables affecting total polysaccharides (%) and 
formulated in terms of coded variables are as follows: 

Total polysaccharides (%) = 6.87 + 1.05A – 0.0781B – 
4.24C + 0.8687AB + 0.44AC – 1.25A² + 1.94B² + 1.61C² 

Three-dimensional surface curves for total 
polysaccharides (%) are drawn using the model obtained from 
the analyses. The graphs obtained from the optimization of the 
current study are shown in Figure 3. These graphs illustrate the 
effect of the combination of the other two variables on the total 
polysaccharides (%) when one factor is kept constant at the 
center point (0) of the experimental design. Upon examining 
Figure 3, it can be observed that a decrease in ethanol (%) has 
a positive effect on the response of total polysaccharides (%). 
Similarly, an increase in time (hours) also increases the total 
polysaccharides (%). 

 
Figure 3. Response surface plots for the effects of independent variables on total polysaccharides. (a) A (Time, hours) vs C (Ethanol, %), B 

(Solid/Liquid Ratio):30; (b) A (Time, hours) vs B (Solid/Liquid Ratio), C (Ethanol, %):50. 

Total phenol content 
A quadratic model was used for optimizing total phenol 

content (mg GAE/g Dry Extract). Significant terms (p<0.05) 
were identified through ANOVA, and insignificant factors were 
integrated into the model equation. The lack of fit was deemed 
insignificant at a 95% confidence level, supporting the 
effectiveness of the simplified model equation due to the 
significant Model F value (34.54) and insignificant lack of fit 
(2.52). The optimization study resulted in a model with high R² 
(0.9719) and Adj-R² (0.9437) values, indicating a strong fit and 
absence of statistically insignificant terms. The "Adeq 
Precision" value exceeding 4 (20.8348) confirms the model's 
usability. The quadratic model equations, based on sequential 
model squares and adequacy tests, are provided in coded 
variable terms for the independent variables impacting total 
phenolic content (mg GAE/g Dry Extract). 

Total phenol content = 47.1 + 0.6163A – 2.14B + 23C + 
2.89AB – 4.48AC – 1.88BC + 7.07B² – 3.41C² 

Three-dimensional surface curves for total phenols (%) 
were created using the model derived from conducted 
analyses, showcased in Figures 4a-c. These graphs 
demonstrate how varying combinations of two variables affect 
total phenols when one factor remains constant at the center 
point (0) of the experimental design. Figure 4a,b highlights that 

while solid/liquid ratio and extraction time show similar 
variations, the percentage of ethanol stands out as the most 
impactful factor on total phenol content. 

Total protein content  
A quadratic model was selected to optimize total protein 

content (mg BSA/g Dry Extract) based on sequential model 
squares and lack of fit tests. Significant terms were identified 
through ANOVA (p<0.05), supporting the model's validity with 
significant F and p-values. Insignificant values were 
incorporated into the model equation, and the lack of fit was 
deemed insignificant at a 95% confidence level, with a 
significant Model F value (18.11) and an insignificant lack of fit 
value (2.20). The optimized model achieved high R² (0.9337) 
and Adj-R² (0.8821) values, meeting expectations with a small 
difference between Pred-R² and Adj-R² values (<0.2), 
indicating a lack of statistically significant and insignificant 
terms. 

The quadratic model equations, based on sequential 
model squares and adequacy tests, are provided in coded 
variable terms for the independent variables impacting total 
protein content (mg BSA/g Dry Extract). 

The total protein content (mg BSA/g Dry Extract) = 62.24 + 
13.16*A – 2.54*B + 6.42*C + 6.87*A*C + 18.87*B*C + 8.74*A2 
+ 15.58*C2 
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Figure 4. Response surface plots for the effects of independent variables on total phenol content. (a) A (Time, hours) vs B (Solid/Liquid Ratio), 

C (Ethanol, %):50; (b) A (Time, hours) vs C (Ethanol, %), B (Solid/Liquid Ratio):30; (c) B (Solid/Liquid Ratio) vs C (Ethanol, %), A 
(Time, hours): 16. 

Three-dimensional surface curves were created for total 
protein content (mg BSA/g Dry Extract) using the obtained 
model, shown in Figure 5a-c. These graphs illustrate how 
varying combinations of two variables affect total protein 
content when one factor remains constant at the center point 
(0) of the experimental design. Figure 5a indicates that total 
protein content peaks when the solid/liquid ratio is minimal and 
the ethanol percentage is maximal, while Figure 5c shows that 
maximum extraction time and ethanol percentage result in the 
highest total protein content. 

Total antioxidant capacity 

The study on total antioxidant capacity (mg Trolox/g Dry 
Extract) employed a quadratic model selected based on the 
sum of squares and lack of fit test results, with significant terms 
identified through ANOVA (p<0.05). Main effects, interactions, 
and second-order terms were found to be statistically 
significant, supported by an insignificant lack of fit at a 95% 
confidence level (F value of 0.883) and a Model F value of 
13.92 in ANOVA. The optimized model achieved an R² value 

of 0.9330 and an Adj-R² value of 0.8659, signifying a good fit 
of the model to the data. 

The coefficients obtained for the coded independent 
variables for the model equation are as follows: 

Total antioxidant capacity (mg Trolox/g Dry Extract) = 
48.19 + 5.26*A – 4.5*B – 8.32*C – 4.85*A2 + 5.33*B2 – 2.23*C2 

The optimization study resulted in three-dimensional 
surface plots illustrating the total antioxidant content (mg 
Trolox/g Dry Extract) using the obtained model. Figure 6a-c 
showcase the effects of varying combinations of two variables 
on the response, with one variable held constant at the center 
point (0) of the experimental design. In Figure 6a, minimizing 
the percentage of ethanol and the solid/liquid ratio maximizes 
total antioxidant content, while Figure 6b indicates that 
increasing extraction time can compensate for a decrease in 
ethanol percentage. Additionally, Figure 6c demonstrates that 
reducing the solid/liquid ratio and increasing time lead to 
increased total antioxidant content.
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Figure 5. Response surface plots for the effects of independent variables on total protein content. (a) B (Solid/Liquid Ratio) vs C (Ethanol, %), A 

(Time, hours): 16; (b) A (Time, hours) vs B (Solid/Liquid Ratio), C (Ethanol, %):50; (c) A (Time, hours) vs C (Ethanol, %), B (Solid/Liquid 
Ratio):30. 

 
Figure 6. Response surface plots for the effects of independent variables on total antioxidant capacity. (a) B (Solid/Liquid Ratio) vs C (Ethanol, 

%), A (Time, hours): 16; (b) A (Time, hours) vs C (Ethanol, %), B (Solid/Liquid Ratio):30; (c) A (Time, hours) vs B (Solid/Liquid Ratio), 
C (Ethanol, %):50. 
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Alpha-glucosidase enzyme inhibition activity 
The optimization of glucosidase inhibitor activity (mg/ml) 

involved selecting a quadratic model, with significant terms 
determined through ANOVA and model adequacy, confirmed 
at a 95% confidence level. Equations based on coded variables 
were formulated to represent the influential independent 
factors affecting glucosidase inhibitor activity. 

Equations based on coded variables for influential 
independent factors affecting glucosidase inhibitor activity 
were formulated, showcasing the model's suitability for 
optimization purposes. 

Glucosidase inhibitor activity (mg/ml) = 1.29 + 0.2112A – 
0.1838B – 0.215*C – 0.0425*A*B – 0.185*A*C – 0.095*B*C – 
0.5363*A2 – 0.3113*B2 + 0.1663*C2 

The analysis led to the generation of 3D surface plots 
depicting alpha-glucosidase inhibitor activity (mg/ml) using the 
obtained model, as shown in Figure 7a-c. These graphs 
demonstrate the impact of variable combinations on the 
response while maintaining one variable constant at the center 
point (0) of the experimental design.  

The results, represented in terms of IC50 values, reveal that 
increasing the solid-to-liquid ratio and ethanol percentage 
positively affect the response, as seen in Figure 7a, while 
Figure 7b shows a positive effect when time and ethanol 
percentage are minimized, and Figure 7c indicates a positive 
effect with an increase in the solid-to-liquid ratio and a 
decrease in extraction time on alpha-glucosidase enzyme 
inhibitor activity. 

 
Figure 7. Response surface plots for the effects of independent variables on alpha-glucosidase enzyme inhibition activity. (a) B (Solid/Liquid 

Ratio) vs C (Ethanol, %), A (Time, hours): 16; (b) A (Time, hours) vs C (Ethanol, %), B (Solid/Liquid Ratio):30; (c) A (Time, hours) vs 
B (Solid/Liquid Ratio), C (Ethanol, %):50.

Yeast cell glucose uptake 

The yeast cell glucose uptake test employed a quadratic 
model selected based on sequential model sum of squares and 
model adequacy tests, with significant terms determined via 
ANOVA (p<0.05) for main effects, interactions, and second-
degree expressions. Model adequacy was deemed 
insignificant at a 95% confidence level, indicating a strong fit 
for the model. The high Model F value (45.93) and insignificant 
model inadequacy F value (1.06) led to a simplified model 

equation based on significant effects. Optimization studies 
resulted in high R-squared (0.9833) and adjusted R-squared 
(0.9619) values, validating the model's suitability for predictions 
with a small difference between Pred-R2 and Adj-R² values 
(<0.2) and an Adeq Precision value (21.6977) exceeding 4. The 
quadratic model equations in encoded variable terms 
accurately predict yeast cell glucose uptake inhibition activity 
(10 mg/ml). The quadratic model equations were derived for 
independent variables affecting yeast cell glucose uptake 
inhibition activity (10 mg/ml) in encoded variable terms 



Optimization of extraction conditions for obtaining active compounds of Ulva sp. 

202 

following sequential model sum of squares and model 
adequacy testing. 

Yeast cell glucose uptake inhibition activity (10 mg/ml): 
37.13 + 2.65*A – 5.79*B + 7.68*C – 5.42*A*B – 2.25*A*C – 
2.01*B*C – 2.01*A2 – 6.41*B2 + 7.43*C2 

The obtained model was used to generate three-
dimensional surface plots for the yeast cell glucose uptake 
test, depicted in Figure 8a-c, showcasing how varying two 

variables while keeping one constant affects the response. 
Results were calculated as % inhibition of glucose uptake 
at a specific concentration. Figure 8a indicates a positive 
impact on the response with increased extraction time and 
ethanol percentage, while Figure 8b shows a greater 
positive effect from increased extraction time compared to 
the solid/liquid ratio. Figure 8c reveals a negative effect on 
the response with decreased solid/liquid ratio and lower 
ethanol levels. 

 
Figure 8. Response surface plots for the effects of independent variables on yeast cell glucose uptake activity. (a) A (Time, hours) vs C (Ethanol, 

%), B (Solid/Liquid Ratio): 30; (b) A (Time, hours) vs B (Solid/Liquid Ratio), C (Ethanol, %):50; (c) B (Solid/Liquid Ratio) vs C (Ethanol, 
%), A (Time, hours):16. 

DISCUSSION
In the present study, the yield of extraction varied between 

0.86% and 22.47% due to changes in extraction process 
parameters such as ethanol concentration, solid/liquid ratio, 
and extraction time. Our optimization study resulted in a 
maximum yield of 22.47% of bioactive compounds from Ulva 
sp. at an ethanol concentration of 0%, a solid/liquid ratio of 
1:30, and an extraction time of 24 hours. In the literature, Ulva 
extraction yield ranging from 13.8% to 26.7% depending on the 
extraction method and conditions used, was reported. The 
aqueous mixture of ethanol was found to be the most efficient 
solvent in the recovery of bioactive compounds, with an 
extraction yield of 10–15% dry weight (Pappou et al., 2022). 

The yields obtained by the four extraction methods ranged from 
17.88% to 26.77%, and the use of enzymes improved 
extraction yields, with the maximum yield reaching 26.7% (Juul 
et al., 2021). 

Our results were in accordance with the results reported in 
the literature. An increase in the yield of extracted protein with 
the addition of sulfite during protein extraction from Ulva sp. 
was reported (Juul et al., 2021). The extraction yield of Ulva 
can be optimized by selecting the appropriate extraction 
method, conditions, and additives such as enzymes or sulfite 
(Chen et al., 2021). 
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In the present study, the total polysaccharide content of the 
extracts varied from 1.03% to 15.42% based on the extraction 
conditions, with the highest value (15.42%) obtained at an 
ethanol concentration of 0%, a solid/liquid ratio of 1:20, and an 
extraction time of 16 hours. Polysaccharides from Ulva sp., 
specifically ulvan, have been extracted using various methods 
in the literature. Ulvan is a sulfated heteropolysaccharide found 
in the cell wall of Ulva sp. It has been extracted from Ulva 
fasciata Delile collected from the Alexandria coast in Egypt. 
The ulvan content in Ulva fasciata Delile was found to be 
43.66% of the total carbohydrate, with a sulfate content of 
20.45% (Barakat et al., 2022). Ulva lactuca collected from the 
Alexandria coastline in Egypt also yielded ulvan, with a 
polysaccharide content of 36.50 g/100 g and a sulfate content 
of 19.72% (Ibrahim et al., 2022). The extraction of ulvan from 
Ulva lactuca biomass has been optimized using different 
solvents, with the most efficient solvent being an ethanol/water 
mixture (Pappou et al., 2022). The extraction parameters, such 
as time, temperature, and biomass-to-solvent ratio, have been 
investigated to optimize the extraction yield and antioxidant 
activity of ulvan (Ning et al., 2022). Ulvan has also been used 
to synthesize an ulvan/chitosan biomembrane with potential 
applications in the biomedical field (Ben Amor et al., 2023). 

In the present study, the total phenol content of the extracts 
varied from 18.4 to 82.15 mg GAE/g Dry Extract based on the 
extraction conditions, with the highest value (82.15 mg GAE/g 
Dry Extract) obtained at an ethanol concentration of 100%, a 
solid/liquid ratio of 1:20, and an extraction time of 16 hours. The 
total phenolic content of the extracts was primarily influenced 
by the ethanol concentration, with extraction time and 
solid/liquid ratio having lesser impacts. Ulva lactuca and Ulva 
linza macroalgae have been studied for their potential in 
polyphenol extraction by several researchers. The aqueous 
mixture of ethanol was found to be the most efficient solvent 
for extracting bioactive compounds from Ulva lactuca, with an 
extraction yield of 10-15% dw (Pappou et al., 2022). Ulva linza 
extract showed anti-inflammatory effects in TNBS-induced 
colitis mice, suggesting its potential as a natural therapeutic 
agent for inflammatory bowel disease (Kim et al., 2018). 
Another study investigated the protective effect of Ulva lactuca 
polyphenolic extract against heavy metal mixture-induced 
cardiovascular diseases (Nabil-Adam and Shreadah, 2021). 
The extract showed antioxidant and anti-inflammatory 
activities, which were attributed to its high polyphenolic 
content. A case study explored different methods for 
quantifying the total phenolic content of Ulva intestinalis, 
including quantitative NMR, HPLC-DAD, and the Folin-
Ciocalteu assay (Wekre et al., 2019). Their results showed 
variations in the quantification of polyphenols, highlighting the 
challenges in accurately measuring total polyphenolic content 
(Wekre et al., 2019). Additionally, protein extraction from Ulva 
sp. using double screw pressing and sulfite treatment resulted 
in improved protein quality, possibly due to inhibited oxidative 
reactions and improved polyphenol levels (Juul et al., 2021). 
Finally, pyrolysis of Ulva lactuca was investigated for bio-oil 
production, and the results showed an increase in phenolic 

compounds with increasing temperature, indicating the 
potential for producing renewable phenolic resins (Amrullah et 
al., 2023). 

The present study investigated the total protein content of 
Ulva extracts, ranging from 49.19 to 106.88 mg BSA/g Dry 
Extract based on the extraction conditions, with the highest 
value (106.88 mg BSA/g Dry Extract) achieved at an ethanol 
concentration of 100%, a solid/liquid ratio of 1:30, and an 
extraction time of 24 hours. Notably, the total protein content of 
the extracts was significantly influenced by the ethanol 
concentration, extraction time, and solid/liquid ratio, with 
ethanol concentration and extraction time showing the most 
significant effects. In the literatüre various methods have been 
explored to enhance protein extraction from Ulva macroalgae. 
For instance, alkaline pretreatment and ultrasonic-assisted 
extraction improved protein extraction yield from Ulva rigida 
biomass (Pan–Utai et al., 2022). Another study combined 
enzymatic cell wall degradation with high-voltage Pulsed 
Electric Fields (PEF), resulting in higher protein extraction 
yields compared to individual treatments (Steinbruch et al., 
2023). Ionic liquids (ILs) assisted mechanical shear followed by 
two-phase partitioning or ultrafiltration enabled selective 
extraction of proteins from Ulva lactuca (Suarez et al., 2023). 
Additionally, alkaline extraction at pH 8.5 and double screw 
pressing with sulfite addition were found to be effective 
methods for improving protein yield and quality from Ulva sp. 
(Juul et al., 2021). 

In the present study, the total antioxidant capacity of Ulva 
extracts ranged from 28.22 to 63.63 mg Trolox/g Dry Extract, 
with the highest value (63.63 mg Trolox/g Dry Extract) 
achieved at an ethanol concentration of 0%, a solid/liquid ratio 
of 1:20, and an extraction time of 16 hours. Various extraction 
methods and parameters have been explored to optimize the 
extraction process and maximize the yield of bioactive 
compounds from Ulva macroalgae (Pappou et al., 2022). 
Ultrasonic-assisted extraction (UAE) was found to be highly 
effective in extracting antioxidants from Ulva lactuca biomass 
(Rashad et al., 2023). Factors such as extraction solvent, time, 
and temperature significantly affect the extraction process. The 
extraction of antioxidants from Ulva macroalgae holds 
promising potential for application in various industries, 
including food and medicine (Pan-Utai et al., 2022). 

Ulva, a green marine seaweed, has been extensively 
studied for its antioxidant properties. Different extraction 
methods, such as microwave-assisted extraction, have been 
explored to optimize the yield and composition of ulvan, a 
polysaccharide found in Ulva sp. Microwave-assisted extraction 
has shown improved extraction yield and antioxidant activity of 
ulvan (Chen et al., 2021; Le et al., 2019). Ulva extracts, rich in 
polyphenols, have demonstrated significant antioxidant and anti-
inflammatory activities in various studies, showcasing their 
potential applications in mitigating oxidative stress-related 
diseases (Feng et al., 2020; Nabil-Adam and Shreadah, 2021). 
Furthermore, enzymatic hydrolysis of sulfated polysaccharides 
extracted from Ulva lactuca has resulted in fractions with 
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promising antioxidant and antitumor activities, suggesting their 
potential in pharmaceuticals (Abou El Azm et al., 2019). 

The Alpha-glucosidase Inhibition activity (IC50) of extracts 
varied from 0.17 to 1.67 mg/ml, with the lowest value (0.17 
mg/ml) achieved at specific extraction conditions. Ulva sp. 
demonstrated α-glucosidase inhibitory activity, suggesting 
their potential as natural inhibitors for controlling blood glucose 
levels and preventing diabetes (Vega-Gálvez et al., 2022; 
Nazarudin et al., 2020). Ulva reticulata extracts, particularly the 
methanolic extract, showed significant antidiabetic activity by 
inhibiting carbohydrate metabolizing enzymes (Unnikrishan et 
al., 2022; Tong et al., 2020). Additionally, the aqueous extract 
of Ulva fasciata showed hypoglycemic effects and restored 
hepatic glycogen content in diabetic rats. These findings 
suggest that Ulva sp., including Ulva reticulata, Ulva lactuca, 
and Ulva fasciata, have potential as antidiabetic agents (Tas et 
al., 2011). Ulva lactuca oligosaccharides were found to have 
hypoglycemic effects, potentially through a specific pathway 
(Chen et al., 2022). Additionally, Ulva australis exhibited 
inhibitory effects on α-glucosidase and α-amylase enzymes, 
indicating its potential as an anti-diabetic agent (Trentin et al., 
2020). 

In the present study, the Yeast Cell Glucose Uptake 
Inhibition activity (inhibition %)) of the extracts varied between 
12.47 and 42.13 % based on the extraction conditions, with the 
highest value (42.13 %) obtained at an ethanol concentration 
of 50%, a solid/liquid ratio of 1:20, and an extraction time of 24 
hours. The ethanolic extract of Ulva demonstrated dose-
dependent inhibition of glucose uptake in yeast cells, 
suggesting its potential for treating type 2 diabetes mellitus 
(Pitchaipillai and Ponniah, 2016). Ulva reticulata extracts, 
including the methanolic extract showed significant antidiabetic 
activity and were further analyzed to isolate active fractions 
(Unnikrishnan et al., 2022). Their study focused on identifying 
and characterizing compounds in the active fraction of Ulva 
reticulata for their antidiabetic potential. Marine algae, such as 
Ulva sp., have been recognized for their medicinal properties 
and potential as a source of antidiabetic compounds. This 
study contributes to the search for natural antidiabetic 
chemicals and emphasizes the importance of investigating 
marine algae for their therapeutic benefits (Unnikrishnan et al., 
2022). 

CONCLUSION 
The optimization study on Ulva extraction processes 

successfully pinpointed specific conditions for achieving the 
highest yield and optimal levels of bioactive compounds, 
polysaccharides, proteins, phenols, antioxidants, and alpha-
glucosidase enzyme inhibitors. It emphasized the significant 
influence of ethanol concentration, solid/liquid ratio, and 

extraction time on the extraction yield variability of bioactive 
compounds. Notably, the study highlighted Ulva's potential in 
managing blood glucose levels and preventing diabetes, 
showcasing its medicinal properties as a natural source of 
antidiabetic compounds. Marine algae like Ulva sp. hold 
promise in the quest for natural remedies for diabetes, given 
their recognized medicinal properties and potential as a source 
of beneficial compounds. 

In conclusion, the multifaceted pharmacological properties 
of Ulva sp. underscore their potential as valuable sources of 
bioactive compounds with diverse applications in health, 
nutraceuticals, and pharmaceuticals. With ongoing research 
and development, Ulva sp. hold promise in addressing various 
health challenges and contributing to the advancement of 
therapeutic interventions. As the algae industry expands, 
there's a growing need to extract bioactive compounds 
efficiently. However, phenomena like algal blooms pose 
environmental challenges, calling for research to transform this 
waste into valuable products. 
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