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Abstract: This study investigates the critical role of G20 nations in maintaining ocean health, given the significant influence their economic activities have on 
global maritime ecosystems. Employing the most recent Ocean Health Index (OHI) data (2023) and the CEBM-TOPSIS Multi-Criteria Decision Making (MCDM) 
method, the research assesses the ocean health performance of 18 countries G20 countries. The CEBM analysis identifies biodiversity, carbon sequestration 
capacity, fisheries sustainability, water quality, and coastal protection as the most important OHI criteria, respectively. According to the CEBM-TOPSIS method, 
Russia, Brazil, and France are the top three countries with the highest ocean health performance, while China, India, and South Africa are ranked lowest 
among the first three countries. Notably, the average performance score indicates that Russia, Brazil, France, the United Kingdom, Australia, Mexico, South 
Korea, the United States, Germany, Saudi Arabia, and Canada all exceed the average. This suggests a need for improvement among G20 countries with 
below-average performance to ensure a more substantial contribution to the global economy and interconnected dimensions. Finally, sensitivity, comparison, 
and simulation analysis validate the CEBM-TOPSIS MCDM method as a reliable tool for evaluating national ocean health performance. 
Keywords: CEBM, CEBM based TOPSIS, G20, large economies, ocean/marine health performance, ocean/marine pollution 

Öz: Bu çalışma, ekonomik faaliyetlerinin küresel deniz ekosistemleri üzerindeki önemli etkisini göz önünde bulundurarak, G20 ülkelerinin okyanus sağlığını 
korumadaki kritik rolünü araştırmaktadır. En yeni Okyanus Sağlık Endeksi (OHI) verilerini (2023) ve CEBM-TOPSIS Çok Kriterli Karar Verme (MCDM) 
yöntemini kullanan bu çalışma, 18 tane G20 ülkesinin okyanus sağlığı performansını değerlendirmektedir. Yapılan CEBM analizi sonucunda en önemli OHI 
kriterleri sırasıyla; biyoçeşitlilik, karbon tutma kapasitesi, balıkçılık sürdürülebilirliği, su kalitesi ve kıyı korumayı belirlemektedir. CEBM-TOPSIS analiz 
sonucuna göre, okyanus sağlığı performansı en yüksek olan ülkeler sırasıyla Rusya, Brezilya ve Fransa, en düşük ülkeler ise Çin, Hindistan ve Güney 
Afrika'nın ise en düşük ilk üç sırada yer aldığını ortaya koymaktadır. Ayrıca, Rusya, Brezilya, Fransa, Birleşik Krallık, Avustralya, Meksika, Güney Kore, ABD, 
Almanya, Suudi Arabistan ve Kanada'nın ortalama puanlarının ortalama değerleri aştığı belirlenmiştir. Bu sonuç, küresel ekonomiye ve birbiriyle bağlantılı 
paydaşlara (Boyut yerine başka geniş bir ifade kullanılabilir) daha etkin katkılar sağlamak için ortalama altında performans gösteren G20 ülkelerinin deniz 
sağlığı performanslarının iyileştirilmesinin gerektiğini gözler önüne sermektedir. Buna benzer şekilde düzenlenebilir. Son olarak, bu çalışma kapsamında 
yapılan duyarlılık, karşılaştırma ve simülasyon sonuçları, CEBM-TOPSIS MCDM yönteminin ülkelerin veya ülke bazında okyanus/deniz sağlığı için güvenilir 
bir araç olarak doğrulamaktadır. 
Anahtar kelimeler: CEBM, CEBM tabanlı TOPSIS, G20, büyük ekonomiler, okyanus/deniz sağlığı performansı, okyanus/deniz kirlenmesi 

INTRODUCTION 
Marine and ocean/marine pollution pose a critical global 

environmental challenge with far-reaching implications for 
ecosystems, human health, economies, biodiversity, and food 
security. Recognizing this, international collaboration and 
effective policies are essential for the sustainable management 
of seas and oceans (Karim, 2015). Monitoring the marine 
health performance of countries is crucial to prevent pollution 
and ecosystem degradation, fostering global cooperation and 
transparency. 

The escalating use of seas and increasing global 
interconnections between countries have elevated marine and 
ocean health as a critical global concern (Kennish, 1997; Neto 
et al., 2017; Krushelnytska, 2018; Cusine and Grant, 2019; Pei 
and Junaid, 2019; Yao et al., 2023). However, the presence of 
harmful substances endangering ecological balance impedes 
the sustainability of ocean/marine health, leading to declining 

water quality and atmospheric/climatic changes (Arias and 
Marcovecchio, 2018; Niceforo, 2019). 

Internationally, ocean/marine pollution is defined by the 
United Nations Convention on the Law of the Sea as any 
human activity that introduces substances or energy into the 
marine environment, causing deleterious effects such as harm 
to living resources and marine life, impairment of water quality 
for human use, and interference with legitimate sea uses 
(Proelß, 2017). Ocean/marine pollutants include nutrients, 
sediments, pathogens, alien species, persistent toxins (PCBs, 
heavy metals, DDT), oil, plastics, radioactive substances, 
thermal, and noise (Potters, 2013). The literature classifies 
factors influencing ocean/marine pollution, such as land-based 
activities, industrial waste disposal, radioactive pollution, ship-
borne pollutants, and mineral exploitation (Hardy, 1971; 
Tornero and Hanke, 2016). Specific pollutants in oceans and 
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marines include POPs, EDCs, mercury, heavy metals, 
pesticides, pharmaceuticals, oil, plastic wastes, BPA, 
phthalates, personal care products, and industrial/agricultural 
emissions. Understanding these pollutants is crucial for 
collaborative policies to achieve sustainable marine and ocean 
health (Lloyd-Smith and Immig, 2018). 

Countries depend on oceans for fisheries, tourism, 
transportation, water supply, and wastewater discharge, 
necessitating the evaluation of marine health performance to 

ensure economic benefits. The Ocean Health Index (OHI) is 
the sole metric measuring countries' ocean/marine health 
performance, emphasizing sustainability in food, cultural, 
economic, and social aspects.  

OHI raises awareness and aids countries in planning 
pollution protection strategies, comprising 10 components and 
8 sub-components measured through arithmetic means 
(Halpern et al., 2012). The explanations of the components and 
sub-components are shown in Table 1. 

Table 1. OHI components and sub-components (Rintaka et al., 2023; Ocean Health Index, 2023) 
Components Sub-Components Explanation 

Food Provision Wild Caught Fisheries Measures the sustainability of wild-caught and farmed seafood. 
Mariculture Measures the sustainability of farmed seafood. 

Artisanal Fishing Opportunities  ------ Measures the level of opportunity for people to fish for subsistence or local-scale fishing. 
Natural Products  ------ Measures how well countries maximize the sustainable harvest of non-food marine resources. 
Carbon Storage  ------ Measures the amount of carbon storage provided by oceans. 
Coastal Protection  ------ Measures the level of coastal protection. 

Livelihoods and Economies Livelihoods Measures the quality and quantity of ocean-related jobs. 
Economies Measures the value of income generated from the ocean. 

Tourism and Recreation  ------ Measures the level of sustainable tourism. 

Sense of Place Iconic Species Measures the level of protection of important marine species. 
Lasting Special Places Measures the level of protection of culturally significant marine places. 

Clean Waters  ------ Measures the performance of countries in providing clean water. 

Biodiversity Habitat Measures the performance of countries in protecting the natural habitats of marine species. 
Species  Measures the performance of countries in protecting marine species. 

Rapid economic growth, industrialization, and rising 
consumption intensify ocean/marine pollution through 
industrial waste, pesticides, carbon emissions, and plastic 
waste. These factors threatens ecosystems, marine life, and 
human health. Sustainable development, integrating economic 
growth with environmental protection, offers mitigation 
strategies. Further research and policy development are crucial 
(Sachs et al., 2023). 

Reducing ocean/marine pollution drives economic growth 
through new opportunities, innovation, and solutions to global 
challenges like food security and resource availability (Mitra et 
al., 2021). Conversely, inaction incurs greater costs, harming 
sectors like tourism, fisheries, health, and coastal development 
(Diez et al., 2019). In the second dimension, Economic growth 
often correlates with increased ocean/marine pollution, as seen 
across various studies (Zhang and Chen, 2022; Li, 2024). 
Marine resource depletion further emphasizes the need for 
innovative solutions. 

G20 countries, being major economies, significantly 
contribute to global ocean/marine pollution, with the top plastic 
waste producers and rivers carrying plastic waste located 
within the G20 (World Ocean Initiative, 2024). Recognizing 
this, G20 countries have developed action plans and initiatives, 
such as the Marine Litter Action Plan and the Osaka Blue 
Ocean Vision, to address ocean/marine pollution 
comprehensively (Ministry of Foreign Affairs of Japan, 2017; 
Kojima et al., 2022). The policies and actions of G20 countries 
in this regard have global implications for human health, 
economic development and growth, social well-being, 

biodiversity, and food security (OECD, 2019). Therefore, it can 
be considered relevant to analyze the ocean/marine 
performance of G20 countries. According to the Ocean Health 
Index (OHI) report for the year 2023, it has been determined 
that among the G20 countries, the top three countries with the 
highest ocean/sea health performance are Russia, Brazil, and 
Australia, while the bottom three countries with the lowest 
performance are India, China, and South Africa. Furthermore, 
as per the Ocean Health Index (2023) report, countries with 
ocean/sea health performance scores above the average 
include Russia, Brazil, Australia, Germany, South Korea, 
France, the United Kingdom, Mexico, and Saudi Arabia. 
Conversely, it has been observed that Türkiye and the United 
States are closely aligned with the average ocean/sea health 
performance value of the G20 countries (Ocean Health Index, 
2023). 

Monitoring the marine health performance of countries is 
crucial to prevent pollution and ecosystem degradation, 
fostering global cooperation and transparency. The interplay 
between economic growth and ocean/marine pollution 
emphasizes the importance of evaluating the ocean/marine 
health performance of the G20 countries, as they represent the 
world's major economies (Ullah et al., 2023). Therefore, it is 
important for countries to prioritize specific ocean/sea health 
performance criteria in order to contribute to global ocean/sea 
health and economic development. Identifying the 
ocean/marine health performance criteria that major 
economies should prioritize, and determining which major 
economies need to improve their ocean/marine health 
performance, is crucial (Mitra et al., 2021). 
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Methodologically, the CEBM method is effective in 
measuring the weights of criteria in a non-linear structure. 
CEBM (Cubic Effect Based Measurement) is a novel method 
for weighting criteria. It captures complex relationships by 
analyzing cubic interactions between them, using integral 
calculus and normalized data. This functional approach offers 
a distinct advantage and leads to more effective outcomes for 
complex problems compared to other methods (Altıntaş, 2023). 
On the other hand, the TOPSIS method is a reliable approach 
for measuring the performance of alternatives and is frequently 
utilized for this purpose. TOPSIS (Technique for Order 
Preference by Similarity to Ideal Solution) was introduced to 
the MCDM literature in 1980 by Hwang and Yoon (1981). In 
TOPSIS, alternatives are assessed based on two key points: 

the positive ideal solution and the negative ideal solution 
(Ayçin, 2019). The positive ideal solution maximizes benefit 
criteria and minimizes cost criteria. Conversely, the negative 
ideal solution minimizes benefit criteria and maximizes cost 
criteria (Paksoy, 2017). According to the method, as a decision 
point moves away from the negative ideal solution, it 
approaches the positive ideal solution. Consequently, a 
decision point that moves closer to the positive ideal solution 
and farther from the negative ideal solution gains an advantage 
over other decision points in the ranking (Aktaş et al., 2015). A 
review of the literature reveals that the TOPSIS method is 
frequently utilized to evaluate the performance of decision 
alternatives and in selection problems. The current literature on 
the TOPSIS method is presented in Table 2. 

Table 2. TOPSIS literature 
Author(s) Method(s) Theme 
Korucuk et al. (2022) FFS–TOPSIS Evaluation green approaches and digital marketing strategies 
Asadabadi et al. (2023) BWM based TOPSIS Supplier selection to support environmental sustainability 
Badi et al. (2023) Grey TOPSIS Solar farm location selection 
Das and Kumar (2023) TOPSIS Assessment of electric two-wheeler ecosystem 
Korucuk et al. (2023) BN-TOPSIS Assessment of agile supply chain management 
Singh et al. (2023) AHP based TOPSIS Selecting parameter-influencing testing 
Tanveer et al. (2023) Fuzzy TOPSIS Selecting digital technologies in circular supply chains 
Yavari et al. (2023) Genetic Algorithm and TOPSIS Selection of optimal well trajectory 
Zhao et al. (2023) GRA and TOPSIS Social and economic impact assessment of coal power 
Zhu et al. (2023) SWOT and TOPSIS Investigation of West Lake ecotourism capabilities 
Dharmawan (2024) TOPSIS Assessing teachers performance 
Kolsara (2024) TOPSIS Project proposal selection 

 
In this context, the study assessed the ocean/marine health 

performance of 18 countries G20 countries in 2023 using the 
Ocean Health Index (OHI) criteria and the CEBM-based 
TOPSIS method. Three key findings emerged from the 
quantitative analysis. Firstly, the study identified priority OHI 
criteria for countries to enhance their overall marine health 
performance, contributing to global economic and related 
dimensions. Secondly, it pinpointed countries that need to 
improve their marine health performance to make more 
significant contributions to the global economy. Lastly, the 
study evaluated the applicability of the CEBM-based TOPSIS 
method within the OHI framework for measuring countries' 
ocean/marine health performance. The methodology details 
the research analysis and dataset, and the results section 
provides insights and discussions based on the quantitative 
findings. 

MATERIALS AND METHODS  
Dataset and analysis of the research 

The research dataset consists of the OHI criteria data for 
the year 2023, which is the latest and most up-to-date data for 
18 countries in the G20 group. The weights (importance levels) 
of the OHI criteria for each country were measured using the 
CEBM method, and the ocean/marine health performance of 
the countries was measured using the CEBM-based TOPSIS 
method. As It is known, the G20 group consists of 19 countries 

and the European Union as an organization (Öztaş and Öztaş, 
2024). Japan was not included in the study because the 
numerical performance value of the Tourism and Recreation 
criterion was not available in the OHI report for Japan. For 
convenience, the abbreviations of the OHI criteria are shown in 
Table 3. 
Table 3. Abbreviations of OHI components (Ocean Health Index, 2023) 

Components Abbreviations 
Food Provision OHI1 
Artisanal Fishing Opportunities OHI2 
Natural Products OHI3 
Carbon Storage OHI4 
Coastal Protection OHI5 
Livelihoods and Economies OHI6 
Tourism and Recreation OHI7 
Sense of Place OHI8 
Clean Waters OHI9 
Biodiversity OHI10 

The CEBM method, known for its interactive nature and 
non-linear structure based on cubic functions, proves effective 
in solving complex problems, setting it apart from other criteria 
weighting methods (Altıntaş, 2023). The TOPSIS method, 
widely utilized in decision and selection problems, gains 
popularity due to its simultaneous evaluation of ideal and non-
ideal solutions, mathematical simplicity, algorithm clarity, and 
adaptability to different weighting methods (Çakır and Perçin, 



Altıntaş, Ege Journal of Fisheries and Aquatic Sciences, 41(3), 166-178 (2024) 

169 

2013; Öztel and Alp, 2020). Leveraging the advantages of 
MCDM methods, this study employed CEBM to determine OHI 
criterion weights and CEBM-based TOPSIS to measure 
ocean/marine health performance. 

This research stands out as the first to utilize MCDM 
methods to elucidate the ocean/marine health performance of 
G20 countries. The novelty is further emphasized by the 
application of the CEBM-based TOPSIS method in decision 
alternative performance measurement, contributing to both 
ocean/marine health and MCDM literature. 

CEBM method 
Step 1: Retrieving the Decision Matrix (Altıntaş, 2023) 

i: 1, 2, 3...n, where n represents the number of decision 
alternatives 

j: 1, 2, 3...m, where m represents the number of criteria 

D: Decision matrix 

C: Criterion 

dij: The decision matrix is constructed according to 
Equation 1, where "𝑖𝑖𝑗𝑗" represents the 𝑖𝑖 − 𝑡𝑡ℎ decision 
alternative on the 𝑗𝑗 − 𝑡𝑡ℎ criterion. 

𝐷𝐷 = �𝑑𝑑𝑖𝑖𝑗𝑗�𝑛𝑛𝑛𝑛𝑛𝑛  =
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⎢
⎢
⎢
⎡𝐶𝐶1𝑥𝑥 11

𝐶𝐶2
𝑥𝑥 12
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𝑥𝑥 1𝑛𝑛
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⋮
𝑥𝑥𝑛𝑛1

𝑥𝑥22
⋮
𝑥𝑥𝑛𝑛2

⋯
⋮
⋯

𝑥𝑥2𝑛𝑛
⋮

𝑥𝑥𝑛𝑛𝑛𝑛 ⎦
⎥
⎥
⎥
⎤
     (1) 

Step 2: Establishment of Decision Matrix Normalization 
(𝑑𝑑𝑖𝑖𝑗𝑗∗ ) (Altıntaş, 2023) 

The decision matrix is normalized using the following 
equation. Equation 2 is applied for normalizing benefit criteria, 
while Equation 3 is utilized for the normalization of cost criteria. 

𝑑𝑑𝑖𝑖𝑗𝑗∗ =
𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑗𝑗𝑛𝑛𝑖𝑖𝑛𝑛

𝑥𝑥𝑗𝑗𝑛𝑛𝑚𝑚𝑛𝑛 − 𝑥𝑥𝑗𝑗𝑛𝑛𝑖𝑖𝑛𝑛
     (2) 

𝑑𝑑𝑖𝑖𝑗𝑗∗ =
𝑥𝑥𝑗𝑗𝑛𝑛𝑚𝑚𝑛𝑛 − 𝑥𝑥𝑖𝑖𝑗𝑗
𝑥𝑥𝑗𝑗𝑛𝑛𝑚𝑚𝑛𝑛 − 𝑥𝑥𝑗𝑗𝑛𝑛𝑖𝑖𝑛𝑛

     (3)  

Step 3: Obtaining of Cubic Equations (Altıntaş, 2023) 

Utilizing SPSS assistance (CURVE ESTIMATION), cubic 
functions (𝑦𝑦 = 𝑎𝑎𝑥𝑥3 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐𝑥𝑥 + 𝑑𝑑) are formulated for the 
variables, where the number of criteria, denoted as 'm', 
determines the quantity of �2.𝐶𝐶(𝑚𝑚, 2) = 2. 𝑛𝑛!

2!.(𝑛𝑛−2)!
� up to 

which the functions are generated, taking into account the 
cubic relationship between them. 

(1)  𝑓𝑓(𝐶𝐶1) = 𝐶𝐶2,𝑓𝑓(𝐶𝐶1) = 𝐶𝐶3, … …  𝑓𝑓(𝐶𝐶1) = 𝐶𝐶𝑛𝑛         (4) 
(2) 𝑓𝑓(𝐶𝐶2) = 𝐶𝐶1,𝑓𝑓(𝐶𝐶2) = 𝐶𝐶3, … …  𝑓𝑓(𝐶𝐶2) = 𝐶𝐶𝑛𝑛          (5) 
(3) 𝑓𝑓(𝐶𝐶3) = 𝐶𝐶1,𝑓𝑓(𝐶𝐶3) = 𝐶𝐶2, … …  𝑓𝑓(𝐶𝐶3) = 𝐶𝐶𝑛𝑛          (6) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                   
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                    
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

 

(𝑚𝑚) 𝑓𝑓(𝐶𝐶𝑛𝑛) = 𝐶𝐶1,𝑓𝑓(𝐶𝐶𝑛𝑛) = 𝐶𝐶2, … …  𝑓𝑓(𝐶𝐶𝑛𝑛) = 𝐶𝐶𝑛𝑛−1   (7) 

Step 4: Calculation of Cubic Impact Value between Criteria 
(Altıntaş, 2023) 

During this phase, assessing the impact or modification of 
a dependent a criterion by an independent variable (another 
criterion) involves evaluating the independent variable's 
influence across its minimum and maximum values through 
definite integral calculation. In this context, the symbol "𝑘𝑘" 
represents the cubic impact value of one criterion on the other. 
It is essential to verify the absolute values of the impact post-
integral calculation. 

(1)  𝑓𝑓(𝐶𝐶1) = 𝐶𝐶2 , � (𝑓𝑓′(𝐶𝐶1)) 𝑑𝑑𝑥𝑥

𝐶𝐶1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

𝐶𝐶1𝑚𝑚𝑚𝑚𝑚𝑚.

= �𝑘𝑘𝐶𝐶1→𝐶𝐶2�          (8) 

(2)  𝑓𝑓(𝐶𝐶1) = 𝐶𝐶3 , � (𝑓𝑓′(𝐶𝐶1)) 𝑑𝑑𝑥𝑥

𝐶𝐶1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

𝐶𝐶1𝑚𝑚𝑚𝑚𝑚𝑚.

= �𝑘𝑘𝐶𝐶1→𝐶𝐶3�          (9) 

(3)  𝑓𝑓(𝐶𝐶1) = 𝐶𝐶4 , � (𝑓𝑓′(𝐶𝐶1)) 𝑑𝑑𝑥𝑥

𝐶𝐶1𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

𝐶𝐶1𝑚𝑚𝑚𝑚𝑚𝑚.

= �𝑘𝑘𝐶𝐶1→𝐶𝐶4�          (10) 
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⋮ ⋮ ⋮
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�
𝑚𝑚!

(𝑚𝑚− 2)!
�  𝑓𝑓(𝐶𝐶𝑛𝑛) = 𝐶𝐶𝑛𝑛−1 , � (𝑓𝑓′(𝐶𝐶𝑛𝑛)) 𝑑𝑑𝑥𝑥

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.

= �𝑘𝑘𝐶𝐶𝑚𝑚→𝐶𝐶𝑚𝑚−1�      (11) 

The significance of the absolute value of the impact value 
of one criterion on another is highlighted. This is crucial in this 
approach, as the focus lies not on the direction of influence 
between criteria but rather on the magnitude of the influence. 

Step 5: Calculation of the Total Cubic Impact Values of 
Each Criterion (𝑇𝑇𝑐𝑐) (Altıntaş, 2023) 

During this stage, the cubic impact values originating from 
a criterion on other criteria are aggregated to assess the 
comprehensive cubic impact value of a criterion on the 
remaining criteria. 

(1) 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶1 �𝑘𝑘𝐶𝐶1→𝐶𝐶2�+ �𝑘𝑘𝐶𝐶1→𝐶𝐶3�+ �𝑘𝑘𝐶𝐶1→𝐶𝐶4�… … + �𝑘𝑘𝐶𝐶1→𝐶𝐶𝑚𝑚�

= �� �𝑘𝑘𝐶𝐶1→𝐶𝐶𝑗𝑗+1�
𝑛𝑛−1

𝑗𝑗=1

� = 𝑇𝑇𝐶𝐶1            (12) 

(2) 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶2 �𝑘𝑘𝐶𝐶2→𝐶𝐶1�+ �𝑘𝑘𝐶𝐶2→𝐶𝐶3�+ �𝑘𝑘𝐶𝐶2→𝐶𝐶4�… + �𝑘𝑘𝐶𝐶2→𝐶𝐶𝑚𝑚�

= � � �𝑘𝑘𝐶𝐶2→𝐶𝐶𝑗𝑗+1�
𝑛𝑛−1

𝑗𝑗=0,𝑗𝑗≠1

� = 𝑇𝑇𝐶𝐶2          (13) 

(3) 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶3 �𝑘𝑘𝐶𝐶3→𝐶𝐶1�+ �𝑘𝑘𝐶𝐶3→𝐶𝐶2�+ �𝑘𝑘𝐶𝐶3→𝐶𝐶4�… + �𝑘𝑘𝐶𝐶3→𝐶𝐶𝑚𝑚�

= � � �𝑘𝑘𝐶𝐶3→𝐶𝐶𝑗𝑗+1�
𝑛𝑛−1

𝑗𝑗=0,𝑗𝑗≠2

� = 𝑇𝑇𝐶𝐶3            (14) 

⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                   
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

                    
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

 

(𝑚𝑚) 𝑓𝑓𝑓𝑓𝑓𝑓 𝐶𝐶𝑛𝑛 �𝑘𝑘𝐶𝐶𝑚𝑚→𝐶𝐶1�+ �𝑘𝑘𝐶𝐶𝑚𝑚→𝐶𝐶2�+ �𝑘𝑘𝐶𝐶𝑚𝑚→𝐶𝐶3�. . +�𝑘𝑘𝐶𝐶𝑚𝑚→𝐶𝐶𝑚𝑚−1�

= �� �𝑘𝑘𝐶𝐶𝑚𝑚→𝐶𝐶𝑗𝑗�
𝑛𝑛−1

𝑗𝑗=1

� = 𝑇𝑇𝐶𝐶𝑚𝑚                        (15) 
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Step 6: Establishing Criterion Weight Values (𝑤𝑤𝑗𝑗) 
(Altıntaş, 2023) 

During this phase, the division of the cumulative cubic 
impact value of each criterion on the remaining criteria by the 
sum of the cumulative cubic impact values of all criteria takes 
place. This calculation enables the determination of the weight 
coefficient for each criterion. 

𝑤𝑤𝑗𝑗 =
𝑇𝑇𝐶𝐶𝑗𝑗

∑ 𝑇𝑇𝐶𝐶𝑗𝑗
𝑛𝑛
𝑗𝑗=1

     (16) 

TOPSIS method 
Step 1: Formation of the Decision Matrix (Kaya and 

Karaşan, 2020) 

The matrix consisting of 𝑚𝑚 decision alternatives and 𝑛𝑛 
criteria is defined in Equation 17. 

𝐴𝐴𝑖𝑖𝑗𝑗  = �

𝑎𝑎11 𝑥𝑥12 ⋯ 𝑘𝑘1𝑛𝑛
𝑎𝑎21
⋮

𝑎𝑎𝑛𝑛1

𝑥𝑥22
⋮

𝑥𝑥𝑛𝑛2

⋯
⋮
⋯

𝑘𝑘2𝑛𝑛
⋮

𝑘𝑘𝑛𝑛𝑛𝑛

�       (17) 

Step 2: Attainment of the Standard Decision Matrix (Atan 
and Altan, 2020) 

In the TOPSIS method, normalization is generally 
calculated through vector normalization. Accordingly, the 
normalized values (𝑓𝑓𝑖𝑖𝑗𝑗) are initially measured. The 𝑓𝑓𝑖𝑖𝑗𝑗  values 
are provided with Equation 18. 

𝑓𝑓𝑖𝑖𝑗𝑗 =
𝑎𝑎𝑖𝑖𝑗𝑗

�∑ 𝑎𝑎𝑘𝑘𝑗𝑗2𝑛𝑛
𝑘𝑘=1

    𝑖𝑖 = 1,2, … ,𝑚𝑚 𝑣𝑣𝑣𝑣 𝑗𝑗 = 1,2, … ,𝑛𝑛)         (18) 

After calculating the 𝑓𝑓𝑖𝑖𝑗𝑗  values, the standard decision 
matrix �𝑅𝑅𝑖𝑖𝑗𝑗� is obtained using Equation 19. 

𝑅𝑅𝑖𝑖𝑗𝑗  = �

r11 r12 ⋯ r1n
r21
⋮

rm1

r22
⋮

rm2

⋯
⋮
⋯

r2n
⋮

rmn

�     (19) 

Step 3: Attainment of the Weighted Standard Decision 
Matrix (Özarı and Eran, 2019) 

At this stage, the sum of the weights of the criteria (𝑤𝑤𝑖𝑖𝑗𝑗) 
must be equal to 1 (∑ wi)n

i=1 . Accordingly, the obtained 
weighted standard decision matrix (𝑉𝑉𝑖𝑖𝑗𝑗) is shown in Equation 
20. 

𝑉𝑉𝑖𝑖𝑗𝑗  = �

𝑤𝑤1𝑓𝑓11 𝑤𝑤2𝑓𝑓12 ⋯ 𝑤𝑤𝑛𝑛𝑓𝑓1𝑛𝑛
𝑤𝑤1𝑓𝑓21
⋮

𝑤𝑤1𝑓𝑓𝑛𝑛1

𝑤𝑤2𝑓𝑓22
⋮

𝑤𝑤2𝑓𝑓𝑛𝑛2

⋯
⋮
⋯

𝑤𝑤𝑛𝑛𝑓𝑓2𝑛𝑛
⋮

𝑤𝑤𝑛𝑛𝑓𝑓𝑛𝑛𝑛𝑛

�     (20) 

Step 4: Determination of the Positive Ideal (𝐴𝐴+) and 
Negative Ideal (𝐴𝐴−) Solution Values (Kaymaz et al., 2020) 

For criteria oriented towards maximization, the positive 
ideal solution set is formed by selecting the column values in 
the weighted evaluation criteria matrix 𝑉𝑉𝑖𝑖𝑗𝑗  where the criteria 
are maximized, and for criteria oriented towards minimization, 
the smallest column values are preferred. In this context, the 

positive ideal solution values are calculated as shown in 
Equations 21 and 22. 

𝐴𝐴+ = �𝑚𝑚𝑎𝑎𝑘𝑘𝑖𝑖𝑣𝑣𝑖𝑖𝑗𝑗| 𝑗𝑗 ∈ 𝐽𝐽), (𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑣𝑣𝑖𝑖𝑗𝑗| 𝑗𝑗 ∈ 𝐽𝐽′�             (21) 
𝐴𝐴+ = {𝑣𝑣1∗,𝑣𝑣2∗, … , 𝑣𝑣𝑛𝑛∗}                                                    (22) 

For criteria oriented towards maximization, the negative 
ideal solution set is formed by selecting the column values in 
the weighted evaluation criteria matrix 𝑉𝑉𝑖𝑖𝑗𝑗where the criteria are 
minimized, and for criteria oriented towards maximization, the 
largest column values are preferred. In this context, the 
negative ideal solution values are calculated as shown in 
Equations 23 and 24. 

𝐴𝐴− = �𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑣𝑣𝑖𝑖𝑗𝑗| 𝑗𝑗 ∈ 𝐽𝐽), (𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑣𝑣𝑖𝑖𝑗𝑗| 𝑗𝑗 ∈ 𝐽𝐽′�              (23) 
𝐴𝐴− = {𝑣𝑣1−,𝑣𝑣2−, … , 𝑣𝑣𝑛𝑛−}                                                  (24) 

Step 5: Measurement of Distance to Positive and Negative 
Points (Kaymaz et al., 2020) 

Initially, to determine the deviations in the positive and 
negative ideal solution sets, Equation 25 is utilized for the 
detection of the distances of 𝑥𝑥 and 𝑦𝑦 values in the coordinate 
plane using the Euclidean Distance Approach. 

𝑑𝑑𝑖𝑖𝑗𝑗 = ��(𝑥𝑥𝑖𝑖𝑘𝑘 −  𝑥𝑥𝑗𝑗𝑘𝑘)2
𝑛𝑛

𝑘𝑘=1

     (25) 

In Equation 25 𝑥𝑥𝑖𝑖𝑘𝑘  explains the 𝑘𝑘𝑡𝑡ℎ variable value of the 
𝑖𝑖𝑡𝑡ℎ observation and 𝑥𝑥𝑖𝑖𝑘𝑘  explains the 𝑗𝑗𝑡𝑡ℎ observation's 𝑘𝑘𝑡𝑡ℎ 
variable value, along with the number of variables (criteria), 
denoted by 𝑛𝑛. Additionally, the number of measurements for 
the positive ideal distance (𝑆𝑆𝑖𝑖+) and negative ideal distance 
(𝑆𝑆𝑖𝑖−) metrics is equal to the number of decision alternatives. 
Thus, in the TOPSIS method, Equations 26 and 27 are utilized 
for calculating the distances to ideal and non-ideal points for 
each decision alternative. 

𝑃𝑃𝑓𝑓𝑃𝑃𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑣𝑣 𝐼𝐼𝑑𝑑𝑣𝑣𝑎𝑎𝐼𝐼 𝐷𝐷𝑖𝑖𝑃𝑃𝑡𝑡𝑎𝑎𝑛𝑛𝑐𝑐𝑣𝑣: 𝑆𝑆𝑖𝑖+ =  ��(𝑣𝑣𝑖𝑖𝑗𝑗 −  𝑣𝑣𝑗𝑗∗)2
𝑛𝑛

𝑗𝑗=1

     (26) 

𝑁𝑁𝑣𝑣𝑁𝑁𝑎𝑎𝑡𝑡𝑖𝑖𝑣𝑣𝑣𝑣 İ𝑑𝑑𝑣𝑣𝑎𝑎𝐼𝐼 𝐷𝐷𝑖𝑖𝑃𝑃𝑡𝑡𝑎𝑎𝑛𝑛𝑐𝑐𝑣𝑣: 𝑆𝑆𝑖𝑖− =  ��(𝑣𝑣𝑖𝑖𝑗𝑗 −  𝑣𝑣𝑗𝑗−)2
𝑛𝑛

𝑗𝑗=1

     (27) 

Step 6: Measurement of Relative Proximity to the Ideal 
Solution (Atan and Altan, 2020) 

The proximity of each decision point to the positive ideal 
solution (Ci

*) is calculated utilizing measurements of positive 
and negative ideal distances. The main criterion here is the 
ratio of the negative distance measurement to the total 
distance measurement. Equation 28 is employed for 
measuring the proximity values to the positive ideal solution. 

𝐶𝐶𝑖𝑖∗ =
𝑆𝑆𝑖𝑖−

𝑆𝑆𝑖𝑖− + 𝑆𝑆𝑖𝑖+
      (28) 
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The value of 𝐶𝐶𝑖𝑖∗ specified in Equation 18 should be within 
the range of 0 ≤  𝐶𝐶𝑖𝑖∗ ≤  1 when 𝐶𝐶𝑖𝑖∗ = 1, it indicates the 
absolute proximity of the corresponding decision alternative to 
the positive ideal solution. On the other hand, if 𝐶𝐶𝑖𝑖∗ = 0, it 
signifies the absolute proximity of the respective decision 
alternative to the negative ideal solution. 

RESULTS 

Computational analysis 
In the study, initially, the weighting values of the OHI 

criteria were calculated using the relevant equations specified 
in the CEBM method, and then they were ranked. The weighting 
values (degrees of importance) of these OHI criteria and the 
rankings of the weighting values are described in Table 4. 
Table 4. Weighting values of OHI criteria 

Criteria Total Effect Weights Ranking 
OHI1 1.672 0.066 10 
OHI2 3.013 0.119 3 
OHI3 2.137 0.085 7 
OHI4 3.299 0.131 2 
OHI5 2.684 0.106 5 
OHI6 2.26 0.090 6 
OHI7 2.063 0.082 8 
OHI8 1.711 0.068 9 
OHI9 2.908 0.115 4 
OHI10 3.49 0.138 1 
Total 25.237 Mean: 0.100  

Upon examining Table 4, it can be observed that the 
weighting values of the criteria are ranked as follows: OHI10, 
OHI4, OHI2, OHI9, OHI5, OHI6, OHI3, OHI7, OHI8, and OHI1. 
Additionally, the average weight of the criteria was calculated 
according to countries, and it was observed that the OHI 
criteria with weights exceeding the calculated average weight 
are OHI10, OHI4, OHI2, OHI9, and OHI5. Therefore, based on 
this result, it has been evaluated that countries need to develop 
strategies for the improvement of OHI10, OHI4, OHI2, OHI9, 
and OHI5 criteria to enhance global ocean/marine health and 
thus contribute to the global economy. In the continuation of 
the study, the ocean/sea health performance of countries was

 calculated using the CEBM-based TOPSIS method and the 
equations described in the methodology section and presented 
in Table 5. 
Table 5. Countries' ocean/sea health performance values (𝐶𝐶𝑖𝑖∗) 
Countries (𝑪𝑪𝒊𝒊∗) Rank Countries (𝑪𝑪𝒊𝒊∗) Rank 
Argentina 0.519269 15 Italy 0.531301 14 
Australia 0.610531 5 Mexico 0.608984 6 
Brazil 0.673539 2 Russia 0.731705 1 
Canada 0.564713 11 S.Arabia 0.566239 10 
China 0.400724 18 South Africa 0.428932 16 
France 0.621205 3 South Korea 0.590257 7 
Germany 0.577571 9 Türkiye 0.562318 12 
India 0.406321 17 United Kingdom 0.611918 4 
Indonesia 0.537598 13 USA 0.589594 8 

Mean: 0.562929 

Upon examining Table 5, it is noted that Russia, Brazil, and 
France rank as the top three countries with the highest 
ocean/sea health performance, while South Africa, India, and 
China rank at the bottom. Moreover, the countries surpassing 
the average ocean/sea health performance are ranked as 
follows: Russia, Brazil, France, the United Kingdom, Australia, 
Mexico, South Korea, the USA, Germany, Saudi Arabia, and 
Canada. Additionally, Türkiye's ocean/sea health performance 
closely aligns with the average value, as indicated in Table 5. 

Sensibility analysis 
This study explores the sensitivity of the CEBM-based 

TOPSIS approach in MCDM. We used various criteria 
weighting methods on the same dataset and compared the 
resulting values and rankings. We expect the rankings from our 
chosen sensitivity analysis to differ from those generated by 
other methods, confirming MCDM sensitivity in weight 
coefficient calculations (Gigovič et al., 2016). 

Adhering to this methodology, we employed established 
objective weighting techniques to calculate and organize the 
weighting coefficients associated with the FIW components. 
These techniques, widely recognized in scholarly literature, 
included ENTROPY, CRITIC, SD, SVP, MEREC, and 
LOPCOW. The corresponding numerical results are 
meticulously presented in Table 6. 

Table 6. Values of Objective Criterion Weighting Methods 

Criteria ENTROPY CRITIC SD SVP MEREC 
Value Rank Value Rank Value Rank Value Rank Value Rank 

OHI1 0.1032 2 0.1512 2 0.1201 1 0.1488 3 0.1380 3 
OHI2 0.0996 5 0.1140 4 0.0917 7 0.1079 4 0.1429 2 
OHI3 0.0985 7 0.0796 7 0.1045 5 0.0701 6 0.0617 4 
OHI4 0.0979 8 0.0568 9 0.0897 8 0.0334 9 0.0237 9 
OHI5 0.0996 4 0.0873 5 0.1011 6 0.0756 5 0.0266 8 
OHI6 0.0977 9 0.0824 6 0.1127 2 0.0466 8 0.0284 7 
OHI7 0.1047 1 0.1727 1 0.1116 3 0.2465 1 0.0295 6 
OHI8 0.1019 3 0.1509 3 0.1104 4 0.2026 2 -0.0115 10 
OHI9 0.0992 6 0.0782 8 0.0775 10 0.0620 7 0.0327 5 
OHI10 0.0976 10 0.0269 10 0.0808 9 0.0064 10 0.5279 1 
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Upon examining Table 6, it is observed that the rankings of 
OHI criteria under the CEBM method differ from the rankings 
of OHI criteria determined under other methods. Furthermore, 
in the continuation of sensitivity analysis, countries' ocean/sea 
health performances were measured using the ENTROPY, 
CRITIC, SD, SVP, and MEREC-based TOPSIS methods and 
presented in Table 7. 

Upon examination of Table 7, it has been observed that the

rankings of countries' ocean/sea health performance values 
determined using the CEBM-based TOPSIS method differ from 
the rankings of countries' ocean/sea health performance 
values obtained using ENTROPY, CRITIC, SD, SVP, and 
MEREC-based TOPSIS methods. Based on this finding, it is 
evaluated that the CEBM-based TOPSIS method is sensitive 
in measuring ocean/sea health performance within the scope 
of OHI. 

Table 7. Countries' Ocean/Sea Health Performance Values and Rankings using ENTROPY, CRITIC, SD, SVP, and MEREC-based TOPSIS 

Countries 
ENTROPY TOPSIS CRITIC TOPSIS SD TOPSIS SVP TOPSIS MEREC TOPSIS 
Value Rank Value Rank Value Rank Value Rank Value Rank 

Argentina 0.5193 15 0.5994 9 0.5567 11 0.6058 9 0.5067 8 
Australia 0.6105 5 0.5915 10 0.5668 9 0.6612 6 0.4091 16 
Brazil 0.6735 2 0.6432 4 0.6272 3 0.7034 4 0.5029 9 
Canada 0.5647 11 0.5021 15 0.5059 13 0.5272 13 0.4221 15 
China 0.4007 18 0.4277 17 0.4631 17 0.3545 18 0.6142 4 
France 0.6212 3 0.6020 8 0.6224 4 0.5735 10 0.6845 2 
Germany 0.5776 9 0.6146 6 0.5792 8 0.6892 5 0.3993 17 
India 0.4063 17 0.3805 18 0.3633 18 0.4074 17 0.4528 14 
Indonesia 0.5376 13 0.5091 13 0.4675 16 0.5668 11 0.4859 12 
Italy 0.5313 14 0.6204 5 0.5804 7 0.6572 7 0.3903 18 
Mexico 0.6090 6 0.4883 16 0.5026 14 0.5080 14 0.5387 7 
Russia 0.7317 1 0.8354 1 0.8056 1 0.8480 1 0.8011 1 
Saudi Arabia 0.5662 10 0.5213 12 0.5018 15 0.5617 12 0.4604 13 
South Africa 0.4289 16 0.6054 7 0.5594 10 0.6380 8 0.4969 11 
South Korea 0.5903 7 0.7551 2 0.6922 2 0.7965 2 0.5645 5 
Türkiye 0.5623 12 0.5044 14 0.5189 12 0.4837 15 0.5486 6 
United Kingdom 0.6119 4 0.6475 3 0.5982 5 0.7133 3 0.5010 10 
USA 0.5896 8 0.5418 11 0.5805 6 0.4797 16 0.6561 3 

 
Comparative analysis 
In the comparative analysis, the proposed model is 

evaluated alongside other MCDM calculation methods to 
assess similarities and differences. The objective is to ensure 
the credibility and reliability of the proposed model by 
establishing positive and significant relationships with various 
MCDM methods (Keshavarz-Ghorabaee et al., 2021). To this 
end, the ocean/sea health performances of countries were 
initially assessed using commonly employed methods such as 
CEBM-based SWA, ARAS, EDAS, WASPAS, GRA (Grey 
Relation Analysis), MAUT, ROV, and COCOSO. These 
assessments are summarized in Table 8.  

In the second part of the comparative analysis, correlation 
values between the ocean/sea performance values of 
countries calculated under the OHI and CEBM-based SWA, 
ARAS, EDAS, WASPAS, GRA, MAUT, ROV, and COCOSO 
methods were computed. These correlation values are 
presented in Table 9, and a visual representation of the 
correlation values is depicted in Figure 1. 

Drawing from Walters (2009) research, Keshavarz-
Ghorabaee (2021) suggests that a correlation value falling 
within the range of 0.400-0.600, as evaluated between the 

MEREC method and others (SD, ENTROPY, and CRITIC), 
indicates a moderate association between the variables. 
Notably, correlations surpassing 0.600 signify a strong and 
significant relationship. Upon examining Table 9 and Figure 1 
concurrently, it is evident that the CEBM-based TOPSIS 
method demonstrates a positive, significant, and high 
correlation with other methods except for COCOSO. These 
findings lead to the conclusion that the proposed model 
(CEBM-based TOPSIS) for assessing countries' OHI criteria 
values is both credible and reliable. 

Simulation analysis 

Simulations explore the proposed method's behavior under 
diverse scenarios by varying decision matrix values. We expect 
its behavior to increasingly diverge from other methods as 
scenarios multiply. Ideally, its average variance across 
scenarios should surpass others, demonstrating its strength in 
differentiating weightings based on context. ADM (ANOM for 
variances with Levene) analysis further delves into this, visually 
assessing the consistency of variances across scenarios. 
Deviations from established limits suggest heterogeneity, while 
consistency within them affirms uniformity (Keshavarz-
Ghorabaee et al., 2021).  
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Table 8. Country rankings of ocean/marine health performance values using CEBM-based SWA, ARAS, EDAS, WASPAS, GRA, MAUT, ROV, 
and COCOSO methods 

Countries SWA ARAS EDAS WASPAS 
Value Rank Value Rank Value Rank Value Rank 

Argentina 0.3190 7 0.7511 15 0.3709 15 0.7706 15 
Australia 0.2953 14 0.8275 3 0.6957 3 0.8474 3 
Brazil 0.3457 2 0.8597 2 0.8269 2 0.8848 2 
Canada 0.2805 17 0.7955 10 0.5591 10 0.8139 9 
China 0.3031 13 0.7115 17 0.2210 17 0.7132 17 
France 0.3343 5 0.8233 4 0.6728 4 0.8434 4 
Germany 0.3080 11 0.8086 7 0.6101 8 0.8307 7 
India 0.3031 12 0.6885 18 0.1078 18 0.7017 18 
Indonesia 0.2928 15 0.7584 14 0.4052 13 0.7775 14 
Italy 0.2829 16 0.7592 13 0.3939 14 0.781 13 
Mexico 0.3309 6 0.8190 5 0.6614 5 0.8405 5 
Russia 0.3758 1 0.8933 1 0.9746 1 0.9178 1 
Saudi Arabia 0.3168 8 0.7905 11 0.5383 11 0.8125 10 
South Africa 0.2488 18 0.7164 16 0.2367 16 0.725 16 
South Korea 0.3138 9 0.8081 8 0.6104 7 0.8261 8 
Türkiye 0.3427 3 0.7904 12 0.5283 12 0.8083 12 
United Kingdom 0.3105 10 0.8113 6 0.6152 6 0.8358 6 
USA 0.3412 4 0.8009 9 0.5857 9 0.8112 11 

Countries GRA MAUT ROV COCOSO 
Value Rank Value Rank Value Rank Value Rank 

Argentina 0.5019 16 0.2036 16 0.2090 15 2.7895 18 
Australia 0.6481 4 0.4340 4 0.3058 5 256.27 7 
Brazil 0.6880 2 0.4846 2 0.3547 2 319.98 5 
Canada 0.5967 8 0.3344 9 0.2975 6 160.87 16 
China 0.5285 14 0.2375 14 0.2321 14 190.9 15 
France 0.6109 6 0.3551 6 0.3119 4 304.07 6 
Germany 0.6006 7 0.3425 7 0.2969 7 248.76 10 
India 0.4795 18 0.1697 18 0.1914 18 248.05 11 
Indonesia 0.5557 13 0.2887 13 0.2385 13 204.12 13 
Italy 0.4929 17 0.1857 17 0.2058 16 199.89 14 
Mexico 0.6660 3 0.4570 3 0.3349 3 249.58 9 
Russia 0.7031 1 0.5059 1 0.3710 1 427.21 1 
Saudi Arabia 0.6175 5 0.3846 5 0.2752 10 394.58 2 
South Africa 0.5111 15 0.2302 15 0.1925 17 57.701 17 
South Korea 0.5715 11 0.3024 11 0.2635 12 240.6 12 
Türkiye 0.5957 9 0.3392 8 0.2842 9 371.43 3 
United Kingdom 0.5786 10 0.3057 10 0.2866 8 254.2 8 
USA 0.5684 12 0.2981 12 0.2729 11 358.44 4 

 
Table 9. Correlation values of CEBM-based TOPSIS method with other methods 

Methods SWA ARAS EDAS WASPAS GRA MAUT ROV COCOSO OHI 

TOPSIS 0.678* 0.985** 0.982** 0.991** 0.850** 0.831** 0.884** 0.589* 0.965**  
p*<.05, p**<.01 

 
Figure 1. Correlation values of methods  

ADM offers a visual representation to assess variance 
evenness, incorporating parameters such as the overall 
average ADM, upper decision limits (UDL), and lower decision 
limits (LDL). Deviation of a group's standard deviation from the 
decision limits suggests heterogeneity in variances, while 
consistency within the LDL and UDL affirms uniformity 
(Keshavarz-Ghorabaee et al., 2021). In this regard, in the 
simulation analysis, initially, a total of 10 scenarios (decision 
matrices) were created, with 3 in the first group and 7 in the 
second group. Subsequently, correlation values between the 
CEBM-based TOPSIS method and the CEBM-based SWA, 
ARAS, EDAS, WASPAS, GRA, MAUT, and COCOSO 
methods were measured for each created scenario. The 
correlation values measured for these scenarios are described 
in Table 10. 
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When Table 10 and Figure 2 are examined together, it is 
observed that especially the CEBM-based TOPSIS method 
shows positive, significant, and high relationships with 
CEBM-based SWA, ARAS, EDAS, WASPAS, GRA, MAUT, 
and ROV methods across scenarios, while it exhibits a 
moderate level of relationship with the CEBM-based 
COCOSO method. Furthermore, upon evaluation of Table 10, 

it is noted that as the number of scenarios increases, the 
correlation values of the CEBM-based TOPSIS method with 
other CEBM-based methods decrease. Additionally, within 
the scope of the simulation analysis, the variance values of 
the methods were calculated according to the created 
scenarios. The variance values of these methods are 
presented in Table 11.

Table 10. Correlation values of the CEBM-based TOPSIS method with other methods across scenarios 
Scenarios SWA ARAS EDAS WASPAS GRA MAUT ROV COCOSO 

First 
Group 

1 0.680* 0.991** 0.990** 0.995** 0.875** 0.845** 0.890** 0.610* 
2 0.700** 0.983** 0.989** 0.990** 0.848** 0.839** 0.881** 0.575* 
3 0.725** 0.978** 0.980** 0.996** 0.870** 0.850** 0.884** 0.569* 

Second 
Group 

4 0.635* 0.962** 0.965** 0.988** 0.820** 0.800** 0.870** 0.577* 
5 0.641* 0.955** 0.950** 0.900** 0.845** 0.821** 0.879** 0.546* 
6 0.663* 0.956** 0.954** 0.984** 0.833** 0.811** 0.872** 0.539* 
7 0.635* 0.978** 0.967** 0.980** 0.835** 0.815** 0.863** 0.548* 
8 0.618* 0.948** 0.942** 0.991** 0.822** 0.803** 0.855** 0.532* 
9 0.594* 0.961** 0.955** 0.973** 0.801** 0.795** 0.833** 0.527* 
10 0.644* 0.937** 0.948** 0.969** 0.812** 0.803** 0.812** 0.542* 

p*<.05, p**<.01 

 
Figure 2. Position of correlation values of the CEBM-based TOPSIS method with other CEBM-based methods (Sce.: Scenario)

Upon reviewing Table 11, it's evident that the CEBM-based 
TOPSIS method exhibits higher variance compared to other 
CEBM-based MCDM methods. This suggests its superior 
ability to differentiate decision alternatives within the OHI 
criteria context. In the subsequent simulation analysis, an ADM 
evaluation of countries' ocean/sea health performance values 
was conducted specifically for the CEBM-based TOPSIS 
method across various scenarios. Relevant data for each 
scenario are detailed in Figure 3. 

As illustrated in Figure 3, the computed ADM values for 
each scenario are positioned below the upper decision limit 

(UDL) values and above the lower decision limit (LDL) values. 
Consequently, the variances in the identified weights for each 
scenario demonstrate uniformity. This verification was further 
validated through the implementation of the Levene Test. The 
essential statistics for the Levene Test are presented in Table 12. 

Derived from the data in Table 12, the observed p-value 
(p=0.328) exceeds the critical threshold of 0.05, confirming the 
uniformity of variances in criterion weights across scenarios. In 
summary, the results obtained from the simulation analysis 
suggest the robustness and stability of the CEBM based 
TOPSIS method.
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Table 11. Variance values of CEBM-based MCDM methods across scenarios 
Scenarios SWA ARAS EDAS WASPAS GRA 

1 0.000025546 0.000012265 0.000477377 1.4212E-05 3,7235E-05 
2 0.000025435 0.000012756 0.000477461 1.4567E-05 3,7278E-05 
3 0.000025237 0.000012476 0.000477487 1.4287E-05 3,7451E-05 
4 0.000025678 0.000012876 0.000477167 1.4483E-05 3,7535E-05 
5 0.000025568 0.000012686 0.000477781 1.4496E-05 3,7812E-05 
6 0.000025789 0.000012365 0.000477387 1.4461E-05 3,7665E-05 
7 0.000025276 0.000012851 0.000477218 1.4764E-05 3,7496E-05 
8 0.000025349 0.000012199 0.000477569 1.4512E-05 3,7571E-05 
9 0.000025587 0.000012571 0.000477435 1.4645E-05 3,7768E-05 

10 0.000025836 0.000012941 0.000477476 1.4328E-05 3,7223E-05 
Mean 2.55301E-05 1.25986E-05 0.000477436 1.4476E-05 3,7503E-05 

Scenarios MAUT ROV COCOSO TOPSIS 
1 0.000275666 0.000111882 0.000553709 0.000067812 
2 0.000275712 0.000111768 0.000553634 0.000067749 
3 0.000275756 0.000111671 0.000553671 0.000067843 
4 0.000275812 0.000111596 0.000553471 0.000067666 
5 0.000275561 0.000111682 0.000553575 0.000067705 
6 0.000275468 0.000111699 0.000553684 0.000067645 
7 0.000275669 0.000111866 0.000553901 0.000067712 
8 0.000275802 0.000111878 0.000553875 0.000067684 
9 0.000275799 0.000112101 0.000553913 0.000067688 

10 0.000275682 0.000121411 0.000554015 0.000067586 
Mean 0.000275693 0.000112755 0.000553745 0.000067709 

 
Figure 3. ADM visual 

Table 12. Levene test 
Levene Statistic df1 df2 Sig. 
0,345 2 16 0,388 
p**<.05 

DISCUSSION 
Due to the intensification of inter-country relations and the 

direct and indirect activities it brings, the health levels of 
oceans and seas worldwide have become a significant 
contemporary and global issue (Gilmour et al., 2021). This is 
because countries can benefit more efficiently from oceans and 
seas through the policies and strategies they develop for the 
sustainability of ocean/sea health (Halpern et al., 2012). 
Therefore, the awareness of countries regarding their 
performance in ocean/sea health is of great importance (Frid 
and Caswell, 2017). Particularly, acknowledging the correlation 
between economic growth and ocean pollution (Chen et al., 

2017), G20 nations require precise assessments of sea health. 
This is because the activities and methodologies of G20 
countries regarding ocean/sea health can influence the global 
economy and other dimensions associated with the economy 
(OECD, 2019). In this context, this study evaluates the 
ocean/marine health of 18 countries in the G20 group using the 
CEBM-based TOPSIS method, aiming to inform policy-making, 
environmental sustainability, and global marine ecosystem 
protection. 

Upon reviewing the literature, no research examining the 
ocean/marine health performance of G20 countries through 
any numerical method other than the Ocean Health Index 
(2023) has been encountered. In this context, it has been 
determined that within the scope of the Ocean Health Index 
(2023), the top three countries exhibiting the highest 
marine/ocean health performance are Russia, Brazil, and 
Australia. However, in the current research, this ranking has 
been observed as Russia, Brazil, and France. Therefore, 
based on this finding, it is assessed that Russia and Brazil 
demonstrate a notable performance in ensuring ocean/sea 
health compared to other countries. Additionally, according to 
the Ocean Health Index (2023), countries that surpass the 
average marine health performance include Russia, Brazil, 
Australia, Germany, South Korea, France, Italy, Mexico, and 
Saudi Arabia. In the present study, however, this ranking has 
been realized as Russia, Brazil, Australia, the United Kingdom, 
Mexico, South Korea, the United States, Germany, Saudi 
Arabia, and Canada. Thus, based on the results of the Ocean 
Health Index (2023) and the current research, consistency is 
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observed in terms of surpassing the average marine/ocean 
health performance value for Russia, Brazil, France, Germany, 
South Korea, the United Kingdom, Mexico, and Saudi Arabia. 

CONCLUSION 
Especially the major economies prioritize activities related 

to ocean/sea health primarily because they affect ocean/sea 
health, the global economy, and other economic dimensions. 
Therefore, the efforts of G20 countries in the field of ocean/sea 
health are of vital importance. Because the activities of 
especially large economies regarding ocean/sea health affect 
global ocean/sea health and the global economy, it is important 
to determine which ocean/sea health criteria large economies 
should prioritize and which large economies need to improve 
their ocean/sea health performance for the global ocean/sea 
health to reach better levels and for the global economy to 
thrive. In this context, in the study, the ocean/sea health 
performances of 18 countries in the G20 group for the year 
2023 were measured using the latest Ocean Health Index 
(OHI) data and the CEBM-based TOPSIS Multi-Criteria 
Decision Making (MCDM) method. According to the findings, 
using the CEBM method, the most important OHI criteria for 
countries were determined to be biodiversity, carbon capacity, 
fishing opportunities, clean water, and coastal protection. 
According to this, it has been evaluated that countries need to 
place more importance on the biodiversity criterion in order to 
contribute more to global ocean/sea health and the economy. 
Subsequently, based on the CEBM-based TOPSIS method, 
the top three countries with the highest ocean/sea health 
performance were determined to be Russia, Brazil, and 
France, while the bottom three countries were ranked as 
China, India, and South Africa. In addition, the average of the 
performance values calculated using the CEBM-based 
TOPSIS method showed that the countries with performance 
values above the average were Russia, Brazil, France, the 
United Kingdom, Australia, Mexico, South Korea, the United 
States, Germany, Saudi Arabia, and Canada. Based on this 
result, it is considered that G20 countries whose ocean/sea 
health performance values are below the average need to 
improve their performance to contribute more to the global 
marine/ocean health in the global economy and other relevant 

dimensions. Finally, sensitivity, comparison, and simulation 
analysis of the method show that the CEBM-based TOPSIS 
method can be used to measure countries' ocean/sea health 
performances. Recommendations suggest G20 countries 
focus on biodiversity (OHI10), carbon storage (OHI4), artisanal 
fishing opportunities (OHI2), clean waters (OHI9), and coastal 
protection (OHI5) for global ocean/marine health. Countries 
with lower-than-average performance according to this study, 
like United States, Türkiye, Indonesia, Italy, Argentina, South 
Africa, India, and China, are encouraged to enhance their 
marine health to contribute global economy. Methodologically, 
comparing CEBM-based other MCDM methods ensures a 
comprehensive examination of marine health performance 
measurement. In addition, the ocean/sea health performances 
of other international economic organizations (G20, OECD, 
European Union, E7, etc.) can be measured, allowing for a 
comparison of the ocean/sea health performances of these 
organizations and their member countries. 
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