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Abstract: Predicting the 3-D structure of a protein from its sequence based on a template protein structure is still one of the most 

exact modeling techniques present today. However, template-based modeling is heavily dependent on the selection of a single 

template structure and the sequence alignment between target and template. Mainly when the target and template sequence identity is 

low, the error from the alignment introduces larger errors to the model structure. An iterative method to correct such alignment 

mistakes is used in this study with a benchmark set from CASP in the extremely low sequence-identity regime. This is a protocol 

developed and tested before and it evaluates the alignment quality by building rough 3-D models for each alignment. Then by using a 

genetic algorithm it iteratively creates a new set of alignments. Since the method evaluates models, not sequence alignments, structural 

features are automatically incorporated into the alignment protocol. In the current study, models from structural alignment have been 

built by Modeller program to show the maximum possible quality of the model that can be obtained from that template structure with 

the iterative modeling protocol. Then the results and correctly aligned segments from the iterative modeling protocol are analyzed. 

Finally, it has been shown that if a good local fragment assessment scoring function is developed, the correctly aligned segments exist 

in the pool of alignments created by the protocol. Thus, the improvement of modeling in the low sequence identity regime is 

conceivable. 
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1. Introduction 
The three-dimensional (3-D) structure of the protein 

dictates its biological function, consequently 

understanding protein structure at the molecular level is 

essential in terms of understanding the function and 

malfunctions of proteins. Experimental techniques such 

as X-ray crystallography, NMR spectroscopy, and Cryo-

Electron Microscopy are golden standards for 

determining protein 3-D structure, however, they have 

certain limitations in terms of time, resolution, and size 

of the systems. Mainly NMR is limited in terms of the size 

of the protein, X-ray has limitations rooted in difficulties 

in the crystallization process under the natural 

physiological environment and cryo-EM has still 

limitations with the resolution of the maps. Due to these 

pitfalls, the number of protein structures resolved fell 

very behind the number of known unique sequences, 

namely protein structures in PDB Databank compared to 

distinct sequences obtained in UniProtKB are still 1000-

fold smaller in numbers as of January 2023 (Nassar et al., 

2021; Bertoline et al., 2023) 

Consequently, to fill this large gap between known 

structures and sequences, computational studies have 

proven to be valuable for the prediction of protein 

structure (Pieper et al., 2006; Gromiha et al., 2018). In 

general, there are two mainstream categories in 

computational protein structure prediction. The first one 

is free modeling and the second one is template-based 

modeling. Ab-initio modelling is free modeling and used 

when there is no known structure close to the unknown 

target sequence. As the name indicates, ab initio 

modeling uses first-principal forces which drives protein 

to go into their native state, namely physical forces, and 

the potential of chemical interactions in between 

particles are used to simulate the protein sequence into 

its folded state (Bonneau and Baker, 2001; Hardin et al., 

2002; Pearce et al., 2022). The main advantage of the 

method is that since it is not dependent on the library of 

known structures, it can successfully predict novel folds; 

however, computation time and cost are the main 

drawbacks.  

Template-based or comparative modeling, on the other 

hand, doesn’t use physical or chemical interactions as an 

all-atom force field but a less-detailed knowledge or 

information-based driving forces. Threading and 

homology modeling is both template-based modeling and 

they require a similar known template structure to base 

the model target sequence on. In threading all possible 3-

D structures are tried on the given unknown target 

sequence while in homology modeling a single 3-D 
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structure is picked based on sequence similarity. 

GenTHREADER (Jones, 1999) is one of the most widely 

used threading software which uses a fit function by 

trying a target sequence to all known folds that exist in 

the database. Hybrid methods in between ab-initio and 

threading methods also exist and these methods start 

modeling from known smaller structure fragments and 

they became one of the standard ways for protein 

structure prediction such as I-TASSER (Yang and Zhang, 

2015), Robetta (Kim et al., 2004), Rosetta@home (Rohl et 

al., 2004), Quark (Xu and Zhang, 2012). 

Swiss-Model (Guex and Peitsch, 1997) and Modeller 

(Webb and Sali, 2016) are examples of homology-based 

modeling which are dependent on the selection of a 

single template structure and the sequence alignment 

between target and template. After the alignment of the 

target and template sequences, they collect geometric 

restraints from the known template structure and 

impose those restraints on the model structure of the 

unknown target sequence’s model. 

Very recently there has been a breakthrough in the 

protein structure prediction area. In the critical 

assessment of protein competition, CASP 13 and CASP 14, 

artificial-intelligence-based programs Alphafold and 

Alphafold2 (Jumper et al., 2021a; Jumper et al., 2021b). 

Alphafold and Alphafold2 both use machine learning by 

training on the distance between amino acids of known 

structures in PDB databank. They then create distograms, 

which are like the histograms of the distribution of 

distances in the structure. Then they use neural networks 

for predicting distograms from multiple sequence 

alignment for the target sequence. They provided suburb 

results compared to its competitors in recent CASP 

competitions. However, it is still a hybrid method in 

terms of machine learning from previously known 

structures and it inherits the problems of predicting loop 

segments, multi-subunit complexes, or different 

conformations of the proteins (Bertoline et al., 2023) 

Mainly using multiple sequence alignment and template 

structures is not a new technique, however, their training 

and neural network are very successful in terms of 

covering all the knowledge we have in the PDB databank. 

In general, when there is no close template structure like 

for the loop segments and disordered proteins, all 

methods still have limitations. However, it is widely 

known that structure is known to be conserved better 

than sequence (Sauder et al., 2000). Thus, if the structure 

information is somehow incorporated into the sequence 

alignment, then it has been shown to improve modeling 

in terms of the problems coming from sequence 

alignments. Again, please note that when the sequence 

identity between the target and template is above %30 

percent, this alignment problem doesn’t exist (Sauder et 

al., 2000).  

Homology modeling as being still the most exact out of all 

these solutions suffers from sequence alignment errors 

when the target sequence is novel. As well as the 

Alphafold, there have been many advances to correct 

alignment errors such as PSI-BLAST in the past decades. 

They all benefit from aligning multiple sequences as a 

profile. This way it becomes possible to incorporate 

structural features from other sequences with structures 

into alignment substitution matrices. There are various 

profile-profile alignment methods with slight differences 

in the ways they create the profiles and alignments. 

(Wang and Dunbrack, 2004; Kahsay et al., 2005; Soding, 

2005; Zhou and Zhou, 2005; Dunbrack, 2006). 

Moulder is such a technique developed for correcting the 

alignment errors in modeling by Modeller (John and Sali, 

2003). It is an iterative alignment and modeling 

approach. First, a reliable multi-sequence alignment 

profile is created with close homologs of the target 

sequence, which contains 25 different alignments for the 

target sequence-template construct. In normal homology 

modeling, a single best-scoring alignment is moved to the 

modeling step. In Moulder, the best 15 of the 25 

alignments are selected and moved to the structural 

modeling step. The resulting 15 protein structures are 

then subjected to a simple model scoring. The main 

difference between the two steps is that sequence 

similarity is used to create the 25 alignments. After 15 

model structures are created, GA341 structure scoring 

will be used which is a 3-D structure assessment score. 

Then, genetic algorithm moves, crossover and mutation 

operators are applied to these alignments to reach 300 

different alignments. For the newly formed alignment 

population, protein structures are obtained using the 

rapid modeling technique. The evaluation of these 

alignments is performed by scoring the 3-D models. It 

has been supported by many studies that the structures 

of proteins are much better preserved than their 

sequences. In this respect, it is important to evaluate the 

300 different alignments based on models. The resulting 

alignment of the 10 models with the best structure score 

forms the family alignments in the next iteration of the 

genetic algorithm. Moulder algorithm runs for multiple 

iterations until it reaches a certain number of alignments. 

This protocol has already been successfully implemented 

and its performance in the twilight zone, the area with 

low sequence similarity, is limited in terms of reaching to 

full potential improvement provided by template 

structures. 

In the present work, the CASP8 benchmark set is used to 

show the model quality in terms of profile-profile 

alignment first. Then for the same targets, the models 

based on structure-structure alignment will be evaluated. 

For one of the hard targets, Moulder method will be 

tested. Then, the populations created by Moulder genetic 

algorithm step will be analyzed by comparing to the ideal 

structural alignment. This will help to show how 

independently the scoring and sampling parts of the 

resulting populations work and how this information can 

be used to eliminate alignment errors in homology 

modeling. 

The genetic algorithm generally relies on advantageous 

features dominating the pool of sequences over time, 
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leading to the correct alignment. The important point 

here is that sampling alignments and scoring alignments 

cannot be considered in isolation from each other. The 

goal of this paper is to test and show, why Moulder, 

which uses a genetic algorithm for alignment, with a very 

low sequence similarity benchmark set is not getting the 

results guaranteed by templates. By analyzing this, the 

alignments created by the genetic algorithm will be 

tested in terms of the percentage of correct alignment 

segments. If the correct alignments exist in the 

population but not picked by scoring, it will be shown 

that if sampling and scoring algorithms can be separated, 

the modeling problems caused by errors in alignment can 

be solved by bringing correct alignment segments 

together. 

 

2. Materials and Methods 
2.1. MOULDER: An iterative Alignment Technique 

The moves of Moulder below are directly adopted from 

previous studies (John and Sali, 2003; Eramian, 2008) 

with modified parameters to fit to the computer usage in 

terms of number of nodes available. 

Step 1: Initial Alignment 

In the modeling steps, there is a target unknown 

sequence and a known template structure. 

First target and template sequences are obtained and 

then for each sequence, profiles are built by Modeller’s 

profile.build() command with default parameters for 

global dynamic alignment and Uniprot-90 sequence 

database. Then these profiles are aligned by using 

Modeller’s Alignment.salign() function with global 

dynamic scoring (Marti-Renom et al., 2004). In addition 

to the best alignment, 5 suboptimal alignments have been 

created in the alignment command by changing weight 

matrix values. Suboptimal alignments are created by 

shifting alignment parameters, in Modeller.salign() 

n_subopt = 5, subopt_offset = 15 was used. In the low 

sequence identity range, the suboptimal alignments have 

been shown to include many correct segments, 

sometimes even more than the optimal alignment (Chen 

and Kihara, 2011) 

Step 2: Initial Models from the alignment(s) 

For the input alignment, Modeller’s automodel class is 

used with default parameters. Optimization level is set to 

very fast and a total of 2500 models are obtained. The 

reason for creating this many models is to have a good 

quality assessment for the initial model. 

Step 3: Distribute alignment(s) to 10 nodes and apply 

genetic algorithm. 

For the initial round, there are only 6 parent alignments. 

After that, there are 100 alignments and nodes receive at 

least 2 different alignments. This way guarantees that 

crossover moves can be performed. On each node, child 

alignments are created by applying genetic algorithm 

operators to the alignments. 

There are five different operators: 

Single-point crossover: It requires two alignments as 

input. Each alignment is divided into two blocks and the 

second part of the first alignment is swapped with the 

second part of the second alignment.  

Double-point crossover: It requires two alignments as 

input. The alignments are divided into three blocks and 

the middle block of the first alignment is swapped with 

the middle block of the second alignment. 

Gap Insertion: It requires a single alignment. A position is 

selected in the randomly picked location of the randomly 

selected sequence of the alignment and a random length 

of gaps is inserted into that sequence. To end meets, the 

same number of gaps are inserted at the end of the 

second sequence. A random number is selected from 1 to 

7 for the number of gaps to be inserted. 

Gap Deletion: A random gap position is selected in the 

first sequence, then a random amount of gap is deleted 

from the total length of that gap in that sequence. The 

same number of gaps are added to the random position 

of the second sequence. The amount of gap deleted is 

determined by a random number from 1 to the total 

number of gaps in the selected gap. 

Gap Shift: A single gap is selected from one sequence, and 

it is shifted to a random position. 

In the genetic move step, the weight of each move is as 

follows: Single-point crossover is chosen as %40, double-

point cross-over is chosen as %20, gap insertion is 

chosen as %10, gap deletion is chosen as %10 and gap 

shift is set to %20. 

After this step, a redundancy check is applied to the child 

alignments created from the parent alignments. This step 

is stopped when there are valid 2500 alignments in the 

pool of alignments. 

Step 4: Model Building and picking 250 best alignments. 

Like the initial alignment model, one rough modeling 

step is carried out, mainly again by using Modeller’s 

automodel class. The restraints in the Modeller’s 

automodel class were reduced to 10 Ångstrom from 14 

Ångstrom. Model randomization is turned off. No 

molecular dynamics refinement has been carried out. 

And finally, the optimization cycle is reduced from 200 to 

50. This way a very quick modeling step has been carried 

out.  

Scoring function used in this step has the following 

Modeller scoring components: 

1. Sequence identity 

2. Percentage of gaps in the target/template 

alignment 

3. Z-PAIR: Cα- and Cβ-based Distance-Dependent 

4. Z-SURFACE: Cβ-based Accessible Surface Score:  

5. Z-COMBINED: Combined Distance and Surface 

Potential Score 

6. GA341: Fold Assessment Score 

Step 5: Model in detail and pick the best alignments. 

For the best alignments, 3 models will be modeled for 

each alignment and evaluated by a more detailed scoring 

function namely DOPE, which is the Discrete Optimized 

Protein Energy score developed by Modeller. It is an 

atomistic, distance dependent scoring function developed 

by Modeller (Shen and Sali, 2006). It is a more detailed 
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scoring function than the ones present in Step 5. 

Step 6: Pool and sort alignments.  

Once each node has built 100 valid, non-redundant child 

alignments, the alignments are then ranked according to 

their DOPE scores. Please note that DOPE is not a 2-D 

sequence alignment score. Mainly alignments are 

evaluated from the 3-D models that have been created. 

Moulder steps are summarized in Figure 1. 

2.2. Benchmark Data Set 

The targets of CASP 8, 

https://predictioncenter.org/casp8/index.cgi are 

downloaded from the template-based modeling class. 

The PDB structure of template structures is also 

obtained. The best templates with single chains are 

selected. The targets are selected from the low sequence 

identity range, sequence identity between target and 

template ranks from 1.99 % to 34.91 %. The target list 

with their corresponding sequence identities and 

sequence lengths are displayed in Table 1. The twilight 

zone is defined as the zone of 20–35% sequence identity. 

Here the selected targets are even lower than twilight 

zone with low sequence identities to template structures. 

2.3. Profile-Profile Alignment 

Target and template sequences are obtained and then for 

each sequence profiles are built by Modeller’s 

profile.build() command with default parameters for 

global dynamic alignment and Uniprot-90 sequence 

database. Then these profiles are aligned by using 

Modeller’s Alignment.salign() function with global 

dynamic scoring (Marti-Renom et al., 2004). 

2.4. Structure-Structure Alignment 

For the target list in Table 2, both target and template 

structures are also downloaded. Modeller’s 

Alignment.salign() command with (0,3) 3D gap penalties 

are used for aligning two structures. Namely, this is the 

ideal test case. If both target and template structures 

were known, then the correct alignment would have been 

obtained.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic of the Moulder steps of one iteration. 
 

Table 1. Target list 

Target Seq. Length Seq. ID (%)1 Target Seq. Length Seq. ID (%)1 

T0414-D1 127 7.09 T0490-D1 361 14.40 

T0408-D1 98 17.35 T0494-D1 345 29.28 

T0409-D1 62 4.84 T0497-D1 124 30.65 

T0412-D1 166 16.27 T0501-D1 213 11.11 

T0420-D1 168 17.26 T0501-D2 126 13.15 

T0423-D1 143 32.87 T0502-D1 93 23.66 

T0424-D1 175 21.71 T0503-D1 144 14.58 

T0424-D2 84 25.00 T0504-D1 62 6.45 

T0436-D1 405 16.05 T0504-D2 90 11.11 

T0445-D2 107 7.48 T0505-D2 104 14.42 

T0477-D1 106 34.91 T0506-D2 78 20.51 

T0478-D1 126 9.52 T0507-D1 124 17.74 

T0481-D1 135 12.59 T0509-D1 209 20.57 
1= The sequence identity is divided by the total length of the longer sequence. 
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Table 2. Comparison of models from profile-profile sequence and structure-structure alignments 

 

Profile-Profile Alignment Structural Alignment 

Target Seq. 

Length 

Seq. 

Identity 

Native 

Overlap 

RMSD 

(Ångst) 

Z-Dope Native 

Overlap 

RMSD 

(Ångst) 

Z-Dope 

T0414-D1 127 7.09 0.087 12.214 0.799 0.772 4.479 0.120 

T0408-D1 98 17.35 0.878 3.572 -0.640 0.939 1.960 -0.463 

T0409-D1 62 4.84 0.161 11.566 1.748 0.903 2.252 -0.465 

T0412-D1 166 16.27 0.836 3.457 -0.618 0.880 3.066 -0.824 

T0420-D1 168 17.26 0.637 12.557 0.573 0.946 2.064 -1.145 

T0423-D1 143 32.87 0.958 2.095 -0.766 0.972 1.730 -0.967 

T0424-D1 175 21.71 0.766 9.881 0.293 0.794 3.714 -0.415 

T0424-D2 84 25.00 0.845 2.636 -0.693 0.988 1.776 -0.912 

T0436-D1 405 16.05 0.691 6.997 -0.392 0.798 3.769 -0.541 

T0445-D2 107 7.48 0.056 14.750 1.096 0.907 2.288 -0.749 

T0477-D1 106 34.91 0.783 9.781 0.467 0.915 2.479 -0.104 

T0478-D1 126 9.52 0.040 14.153 1.279 0.802 2.985 -1.247 

T0481-D1 135 12.59 0.556 7.313 -1.066 0.815 3.380 -1.115 

T0485-D1 207 16.43 0.647 7.923 -0.550 0.725 4.243 -0.792 

T0490-D1 361 14.40 0.795 3.560 -0.184 0.850 2.631 -0.178 

T0494-D1 345 29.28 0.812 4.188 -0.703 0.872 3.196 -0.947 

T0497-D1 124 30.65 0.879 2.362 -1.227 0.960 1.991 -1.391 

T0501-D1 213 11.11 0.643 11.347 0.330 0.831 10.418 0.015 

T0501-D2 126 13.15 0.151 13.848 1.069 0.825 2.915 -0.517 

T0502-D1 93 23.66 0.871 3.250 -0.523 0.968 2.255 -1.115 

T0503-D1 144 14.58 0.729 7.931 0.815 0.861 4.240 0.384 

T0504-D1 62 6.45 0.742 4.713 0.359 0.887 3.70 0.073 

T0504-D2 90 11.11 0.111 10.972 0.901 0.750 8.830 0.894 

T0505-D2 104 14.42 0.077 15.436 1.538 0.827 4.146 -1.195 

T0506-D2 78 20.51 0.821 3.748 -0.396 0.936 2.228 -0.430 

T0507-D1 124 17.74 0.105 11.870 0.746 0.847 2.537 -0.193 

T0509-D1 209 20.57 0.828 3.274 -0.546 0.933 2.009 -1.114 

 

Thus, structure alignment results will display how much 

template-based modeling can be improved if the errors 

from the sequence alignment are minimized (Sauder et 

al., 2000). 

2.5. Model Assessment Parameters 

Native overlap is the number of Cα atoms in the model 

within 3.5 Å of the corresponding atoms in the native 

structure divided by total number of Cα atoms. It is 

calculated after superposition of target and native 

structure. Root mean square displacement (RMSD) is 

proportional to the displacements of atom coordinates of 

the model structure from native structure by the 

following formula (Equation 1): 
 

𝑅𝑀𝑆𝐷 (𝑥, 𝑦) =  √
1

𝑛
∑|𝑥𝑖 − 𝑦𝑖|2

𝑛

𝑖=1

 (1) 

 

In equation 1, x is the coordinates of model structure 

atoms, y is the coordinates of native structure atoms and 

i runs from 1 to number of atoms. It shows deviation 

from the ideal structure, while native overlap shows 

overlap with the ideal. 

Finally, Z-Dope is the normalized DOPE scoring function. 

It is a distance-dependent statistical potential based on 

the separation between atoms and developed by 

MODELLER (Marti-Renom et al., 2004). Mainly Z-Dope is 

a statistical z-score that displays how your model's DOPE 

score is better than the average model. The more 

negative the Z-Dope the better the model quality is. 

 

3. Results and Discussion 
3.1. Comparison of Structure-Structure and Profile-

Profile Alignments 

In Table 2, model qualities are displayed for profile-
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profile and structure-structure alignment results. Native 

overlap, RMSD, and Z-Dope score values are displayed. 

These are 3 different model assessment scores, explained 

in the Methods 2.5 section, used to evaluate the quality of 

the models. After models created based on profile-profile 

and structure-structure alignments, each model is 

compared to the native structure via these parameters. 

These are directly simple models from Modeller’s 

automodel class, no iterations. In Figure 2, each of these 

parameters is plotted against the sequence identity 

between target and template. Mainly Figure 2 plots 

results tabulated in Table 2 according to sequence 

identity. 

In Figure 2A, native overlap value of the models from 

profile-profile alignments is shown and in the low 

sequence identity regime, model quality is also low. 

When the sequence identity between target and template 

gets better than 15 %, the models are getting better both 

for profile-profile and structure-structure alignment in 

terms of native overlap. For the models that have very 

low model quality (shown in blue in Figure 2A), the 

native overlap values get directly above 0.6 from 0.1 

when structural alignment is used. This means for this 

low-sequence identity regime, the template-based 

modeling can have much better results. However, due to 

the alignment errors, the models from profile-profile 

alignments have much lower native overlap values. 

In Figure 2B, the model quality is displayed via RMSD 

values. Lower RMSD means the models are closer to the 

native structure. The model quality for profile-profile 

alignment is again very low in the low sequence identity, 

however, even for sequence identity greater than %15, 

there are problems with very high RMSD values for 

models from profile-profile alignments.  

Z-Dope is a predictive scoring function, not a parameter 

for comparing a model to a native structure, unlike the 

first two parameters in Figure 2. It is the least predictive 

one for model assessment out of 3 parameters. Although 

structure-structure alignment results seem better than 

profile-profile alignment in Figure 2C, the predictive 

property of Z-Dope is still low for all models. Namely, it 

cannot differentiate between good models and bad 

models. Please note that in general, all the targets in the 

benchmark set are hard in terms of modeling. They all 

have sequence identity lower than %35, so even the 

structure conservation for better target and template 

pairs is low. 

According to the results in Table 2, one of the worst 

profile-profile alignment results has been picked as a test 

case to analyze the results of Moulder. That target is 

T0409-D1 with a very low sequence identity of 4.84. 

According to profile-profile alignment results, the 

model’s native overlap value is 0.161, RMSD is 11.566 

Ångstrom and Z-Dope is 1.748.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Benchmark set Model Quality A) Native overlap versus sequence identity B) RMSD versus sequence identity 

C) Z-Dope versus sequence identity. 

A) B) 
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Z-Dope is very positive and non-native like. However, 

when the model is built according to the structural 

alignment, the model has a native overlap of 0.903, a low 

RMSD of 2.252 Ångstrom. and finally, Z-Dope gets to a 

negative value. Now this target is selected for the analysis 

with Moulder since the low model quality comes from the 

errors in the sequence-sequence alignment. Thus, it has 

room for improvement.  Overall, 30 Moulder iterations 

have been carried out for this target. 

3.2. Analysis of the Genetic Algorithm Moves 

During the iterations of Moulder the genetic algorithm 

moves have been analyzed for their weights. The single-

point crossover is set to %40, double-point cross-over to 

%20, gap insertion to %10, gap deletion to %10, and gap 

shift is set to %20 in Moulder. In Figure 3, the moves for 

the initial 15 iterations are displayed. In the initial 

iterations number of gap deletions, gap shift, and gap 

insertions are higher than their expected weights 

because initially these mutation type changes are needed 

to create diverse alignment. Then the cross-overs get 

higher by adjusting to the final weights. Cross-overs are 

larger whole segment changes, thus the population needs 

gap moves to diverge from the starting alignment 

initially. The movement weights agree with the ones in 

Figure 3. Each color shows an iteration number starting 

from 1 to 15, and the y-axis is the number of moves. 

3.3. Is the Correct Model in the Pool of Models? 

In Figure 4A, best 100 alignments obtained after 30 

iterations of Moulder are displayed. For T0409-D1, the 

profile-profile alignment results give 0.161 native 

overlap as the initial model quality. At the end of Moulder 

iterations, 100 best-scored alignments are obtained, and 

corresponding models are built by Modeller. The best 

model native overlap values get as better as 0.360 native 

overlap value.  

In Figure 4B, the model picked at each iteration is shown 

with red lines, while the best model present in the pool of 

alignments at each iteration is shown with green lines. It 

is clear from the results in this low model quality, mainly 

because of the very low sequence identity, that the 

scoring function is not picking the best model present in 

the pool of models. If the scoring function could have 

picked the model with the better native overlap value, 

the model quality would have reached to 0.46 range.  

In Figure 4C, RMSD of the final models from the 30 

iterations of Moulder is displayed. Again, the initial RMSD 

is 11.566 Ångstrom in Table 3, and the best model RMSD 

does not even reach 9.6 Ångstrom. However, when the 

best models versus best-scored models during each 

iteration are compared in Figure 4D, there is a model that 

has a RMSD as low as 5 Ångstrom at iteration 24. Namely 

that model is in the pool of models at the end of each 

iteration but not picked by the scoring function. If the 

alignment belonging to this model was picked by 

Moulder for the next iteration, there would have been an 

improvement. But RMSD value stays, the green line in 

Figure 5D, very flat during 30 iterations. 

Here the aim is not to benchmark Moulder one more 

time. In the original method paper (John and Sali (2003), 

19 hard modeling targets that shared 4-27% sequence 

identity with their template structures were used for 

benchmarking, and the average alignment accuracy 

increased from 37% to 45% relative to the initial 

alignment at the end of Moulder iterations. However here 

in Table 2, it is shown that the modeling accuracy can be 

improved more than this if the alignment incorporates 

structural information into the sequence alignment. 

Please see Figure 2A for the possible improvement of 

models when the sequences are aligned based on 

structure (orange points in Figure 2A). As shown in 

Figure 4, Moulder iterations are sampling better models 

than the models picked by scoring function in the 

iterations of Moulder. This result is very important in 

terms of the development of similar methods. All 

sampling methods by iterations can be separated into 

two parts. One of them is sampling the different 

alignments, while the second one is picking the best one 

when the native structure is unknown. Here since the 

native structures of CASP 8 benchmark set are known, it 

is shown that although better alignments exist, Z-Dope 

scoring function was not able to pick some of them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Genetic algorithm moves: The number of moves in each iteration is displayed with a different color. Single= 

Single-point cross-over, Double= Double-point cross over, Delete = Gap Delete, Add = Gap Insertion and Shift = Gap Shift. 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Sebnem ESSIZ                            172 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. A) Native-overlap scores of models. B) Native overlap of models picked by DOPE (red), models with the best 

native overlap value (green). C) RMSD of models D) RMSD of models picked by DOPE (green), models with the best 

native overlap value (red). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Coverage of suboptimal alignments. The red color shows the correctly alignment segments of the profile-

profile alignment. The different colors show the correctly aligned segments from sub-optimal alignments. 
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3.4. Are Correct Alignment Segments in the Pool of 

Alignments? 

The existence of correct alignment segments is checked 

by comparing the alignment segments to the structural 

alignment within the pool of suboptimal alignments. For 

this, the targets that have very low sequence identity and 

very low model quality from profile-profile alignments 

are selected in Table 2. Those targets are: T0409-D1, 

T0414-D1, T0445-D2, T0478-D1, T0501-D1, T0504-D2, 

T0505-D2 and T0507-D1. Their sequence identity ranges 

from 4.84 to 17.74. They all have very low native-overlap 

values with profile-profile alignments, but the models are 

getting much better when the modeling is done with 

structural alignment. That means they all have good 

template structures, however due to the alignment errors 

they are not modeled from the correct segment of the 

template. 

To show the correctly aligned segments exist, all these 

targets are taken to the suboptimal alignment step. 

Namely, not only single best solution from dynamic 

programming alignment algorithm is considered, but all 

the additional suboptimal alignments are collected from 

Modeller’s suboptimal algorithm. Figure 5 from A to H 

displays the results for different targets and the red dots 

shows the correctly aligned segments in the single 

optimal alignment. This is what is collected from a 

regular profile-profile alignment. Again, the alignments 

are compared to the structural alignment. The different 

colors in Figure 5 other than red, show the correct 

alignment segments in the pool of sub-optimal 

alignments. The number of suboptimal alignments 

obtained depends on the Modeller’s dynamic 

programming alignment. For each target, the correctly 

aligned segments cover much more than the correctly 

aligned segments exist in the single optimal alignment. 

Thus, in the genetic algorithm moves such as single-point 

crossovers or double-point crossovers, if these segments 

can be evaluated by a more detailed and localized scoring 

function and brought together, the models will have a 

much higher number of correctly aligned positions. 

 

4. Conclusion 
In this work, one of the biggest challenges in homology 

modeling, modeling errors originated from alignment 

mistakes is evaluated with a benchmark set in the 

twilight zone, low sequence identity region of the 

template-based modeling. The profile-profile alignments 

produced low-quality models. When the structural 

features are incorporated into the alignment, the model 

qualities are improved. However, generally, when the 

target structure is not known which the standard is, 

incorporating structural features is not an easy task. The 

iterative modeling protocol, Moulder, tries to incorporate 

structural features by evaluating alignments with their 3-

D models is used in this study. Its sampling method is 

shown to be successful, while scoring function used is not 

sufficient to pick the correct models or alignments 

segments. Finally, alignment of CASP 8 targets which has 

extremely low sequence identity but good structural 

overlap with the template structures is analyzed in terms 

of suboptimal alignments. For each target, it has been 

shown that the correct alignment segments exist in the 

pool of sub-optimal alignments. Thus, if improved 

scoring functions to pick these fragments are developed, 

the sampling with genetic algorithm moves such as 

crossovers will be capable of bringing the correctly 

aligned segments together.  

Finally, the importance of the model assessment scoring 

functions which are good in the local quality assessment 

is emphasized with the results here. If the reliability of 

different regions of a predicted structure is measured 

correctly, those segments can be brought together to 

form a single correct overall alignment. 
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