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INTRODUCTION AND PRELIMINARIES

Let D be a non-empty set and R be a mapping from D to D. The problem of finding of the points d
that satisfy the condition Rd = d is well known in the literature as the fixed point problem. Many problems,
such as the problem of finding solutions of an integral or differential equation whose solutions cannot be
found by applying existing analytical methods, the image restoration problems, convex optimization
problems, and so on, can be considered as fixed point problems through some mappings. Therefore, finding
their solutions is often the problem of finding the fixed points of some mappings. It is possible to find
many iterative algorithms that converge to the fixed point of mappings under appropriate conditions and
defined by various mappings in the literature. We can mentioned [1-11]. The convergence speed,
convergence equivalence, stability and data dependency of these algorithms are important for the iterative
algorithms to be effective and useful from each other.

Let us recall basic concepts, the terminology and notations used throughout the study. We will denote
the set of non-negative integers by N. Let E be a Banach space, D a non-empty convex subset of E and
R:D — D a mapping. The set of fixed points of R will be denoted by the notation F(R).

Let us recall some important iterative algorithms existing in the literature associated with the
mapping R. Throughout the study, unless otherwise stated there will be control sequences {a}'l}:zo in [0,1]

fori =0,1,2.

The iterative sequence {p, }n=1 generated by Picard iterative algorithm associated with the mapping
R is defined as follows in [1]

Po €D,
Pn+1 = Rpp, n EN. (1.1)

It is well known that the sequence {p,}n=, converges to the unique fixed point of R if D is a closed
subset of a complete metric space and R: D — D is a mapping satisfying the contraction condition

d(Rx,Ry) < éd(x,y), forany x,y € D (1.2)
where § € [0,1) (see, [12]).

The iterative sequence {m,},—, generated by Mann iterative algorithm associated with the mapping
R is defined as follows in [2]

my €D,
Mpsr = (1 —ad)m, + adRm,, n € N. (1.3)

The iterative sequence {s,}n—; generated by Ishikawa iterative algorithm associated with the
mapping R is defined as follows in [3]

So €D,
Spe1 = (1 — ag)sn + agana
=1 —al)s, + alRs,, n € N. (1.4)

The iterative sequence {c,}n~; generated by CR iterative algorithm associated with the mapping R
is defined as follows in [4]

co €ED,
Cnt+1 = (1 - ag)Qn + OK,QLan,
dn = (1 - arll)RCn + arllRWn»

w, = (1 —a?)c, + a?2Rc,, n € N. (1.5)
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The iterative sequence {x,}n-; generated by Picard-S iterative algorithm associated with the
mapping R is defined by Giirsoy and Karakaya in [5] (see also, [6]) as follows

Xo €D,
Xn+1 = RYn,
yn = (1 —al)Rx, + aiRz,,
z, = (1 — a?)x, + a2Rx,, n € N. (1.6)

The iterative algorithms mentioned above have been studied for various mapping classes, and various
results such as convergence, convergence speed, convergence equivalence, stability and data dependency
of these algorithms have been obtained in the literature (for example, [1-11]).

Giirsoy and Karakaya [5] studied with algorithm (1.6) associated with the mapping R satisfying the
contraction condition (1.2). Under extra conditions on the control sequences of this algorithm, they
obtained some results dealing with convergence, convergence equivalence, convergence speed and data
dependenceny of the algorithm. They also showed with an example that algorithm (1.6) converges faster
than the other algorithms mentioned above. Later, Ertiirk and Gilirsoy [7] obtained that the convergence of
algorithm (1.6) for a more general class (quasi strictly contractive mappings) than the class of contraction
mappings without adding any conditions on the control sequences. Also, we denote that the convergence of
algorithm (1.6) for contraction mappings given in [5, Theorem 1] can be obtained without any extra conditions
on the control sequences, as we can observe from the proof of Theorem 2.1 in our study and the proof of [7,
Theorem 2.1].

Berinde and Pacurar [8] introduced a class of mappings, called enriched contractions. This class is
significant since it is a large class of contraction mappings. An enriched contraction mapping is defined in
[8] as follows.

Definition 1.1 Let E be a normed space and R: E — E be a mapping. If there are the numbers 6 € [0, o)
and y € [0,0 + 1) satisfying

16(x —y) + Rx — Ryl < yllx = yll, vx,y €E (1.7)
then, the mapping R is called (6, y)-enriched contraction [8].

It is shown in [§8, Example 1] that every mapping that satisfies contraction condition (1.2) satisfies
also enriched contraction condition (1.7). However, there is a mapping that satisfies enriched contraction
condition (1.7) but does not satisfy contraction condition (1.2). So, the class of enriched contraction
mappings is a large class containing contraction mappings [8].

Let us recall the definition of the class of average mappings, which is another important mapping
class.

Definition 1.2 (see, [8]) Let D be a convex subset of a vector space E and R: D — D be a mapping. For any
w € (0,1), the averaged mapping R, is defined by

Ry,x =1 —w)x + wRx, Vx €D (1.8)
and the sets of fixed points of the mappings R and R, coincide. That is, F(R) = F(R,,).

Berinde and Pacurar [8, Theorem 2.4] proved that a self mapping R on a Banach space has a unique
fixed point if the mapping R is an enriched contraction. They also proved the existence of an iterative
algorithm associated with R, that converges to the fixed point of R.

Remark 1.1 Berinde and Pacurar showed in the proof of [8, Theorem 2.4] that there exists a number w €
(0,1) such that average mapping R, in (1.8) is a contraction (with wy) if the mapping R is a (0, y)-enriched
contraction.
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In the rest of the study, unless otherwise stated, the R, will be considered as the averaged mapping
in (1.8) defined by an enriched contraction R.

(1.1), (1.3)-(1.6) iterative algorithms have been studied in recent years by associating with the
averaged mapping R,. Abbas et al. [9, Theorem 4] obtained that a result dealing with the equivalence of
the Mann and Ishikawa iterative algorithms associated with R,,. Anjum et al. [10, Theorem 1] showed that
the result in [9, Theorem 4] is also equivalent to Picard iterative algorithm associated with R, under
appropriate conditions.

Picard S-iterative algorithm associated with R,, has not been studied so far, to our knowledge. The
main aim of this article is to modify the Picard-S algorithm defined by Giirsoy and Karakaya [5] to
approach to the fixed points of enriched contraction mappings. Firstly, we proved that the Picard-S
algorithm associated with R,, converges to the fixed point of the enriched contraction R without any extra
condition on control sequences. Secondly, we showed that the convergence of Picard-S and CR iterative
algorithms associated with R, to the fixed point are equivalent to each other. Thirdly, we obtained a result
regarding the data dependency of Picard-S algorithm associated with R,,. Finally, we supported the results
obtained with numerical examples, and examined with an example the convergence speeds of Picard-S and
some algorithms associated with R,,.

The lemma given below has an important role for our study.
Lemma 1.1 Let {0X}_,, k = 1,2 be two sequences of non-negative real numbers satisfying
oli1 < 80k + 02, foralln € N.

If § € [0,1) is a constant and {02}, is a sequence which converges to zero, then {01}, is a sequence
which converges to zero (see, [11]).

MAIN RESULTS

In this section, we will give the main results obtained from the study. Firstly, we denote that if D is a
closed and convex subset of a Banach space E and R:D — D is a (6, y)-enriched contraction, then R has a
unique fixed point. Infact, by Remark 1.1, we know that there exists a number w € (0,1) such that mapping
R,:D — D is a contraction. By Banach Contraction Prenciple (see, [12]), R,, has a unique fixed point. On the
other hand, by Definition 1.2, since F(R) = F(R,,), we say that R has a unique fixed point. If § = 0, then it is
clear that R: D — D is a contraction mapping. Since Picard-S algorithm associated with contraction mappings
was studied by Giirsoy and Karakaya [5], we will take 6 > 0 in this section.

The following result is a modification of [5, Theorem 1] for enriched contraction mappings. It should be
noted here that although restrictive assumption Yg—, aLsa? = co was made on the control sequences {a;},
{a2} c [0,1] in [5, Theorem 1], our result was obtained without any restriction on the control sequences.

Theorem 2.1 Let D be a closed and convex subset of a Banach space E and R: D — D be a (0, y)-enriched
contraction, {a}}, {a2} c [0,1] be any sequences and x§ € D be any initial point. Then, there is a number
w € (0,1) such that the sequence {x,,} generated by Picard-S algorithm associated with R, given by

Xn+1 = RuYn,
Yn =1 —ap)Ryxn + anRuzn,
zi = (1 —a?)x) + a2R,x;, n €N (1.9)
converges to the unique fixed point p* of R.

Proof Since 8 > 0, if w:=1/(0 + 1) is taken, then w € (0,1). By the definition of (8, y)-enriched
contraction, for all x,y € D, we have

IRwx = Ryl < wyllx —yli (1.10)
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where, we denote that wy € (0,1). That is, R,,: D — D is a contraction mapping with the fixed wy ({8,
Theorem 2.4]). Let {al}, {a?} be any sequences in [0,1], and we consider the sequence {x,} generated

by (1.9). By standard methods in [5, Theorem 1], we will prove that x,, - p*. Using (1.9), (1.10), {ai}
and {@2} in [0,1], we get

lzp —p*ll = II(1 — a)xp + anRyxn — Pl

< (1= adllxp —p*ll + aqwylixy —p°ll

=[1—af(1 = wP]lxy — Il (1.11)
and
lys —p*ll = I(1 — ap)Ruxy + anRey, 2y — Pl

< (1 - apwyllx; — p*ll + agoyliz; — pll. (1.12)

If (1.11) is written in (1.12), then the inequality given below is obtained
lya =PIl < (1 — ap)wyllxy — p*ll + apwy[1 — ai (1 — wp)]llxy — p°I
= wy[1 — anai(1 — wP)]lix; —p7ll. (1.13)
Thus, by (1.9) and (1.13), we get
IXn+1 =PIl = IRwYn — 7|
< wyllyn —p'll < (@V)?[1 — anai(1 — wn]lixn —p7l. (1.14)
On the other hand, since 0 < 1 — ata2(1 — wy) < 1, foralln € N, by (1.14), we obtain

X541 — 27l < (@Y) x5 —pI.
n—-oo

Since wy < 1, by Lemma 1.1, we get x;, — p*. O

The result given below is a modification of [5, Theorem 2] for enriched contraction mappings. The result
shows that the convergence of Picard-S and CR algorithms associated with R, to the fixed point is equivalent.
We denote that the result is obtained on the control sequences {al}, {al}, {a2} c [0,1] without any extra
conditions.

Theorem 2.2 Let D,E and R be as in Theorem 2.1, {a2}, {a}}, {«2} c [0,1] be any sequences and
Xg, €y € D be any initial points. Then, there is a number w € (0,1) such that the sequence {x;} generated
by (1.9) and the sequence {c,} generated by CR algorithm associated with R, given by

chi1 = (1 — aQ)qy + aQR, 5,
Q:l = (1 - arll)RwC;kl + a}LRwW;:a

wy = (1 —a?)c;, + a?R,ch, n €N (1.15)

n—-0oo
are equivalent in the case of convergence to the fixed point p* of R. That is, x;, — p* if and only if ¢,
n—->oco
—p

Proof If the mapping R is a (8, y)-enriched contraction, then by the proof of [§, Theorem 2.4], we know
that there is a number w € (0,1) such that R, is a contraction mapping with wy. We will prove this theorem
by standard methods in [5, Theorem 2]. Let us consider algorithms (1.9) and (1.15) associated with R,,.

We assume that x,, - p*. By (1.9)and (1.15), we get, foralln € N
%741 — cnall = IRwYn — (1 — an)qn — anRw sl

< (1 - aplRwyn — qnll + anllRwYn — Ruwqnll
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< (A= a)lRyyn —yall + 1 — apllyn — qull + anwyllys — gxll
= (1 —an + aqop)llys — qall + (1 — aDlRuYm — yall. (1.16)
On the other hand, by (1.9) and (1.15), we get the inequalities given below
lyn — gnll = 1I(1 — am)Ruxp + anRwzn — (1 — ap)Rycn — anRuwill
< (1 = ap)llRuxn — Ruchll + anllRy 2y — Rowill
< (1 - apwylix, — aull + aqwyllzy — wyll (1.17)
and
llzn —wrll = 11 — af)x; + afRyxn — (1 — af)cn — afRuchll
< (1 = ap)llxy — cull + afwyllxg, — el
=[1 - af (1 — wp)]lix; — call. (1.18)
If (1.18) is written in (1.17), then the inequality given below is obtained
lyn — gnll < (1 — ap)wyllxy — call + aqwy[1 — aZ (1 — wy)]llxy — cxll
= wy[1 — apafi (1 — wy)]llxy — cxll. (1.19)
So, inequality (1.16) turns into the following inequality
%741 — chaall < (1 —ap + aqoy)wy[l — apai(1 — wP)]llxy — call + (1 — )Ry Y7 — Yall.
Usingl—al +alwy <1, 1 —ala?2(1—wy)<1land1—af <1, foralln €N, we obtain
X741 — cnaall < wvyllxn — cpll + IRwyn — yall- (1.20)
If the continuity of the mapping R,,, algorithm (1.9), {a}}, {@2} c [0,1] and x;, = p* are used,
then ||Ryvn — vall = 0 is obtained. Also, since wy < 1, using Lemma 1.1 in (1.20), ||x;, — cal| = 0

is obtained. By hypothesis, this denotes that ||c;, — p*|| =o.

Conversely, assume that c;, - p*.By (1.9), (1.15) and (1.19), we have the inequality given below,
foralln €N

lener — xpeall = 111 — aR)qn + anRwqn — Ruyall

< llgn — Royall + anllgn — Ruaxll

< IRwqn — qull + IRwqn — RuYnll + anllgr — Ry gl

< (an + DIRwan — qnll + w¥lign — 2l

< (ap + DIRwqn — gull + (@y)?[1 — aqai (1 — wp)]llx; — cull.
Since 1 — aa?(1 — wy) < 1and ad + 1 < 2, for all n € N, the inequality can be written as follows
lener — xpeall < (@V)2licn — xall + 21IRw a7 — qnll- (1.21)

If the continuity of R, algorithm (1.15), {ai}, {a2} < [0,1] and c; = p*are used, then
|Rwaqn — qnll 7% 0/is obtained. Also, since wy < 1, using Lemma 1.1 in (1.21), it is obtained ||c;, — x|

=o. By hypothesis, this denotes that ||x;, — p*|| =%o. Thus, the proof is completed. o

Finally, we will give a result on data dependency for Picard-S algorithm associated with R,,. We
denote that the result is a modification of [5, Theorem 4] for Picard-S algorithm associated with R, and it
is obtained without any extra conditions on control sequences.

Theorem 2.3 Let D,E, R, x§, {al} and {a?} be as in Theorem 2.1. Let R: D — D be a mapping such that
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||Rx - ﬁx” < g, for all x € D (where ¢ is an enough small number) and p* be a fixed point of R. Then,

there is a number w € (0,1), and if the sequence {X;,} generated by R,
X, €D,
Xpe1 = R'a)y’ﬁa
Yn = QA — ap)Ro%n + anRyzy,
75 = (1 — a2)%, + a2R, %5, n €N (1.22)
converges to p* (where R, is the averaged mapping associated with R), then

we(®?+ 9+ 1)
1— 92

lp™ =" Il < (1.23)

in which 9 = wy.

Proof By the proof of [8, Theorem 2.4], we know that there is a number w € (0,1) such that the mapping
R, is a contraction with the number wy. We will prove this theorem by standard methods in [5, Theorem
4]. Using (1.9), (1.22), (1.8), the contraction condition of R,, and the choice of R, we get the inequalities
given below, foralln € N

”xr*1+1 - JNC:L+1|| = ”RwY; - Rwy;; + ij?;{ - R-wyﬁ

< wyllyn — Inll + we (1.24)
and
”y;{ - 37;;” = ”(1 - arll)wa;:L + a'lj‘;.Ra)Z:l - (1 - arll)R-ij:L - a}LR-wZ:l

< (1 —ab)||Rwxs — Ru% + RuXy, — Ry %

+ at||Rwzy — RwZy + RuZy — Ry 2y,
]

< (1 = ap[lRwxn — RuZnll + [|Ro%n — R %n

|

< (1 - aplwylx, — %ol + wel + anloylizy — 21l + we]

+ arll[”RwZ:L - szn” + ”szﬁz - R-wZ;

= (1 - apwylix; — Zall + apwylizy — Z3ll + we (1.25)

and

lzn = Zill = ||(1 — ad)xn + @dRuxn — (1 — )% — ahRun

< (1 —adllx, — %l + a2||Rwxy — Ru%p + RuXy — Ru%,
< (1= adllxy — %l + ag[wyllx; — Xl + we]
=[1—-a2(1 — wp)]llx;, — %5 + a2 we. (1.26)
By inequalities (1.24)-(1.26),
X541 = ZFrall < (@Y)?[1 — aqai (1 — wW)]llxy — %1l + agaf (wy)?we + w?ye + we (1.27)
is obtained. Since 1 — ata2(1 — wy) < 1and aja? <1, foralln € N, we get
%51 — Zpiall < (@Y)2lxg — %l + (wy)?we + w?ye + we. (1.28)

Considering that xj, = p* and X, = p*, if the limits of both sides are taken in inequality (1.28), then
the inequality given below is obtained.

Ip" = 2°ll < (@P)?lp” =PIl + (wy)?we + w?ye + we

= (wy)?llp” = 9" Il + we[(wy)? + wy + 1].
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Thus, an upper bound on difference between fixed points p* and §* is obtained as

we[(wy)? + wy + 1]

* _ % <
lp” = 2"l < 1= (wp)?
Remark 2.1 If we take lim a} @2 = 0 or lim al a2 = 1 additionally in the hypotheses of Theorem 2.3,
n—oco n—oo
then, by inequality (1.27), we get ||p* — p*|| < 1:8)]/ )

NUMERICAL EXAMPLES
In this section, we will give some examples to support the theoretical results we obtained.

The first example given below demonstrates the accuracy and validity of the results in Theorem 2.1
and Theorem 2.2, as well as the convergence speeds of Picard-S, CR, Picard, Mann and Ishikawa
algorithms associated with the averaged mapping R,,.

Example 3.1 Let E =1, = {{an}n=0: 2ineol@n] < 0} with the norm ||[{a,}nzoll = Xn=ol®n| and D =
{antn=o € E: l{an}n=oll < 1}. It is well known that E is a Banach space and D is a convex and closed
subset of E (see, [13]). We define the mapping R: D — D as follows
a
-2 n=0

w o 2’
R({an}n=0) = {tinln=0, Hn = Ap_1 — 0p

It can easily be seen that R is well defined. For every @ = {a,}5-0, B = {Bnln=o €D

a; — By
2

a; — By
2

o — Bo o — Bo
2 2

= Xk=olak = Bkl = lla = BIl.

So, R is a nonexpansive mapping. However, R is not a contraction mapping. Indeed, for a =
{0,1,0,0,0, ...} and g = {0,0,1,0,0,0, ... }

IRa — RE|| < + + + + -

1

IRe = RBII = [|[{0,-2,1,—3

2,0,0,0, }|| = 2and [la — Bl = 2.

Thus, there is not a number § € [0,1) satisfying the condition ||[Ra — RB|| < 6|la — B||. Now, we
will show that R is an enriched contraction mapping. For every a = {a, }n=0, B = {Bn}n=0 € D

l6(a — B) + Ra — RB|
— ||{ 9(“0 _ BO)rg(al _ Bl): 9(“2 _ BZ): } + {_ “0;B0 ‘aO_BO_Z(al_Bl)’al_Bl_z(az_Bz)’ }”

= [[{ (6 =3) (@0 = Bo). (6 = 3) (s = B1) +5 (o = Bo), (6 = ) (2 = B2) +5 (1 = ), . }|
<(lo 3| +3) Zrolaw — il = (| 3| +3) e = B

fo<o< %, then we can take y = 1 — 6. In this case, R is a (8,1 — 8)-enriched contraction mapping
with 0 < 0 < % Ifé > %, then we can take y = 6. In this case, R is a (8, 8)-enriched contraction mapping
with 8 > % Thus, E, D and R satisfy all conditions of Theorem 2.1. Also, R has a unique fixed point p* =
{0,0,0,...}.

1
Let ad = al = a2 = — for all n € N. For these chosen control sequences, Abbas et al. [9,

Theorem 4] showed that Mann and Ishikawa algorithms associated with R,, converge to p*, and Anjum et
al. [10, Corollary 1] showed that Picard algorithm associated with R, converges to p*. Let the initial points
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of all algorithms be {Fl-l-l} o
n=

For the values of 8 = 2/5(w =5/7),0 =1/2 (w=2/3),0 =2 (w=1/3)and 8 =1/10 (w =
10/11), we show in Figure 3.1 that the convergence states of the sequences {0, } generated by Picard-S,
CR, Picard, Mann and Ishikawa algorithms associated with R, to the point p*, respectively.

0.12 T T 0.12 T T T T
» —#%— Picard S-Algorithm o —#— Picard S-Algorithm
—+&— CR Algorithm —+&— CR Algorithm
0.1 —©— Picard Aigorithm | 0.1 —©— Picard Algorithm | -
—k— Mann Algorithm —k— Mann Algorithm
& Ishikawa Algorithm ~—&— Ishikawa Algorithm
=008 1 =
|
S — 8
<] o
n n
Q Q
2 E
a
> >
0 20 40 60 80 100 0 20 40 60 80 100
n=0,1,2,..,100 and w = 5/7. n=0,1,2,..,100 and w = 2/3.
0.12 T T T T 0.12 T T
—%— Picard S-Algorithm o —%— Picard S-Algorithm
—&— CR Algorithm —&— CR Algorithm
0.1 —©— Picard Algorithm | - 0.1 —©6— Picard Algorithm | |
—— Mann Algorithm —k— Mann Algorithm
~E— Ishikawa Algorithm ~—&— Ishikawa Algorithm
I h
S g B !
<] <]
n n
Q Q
: :
@
> be
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Figure 3.1 Graphs show the convergence state of algorithms associated with R,.

The following example supporting Theorem 2.3 shows that we can find an upper bound for
|lp* — p*|| without knowing the values of p*.

Example 3.2 Let E, D and R be in Example 3.1. We define the mapping R : D — D as follows

1
i 10 "0
R ({anin=0) = {tinln=0r Hn = On-1

o =1

Forall @ = {a,}n=o € D, we get

|Ra - Ral| = |-@-i 4]t

2 10l 12 _%l+_%l+'"

AN 1,1
< S+ SR lal S - +2=06
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Thus, € = 0.6, and p* = {1—102%} is the unique fixed point of R . Let the control sequences be as in
n=0

Example 3.1. In Figure 3.2, we show that the sequence {X,} generated by (1.22) for initial point X5 = x5 =

{10++1} and 8 = 2/5 (w = 5/7) converges to p*. By (1.23), we have below upper bound for p* and
n=0

~%

p

we[(wy)? + wy + 1]
f sl = 02 < — 0.8464.
lp* —p”li < 1= (wp)?

O.OQQ?

0.08 F

0.07 ¢

e o
o o
a >

Values of (a)
o
o
S

0.03

T T p— e T ==
o -O- = = -0

0 20 40 60 80 100
n=0,1,2,..,100 and w = 5/7.

Figure 3.2 Graph shows the values of ||X;, — p*|| forn =0,1,2,...,100 and w = 5/7.

For the other values of 8 in Example 3.1, we get thatif 6 = 1/2 (w = 2/3), then the value of upper
bound is 0.65. If 8 = 2 (w = 1/3), then the value of upper bound is 0.76. If 6 = 1/10 (w = 10/11), then

the value of upper bound is 4.104. That is, for the all values of 8 in Example 3.1, inequality (1.23) is
satisfied.

DISCUSSION AND CONCLUSIONS

In this study, we obtained some results on the convergence, data dependency and convergence
equivalence of Picard-S algorithm associated with the average mapping of an enriched contraction. All results
were obtained without any extra conditions except being at [0,1] of the control sequences. The results obtained
were supported by numerical examples. Giirsoy and Karakaya [5] obtained a result showing that the Picard-S
algorithm converges faster than the CR algorithm for contraction mappings under some conditions. For enriched
contraction mappings, as can be seen from the graphs given in Figure 3.1, this situation changes depending on
the choice of w. In other words, the convergence speeds of Picard-S and CR algorithms associated with R, can
change depending on the choice of w. Therefore, a general result comparing the convergence speeds for these
algorithms associated with R, could not be obtained regardless of the choice of w. This part is open to
researchers interested in the study.
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