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Abstract 
 
Design of integrated photonic devices continues to drive innovation in electro-optical systems 

for many applications ranging from communications to sensing and computing. Traditional 

design methods for integrated photonics involve using fundamental physical principles of 

guided-wave behavior to engineer optical functionalities for specific application requirements. 

While these traditional approaches may be sufficient for basic functionalities, the set of 

physically realizable optical capabilities by these methods remains limited. Instead, photonic 

design can be formulated as an inverse problem where the target device functionality is specified, 

and a numerical optimizer creates the device with appropriate geometrical features within 

specified constraints. However, even with inverse design methods, achieving arbitrarily-

specified phase offsets on-chip remains an important problem to solve for the reliability of 

interferometry-based nanophotonic applications. In order to address difficulties in achieving 

simultaneous phase and power optimization in inverse nanophotonic design, in this paper, we 

develop a set of optimization approaches that can enable user-specified phase differences in 

single-wavelength and multi-wavelength nanophotonic devices. By specifying phase offset 

targets for each output, we prevent convergence failures resulting from the changes in the figure 

of merit and gradient throughout the iterative optimization process. Additionally, by introducing 

phase-dependent figure of merit terms through an adaptive scheduling approach during the 

optimization, we accelerate device convergence up to a factor of 4.4 times. Our results outline a 

clear path towards the optimization of nanophotonic components with arbitrary phase-handling 

capabilities, with potential applications in a wide variety of integrated photonic systems and 

platforms.  
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1. Introduction 

Integrated photonic devices and systems are one of the most important building blocks of systems used in 

communications, computing, and sensing applications today. With miniaturization of optical components and their 

integration on chip, these applications have seen tremendous growth in the last several decades [1]. Today, 

integrated photonic systems comprise some of the most critical components of these systems due to the advantages 

they provide in speed, efficiency, and multiplexing of information processing [2, 3]. Thanks to these advantages, 

typical building blocks components such as low-loss waveguides [4], broadband couplers [5], high-speed 

modulators [6], and low-noise detectors [7] have been previously demonstrated using fundamental understanding 

of guided-wave principles and coupled mode theory [8]. However, designing photonic devices for next-generation 

applications with complex, user-defined, and application-specific photonic functionality requires beyond what is 

possible with such traditional design thinking and fundamental physical principles [9, 10]. While these traditional 

photonic design principles rely on waveguide parameters and an understanding of optical coupling between them, 

the set of practically feasible photonic functions through these design principles remains limited [11]. 

In order to address the limitations of traditional photonic design, inverse design methods have recently emerged 

[12, 13]. Approaching the design problem from the reciprocal perspective, these approaches allow the user to define 

a specific objective, and then run an optimization process to create the device that can achieve this specified 

functionality with the appropriate geometrical features. Several examples have been demonstrated for building 

blocks including power splitters [14] as well as wavelength and mode multiplexers [15, 16]. Despite these 

demonstrations so far, arbitrary phase control of on-chip optical signals still remains an important problem to 

address in the general framework of inverse design approaches, as phase control is essential for interferometry-

based on-chip communications and sensing. Particularly, it has been shown that while optical power at output 

waveguides of a multiplexer or splitter device can be easily optimized, achieving the same optimization 

performance for phase difference between the outputs can be prohibitively challenging [17]. A potential solution 

to this problem involves restricting the system design such that the outputs inherently achieve 𝜋/2 phase difference 

due to the underlying physical principles of mode interference [18]. Even though this approach may be sufficient 

for a restricted class of interferometric devices, achieving arbitrary phase differences between the optical outputs 

remains an important nanophotonic design problem to tackle. 

In order to address this issue and build arbitrary phase handling capabilities on-chip, here we introduce an 

adaptively-scheduled phase optimization approach that can achieve user-specified phase differences between the 

output waveguides in both single-wavelength and multi-wavelength nanophotonic devices. Our approach relies on 

calculating the overlap of optical outputs with a reference profile, and adaptively introducing the amplitude and 

phase of this overlap into the objective function for the optimizer. Particularly, we demonstrate devices with 

arbitrarily-specified phase differences between multiple outputs, and illustrate the stability and faster convergence 

of this adaptive approach. We show that unlike directly including the phase difference of the outputs in the device 

objective, using a reference output mode profile ensures stability of the optimization process. We also demonstrate 

that our adaptive approach can achieve the same convergence in less than 1/4th of the iterations required when phase 

information is directly included in the device performance calculation. These results illustrate the effectiveness of 

adaptive scheduling of objective function updates for on-chip design, and provide a clear path towards the 
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optimization of nanophotonic components with arbitrary phase-handling capabilities. 

2. Methods 

2.1. Device Geometry Represantation Processing Operations 

Optimization of a multi-output device to perform a pre-specified physical task under a given input can be cast as 

an inverse problem as illustrated in Figure 1. The problem is iteratively solved through forward and backward 

propagation steps. Starting with the forward propagation operation, we represent the nanophotonic device using a 

set of trainable parameters “𝛼”, namely a density map of pixel values ranging between 0 and 1. We specify a 

physical pixel size of 25nm × 25nm, which also determines the spatial resolution of the discretized electromagnetic 

simulations we will run on these devices. This trainable map of pixels is held subject to a spatial filter with a 

normalized Gaussian kernel as 𝛼′(𝑥, 𝑦) = ∑ 𝛼(𝑎, 𝑏) 𝜅(𝑎 − 𝑥, 𝑏 − 𝑦)𝑎,𝑏∈𝐷  where 𝐷 is the region where the 

optimizable boundaries of the device are defined, and 𝜅 represents the spatial kernel. The radius of this kernel can 

be chosen depending on the restrictions of the fabrication platform used. Here we specify a kernel of radius of 

200 nm (4 pixels) in order to sufficiently remove small geometrical features that are fabrication incompatible. A 

projection operation is then applied on this filtered permittivity to gradually minimize the number of pixels whose 

densities are far from the 0 and 1 boundaries. The goal of this projection is to ensure a final device with well-

defined boundaries between the core and cladding materials chosen. This projection modifies the input 𝛼′ as 

 
𝛼𝑟 =

1

2
+

tanh(𝛽(𝛼′ − 1/2))

tanh(𝛽/2)
 (1) 

where 𝛼𝑟 is density map after projection operation, and 𝛽 is parameter controlling the projection strength. 

 

Figure 1. Device design procedure as an inverse problem with forward and backward propagation steps. Between each 

operation, the example output is shown by the two dimensional maps in the second row, and their corresponding mathematical 

symbols. 

Using a larger 𝛽 parameter increases the “discreteness” of the device, which we define as the ratio of pixels whose 

densities are in close proximity (within 2%) of 0 or 1. These spatial filtering radius and projection strength 
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parameters can be kept constant throughout optimization, or be modified gradually in order to ensure convergence 

and stability of the iterative process. In our demonstrations, we maintain a constant filter radius of 200 nm, but 

gradually increase the projection strength, as explained in the sections below.  

Finally, the processed density map is linearly transformed into a distribution of relative permittivities. In this 

representation, each pixel is mapped to specific relative permittivity between 𝜖Si (Si “core” permittivity) and 𝜖SiO2 

(SiO2 “cladding” permittivity) of the silicon-on-insulator platform. For our devices, we consider 220nm-thick 

silicon-on-insulator platform as it is the most commonly used CMOS-compatible photonic platform currently. We 

also design them for operation at a wavelength of 𝜆 = 1550nm, due to the variety of existing applications and 

communication infrastructure at the C-band. The resulting relative permittivity for silicon is then calculated from 

the effective index of the fundamental transverse electric (TE) mode of a slab waveguide at a wavelength of  

1550 nm as 𝜖Si = 𝑛eff
2 = 2.842 = 8.07. For the cladding, we directly use the refractive index of silicon dioxide at 

the same wavelength, yielding a relative permittivity of 𝜖SiO2 = 𝑛SiO2
2 = 2.07. 

Even though the design procedure shown in Figure 1 consists of many individual steps, the only parameter that 

physically makes up the device is the 𝛼𝑟 itself, which is a 2-dimensional map indicating the boundaries between 

the black (Si) and white (SiO2) regions. Other parameters such as the spatial kernel (𝜅), the type or size of this 

kernel, the projection strength (𝛽), or how/when this strength is updated are only used during the inverse design 

process. These parameters are not directly parts of the final device geometry; however, they serve an important 

intermediary purpose as they influence progression and convergence of the optimization process. 

2.2. Photonic Device Performance Evaluation and Figures of Merit 

The resulting geometrical structure’s electromagnetic response is simulated by using a finite difference frequency 

domain (FDFD) approach that solves 

 (−𝜔2𝜖0𝜖r(𝒓) + 𝜇0
−1∇ × ∇ ×) 𝑬(𝒓) = −𝑖𝜔 𝑱(𝒓) (2) 

where 𝜔 is the frequency of the optical input, 𝜖0 is the permittivity of free space, 𝜖r(𝒓) is the relative permittivity 

of the geometry after the operations described above, 𝜇0 is the permeability of free space, 𝑬(𝒓) is the electric field 

distribution to be solved, and 𝑱(𝒓) is the fundamental waveguide mode specified as the optical input to the 

simulation. This equation is then spatially discretized into a linear system in the form of 

 𝐴 𝑬 = −𝑖𝜔 𝑱 (3) 

where 𝐴 is the discretized representation of (−𝜔2𝜖0𝜖r(𝒓) + 𝜇0
−1∇ × ∇ ×), 𝑬 is the discretized solution of 𝑬(𝒓), 

and 𝑱 is the discretized representation of the optical input 𝑱(𝒓). 

In this study, even though we focus only on two-dimensional simulations and TE optical inputs, our methods remain 

generalizable to three dimensions and also to the transverse magnetic (TM) polarization. For our TE simulations, 

using Eq. (2), we solve the non-zero components 𝐸𝑥, 𝐸𝑦, and 𝐻𝑧 of the electric and magnetic fields using a  parallel 

direct solver [19]. Following this solution, slices of these electric and magnetic fields in the y-direction are recorded 

as 𝐻z−out(j)(𝑦), 𝐸x−out(j)(𝑦), and 𝐸y−out(j)(𝑦) on each output waveguide,. Then, the mode overlap, output phase, 

and the optical transmission in the x-direction are calculated for each output, using a reference slice 𝐸ref(𝑦) 
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extracted from the simulation of a straight waveguide using 

 
Γ(𝑗) = |∫ 𝐻z−out(j)(𝑦) 𝐸ref(𝑦) 𝑑𝑦|

2

∫|𝐻z−out(j)(𝑦)|
2

𝑑𝑦⁄  (4) 

 
𝜃(𝑗) = arg (∫ 𝐻z−out(j)(𝑦) 𝐸ref(𝑦) 𝑑𝑦) (5) 

 
𝑃𝑥(𝑗) = −

1

2
∫ Re{𝐸y−out(j)(𝑦) 𝐻z−out(j)(𝑦)} 𝑑𝑦 (6) 

where (j) is the index of the output waveguide considered, Γ(𝑗) is the mode overlap at the jth output waveguide, 𝜃(𝑗) 

is the output phase at the jth output waveguide, and 𝑃𝑥(𝑗) is the x-directed transmission at the jth output waveguide. 

These performance metrics (Γ(𝑗), 𝜃(𝑗), and 𝑆𝑥(𝑗)) describe the operation of the device for a given input. For most 

devices, while ideal operation means achieving a perfect mode overlap for all Γ(𝑗), the relative phases between the 

outputs and the desired power transmission can vary depending on the application requirements. In order to handle 

arbitrary phase offsets and transmissions at the outputs, we first construct an overall figure of merit (FOM) as the 

following expression 

 

𝐹1 = ∑(Γ(𝑗) − 1)
2

𝑀

𝑗=1

+ ∑(𝜃(𝑗) − 𝜃(1))
2

𝑀

𝑗=2

+ ∑(𝑃𝑥(𝑗) − 𝑇(𝑗))
2

𝑀

𝑗=1

 (7) 

where 𝐹1 is the typical figure of merit for multi-output device, 𝑀 is the total number of outputs of the device, and 

𝑇(𝑗) is the desired target transmission at jth output waveguide. For most applications, the physical response of the 

device is influenced by the difference of the optical phases between each pair of outputs, and not directly by the 

value of 𝜃(𝑗) itself. Therefore, the natural choice for the FOM shown above includes phase differences between 

output #1 and all the subsequent outputs. This means that the absolute phase of output #1 (𝜃(1)) is left as a free 

parameter during optimization. While this approach may seem suitable in general, as we will demonstrate in the 

following sections, significant changes in 𝜃(1) between iterations introduces instabilities in photonic design and 

optimization problems. To mitigate this behavior, we use the modified FOM given below. 

 

𝐹2 = ∑(Γ(𝑗) − 1)
2

𝑀

𝑗=1

+ ∑(𝜃(𝑗) − 𝜃(𝑗)
target)

2
𝑀

𝑗=1

+ ∑(𝑃𝑥(𝑗) − 𝑇(𝑗))
2

𝑀

𝑗=1

 (8) 

where 𝐹2 is the modified figure of merit for multi-output device, and 𝜃(𝑗)
target

 is the target phase at the jth output 

waveguide. In this modified FOM, we specify a target phase 𝜃(𝑗)
target

 for all of the device outputs, leaving no free 

parameters. For the devices we demonstrate in this paper, we set 𝜃(1)
target = 0 for simplicity; but this phase can 

be arbitrarily chosen as desired. The target phases at the other outputs may be chosen as necessary for each 

individual device. 

We extend these expressions for use in multi-wavelength devices by adding wavelength-dependent terms for all 

performance metrics calculated. As before, we use two separate FOM constructions in order to illustrate the effects 
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of adding individual phase targets for each output. In this case, Γ(𝑗), 𝜃(𝑗), and 𝑃𝑥(𝑗) are all wavelength-dependent; 

and we have the two following FOM descriptions: 

 

𝐹3 = ∑ (∑(Γ(𝑗)(𝜆𝑘) − 1)
2

𝑀

𝑗=1

+ ∑ (𝜃(𝑗)(𝜆𝑘) − 𝜃(1)(𝜆𝑘))
2

𝑀

𝑗=2

𝐾

𝑘=1

+ ∑ (𝑃𝑥(𝑗)(𝜆𝑘) − 𝑇(𝑗)(𝜆𝑘))
2

𝑀

𝑗=1

) 

(9) 

 

𝐹4 = ∑ (∑(Γ(𝑗)(𝜆𝑘) − 1)
2

𝑀

𝑗=1

+ ∑ (𝜃(𝑗)(𝜆𝑘) − 𝜃(𝑗)
target(𝜆𝑘))

2
𝑀

𝑗=1

𝐾

𝑘=1

+ ∑ (𝑃𝑥(𝑗)(𝜆𝑘) − 𝑇(𝑗)(𝜆𝑘))
2

𝑀

𝑗=1

) 

(10) 

where 𝐹3 is the typical figure of merit for multi-wavelength and multi-output device, 𝐹4 is the modified figure of 

merit for multi-wavelength and multi-output device, 𝐾 is the total number of wavelengths, and 𝜆𝑘 is the kth 

wavelength in the summation. As before, the typical multi-wavelength FOM 𝐹3 is constructed with phase 

differences calculated with respect to output #1, whereas the modified multi-wavelength FOM 𝐹4 defines target 

phases 𝜃(𝑗)
target(𝜆𝑘) for all outputs at each wavelength. 

We use FDFD simulations in order to obtain Γ(𝑗), 𝜃(𝑗), and 𝑃𝑥(𝑗) parameters and the resulting figures of merit. 

Instead, some studies in literature use finite-difference time-domain (FDTD) simulations for similar optimizations 

[20, 21]. While FDTD is known for its physical accuracy, it also introduces significant computational bottlenecks 

in the optimization procedure due to the computationally lengthy and memory-intensive time-stepping calculations 

required for obtaining electric and magnetic fields [22, 23]. Reported optimizations with FDTD-based simulations 

can last as long as several days [24], which significantly limit the usability and repeatability of such optimization 

procedures for different applications. In contrast, FDFD-based methods like those that we use here are 

computationally simpler as they require no time-stepping, and can be generally solved using direct (non-iterative) 

matrix methods [25, 26]. These advantages allow us to design functionally complex and novel devices within 

reasonable timeframes (ranging from several minutes to about one hour), depending on the desired functionality. 

Perfectly matched layers (PML) were used as boundaries in all of our simulations for absorption of any light that 

is incident on the boundaries. Specifically, we used 20-layers (500 nm) thick PML regions on all sides of the 

simulation window to ensure sufficient light absorption and physical accuracy. The use of these PML boundaries 

also helps design low-loss devices, as the optimizer inherently minimizes any optical power lost to the PML 

boundaries while maximizing power transmission at the output waveguides. 

2.3. Gradient-Based Optimization 

Once the above objectives are specified for a particular device, the goal of the optimization procedure is to minimize 

the specified FOM quantity by iteratively modifying the device geometry. In order for this optimization to take 
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place, the optimization framework calculates the gradient of the chosen FOM with respect to the design parameters, 

through a backpropagation procedure as denoted in Figure 1. The efficient calculation of this gradient is enabled 

by the reverse-mode automatic differentiation capability in the open-source pytorch software library [27]. 

Specifically, all mathematical operations illustrated in Figure 1 including the field calculation in Eq. (3), the 

evaluation of performance metrics in Eq. (4)-(6), and the calculation of all FOM expressions in Eq. (7)-(10) are 

constructed using automatic differentiation-compatible functions. These functions are then automatically mapped 

to a cascading of primitive mathematical operations whose derivatives are known in pytorch. This allows the 

gradient of the FOM with respect to the design variables “𝛼” to be efficiently and quickly calculated using chain 

rule through the specific cascade of operations used. 

Using this gradient information, the FOM is minimized by modifying the design variables through a gradient-based 

descent algorithm. For the devices in the following sections, we use the limited-memory implementation of a 

bounded version of Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS-B) [28] to minimize the chosen 

FOM, as it has been shown to work well for photonic design problems in the past [26]. The basic principle of this 

optimization process relies on iteratively minimizing the calculated FOM by taking gradual steps towards the 

direction of an expected local minimum. The direction and size of this step is generally dictated by the calculated 

gradient of the FOM, as well as approximations of the FOM’s Hessian obtained from successive gradient 

calculations. In practice, even though L-BFGS-B can perform multiple FOM and gradient evaluations at each step, 

the resulting smoother progression yields a more reliable convergence to an acceptable local minimum than simple 

gradient descent, making it an appropriate choice for photonic design problems. For our devices, all of these 

optimization procedures were carried out on a workstation PC with an Intel Xeon processor using eight cores. 

2.4. Updating of Projection Strength During Optimization 

In prior studies, typical projection strengths on the order of 𝛽 = 100 were used to make sure that optimizers yield 

sufficiently discrete and fabrication-compatible devices [25]. However, recent studies have shown that starting with a 

continuous structure (low 𝛽), and gradually increasing the projection strength to slowly approach a discrete structure 

(high 𝛽) improves optimization performance [21]. However, instead of using pre-determined increase intervals, we use 

an approach where the iterations at which projection strength is updated are not known a-priori. For our demonstrations, 

we initialize the projection strength at 𝛽 = 10, and double it until a maximum of 𝛽 = 320. The doubling occurs at 

iterations where the chosen FOM reaches below a threshold, typically specified between 5 × 10−3 and 1 × 10−2. 

2.5. Adaptively-Scheduled Introduction of Phase Terms in the Figures of Merit 

In addition to using phase terms in the modified figures of merits 𝐹2 and 𝐹4, we also use an adaptively-scheduled 

approach to start including these terms in the optimization process. First, we run optimizations with these figures 

of merit as expressed directly in their current form. Then we compare this with a novel, adaptive scheduling 

approach where the phase-dependent terms 𝜃(𝑗) are introduced only after certain conditions are met in the device 

geometry. In this adaptive method, we calculate and include the phase information only after an FOM of 

approximately 5 × 10−3 to 8 × 10−3is obtained and the device reaches a discreteness of at least 50-70%. We 

demonstrate in the following sections that the adaptive introduction of phase information into the FOM significantly 
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improves optimization performance. 

3. Results and Discussion 

3.1. Demonstration of a 1 × 3 Nanophotonic Splitter with Arbitrarily-Defined Output Phase Offset 

We first illustrate the capability of our design procedure by designing a 1-input, 3-output power splitter that 

achieves specific phase differences between the outputs. The target transmissions are specified to be all equal at 

the three outputs as 𝑇(1) = 𝑇(2) = 𝑇(3) = 1/3. We impose that the output phases such that 𝜃(2) − 𝜃(1) = 𝜋/2 and 

𝜃(3) − 𝜃(1) = 𝜋/3 for our typical FOM 𝐹1, which correspond to 𝜃(1) = 0, 𝜃(2) = 𝜋/2, and 𝜃(3) = 𝜋/3 for the 

modified FOM 𝐹2. These specific phase offsets are only used here as examples to demonstrate the capability of the 

design approach, and can be arbitrarily specified depending on the application requirements. The device is 

optimized within a relatively large footprint of 10μm × 10μm, due to the difficulty of achieving a phase-dependent 

device response compared to standard nanophotonic power splitter problems. The selection of these dimensions 

also determines the final footprint of the resulting device, as the optimizer is configured to only modify the density 

map of Si and SiO2 within this specified region. The fundamental TE mode of a 500nm-wide waveguide is chosen 

as the optical input to the device. The optimization progress using the typical FOM 𝐹1 is plotted in Figure 2(a), for 

four separate and randomly chosen initial conditions as shown by the red curves. In all four cases, the optimization 

experiences abrupt termination due to unsuccessful minimization operations in the direction the gradient, and 

ultimately the failure of convergence within the first few tens of iterations. The spikes observed in all FOM 

calculations correspond to updates of the projection strength 𝛽. However, due to optimization failure, the number 

of projection updates also remains insufficient to achieve a discrete and fabrication-compatible device. In contrast, 

the optimization performed with our modified FOM 𝐹2 is plotted in in Figure 2(b). Here, the optimization procedure 

is successfully completed in 465 iterations as indicated by the orange curve. The final FOM of 10−3 is used as the 

stop condition of this optimization, at which point further improvements in performance metrics Γ(𝑗), 𝜃(𝑗), and 𝑆𝑥(𝑗) 

are observed to be negligible. The spikes at iterations 50, 152, 244, 281, and 308 bring the final projection strength 

to 𝛽 = 320, resulting in a more reliable convergence to an acceptable minimum, and a fabrication-compatible final 

device. More importantly, the comparison between 𝐹1 (red) and 𝐹2 (orange) illustrates the success of our modified 

figure of merit calculation, as the optimization progress completes successfully, with no termination problems due 

to abrupt changes in FOM or its gradient. Compared to a pre-determined optimization progress, adaptive and real-

time updating of these parameters helps achieve best device functionality while conforming to the specific 

nonlinear dynamics of the FOM surface as a function of device parameters. 
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Figure 2. The optimization progress for a nanophotonic phase-dependent power splitter with one input and three outputs 

showing (a) typical FOM 𝐹1 and (b) modified FOM 𝐹2. For the case of 𝐹2, standard (orange) and adaptively-scheduled (blue) 

approaches are plotted separately. In the adaptively-scheduled approach, the phase-related terms are introduced once the FOM 

is below 7 × 10−3 and the device satisfies at least 70% discreteness. Spikes in FOM correspond to increases in projection 

strength. 

We also demonstrate that introducing the phase-dependent terms in FOM 𝐹2 later on during the optimization 

significantly improves the number of iterations required for convergence. This is illustrated by the blue curve in 

Figure 2 for which only the first and third terms from Eq. (7) are considered initially. The second term with phase 

calculations is introduced in the FOM only after an FOM of 7 × 10−3 is obtained and the device reaches a 

discreteness of at least 70%. For this specific device, these conditions are met after iteration 27 of the optimization, 

once the mode overlap and transmission terms already achieve an acceptably low FOM on their own. As evident 

by the comparison of the orange and blue curves, this adaptively-scheduled phase optimization method achieves 

the same FOM much faster, in less than half the number of iterations. This can be attributed to the device already 

being located near a local minimum at the end of the first part of optimization without the phase terms, making the 

subsequent optimization of output phase offsets significantly easier, even after the FOM surface is modified as the 

new phase terms added.  

The optimized device obtained at the end of this procedure and its FDFD-simulated 𝐻𝑧 field are shown in Figure 

3. Here, the final device geometry is shown with the spatial distribution of Si (black) and SiO2 (white) regions, 

within the allocated optimizable area. As expected from an inverse design approach, the device geometry obtained 

from the optimizer is physically non-intuitive, and cannot be interpreted through fundamental guided wave 

principles [9, 17, 25]. Yet, the field shows near-perfect coupling of 1/3 power to the output ports, as indicated by 

the even field amplitudes at each output ports. Moreover, in contrast to previous optimizers that cannot enforce 

output phases [5, 14], this specific example also achieves the desired phase offset between output pairs. The smooth 

and large geometrical features of the final device indicate the qualitative success of the spatial filtering and 

projection operations used throughout the optimization. 
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Figure 3. (a) Final device geometry for a 1-input and 3-output device, with a 10μm × 10μm footprint, using an SOI platform 

with a 220 nm-thick silicon device layer. (b) The resulting 𝐻𝑧 field achieving even power splitting with 𝜋/2 and 𝜋/3 phase 

offsets at the output waveguides. All axes indicate number of pixels where each pixel corresponds to physical dimensions of 

25nm × 25nm. The red and blue vertical slices mark the output plane of the device where the phase information is recorded. 

The phase offset between the specific outputs is better illustrated with the close-up of the FDFD result shown in 

Figure 4. In this figure, we crop the 𝐻𝑧 result at the three output waveguides, and plot them together to demonstrate 

how the output phase of the fields relate to each other. During optimization, this phase difference is calculated as 

the angle of the complex overlap integral in Eq. (6), but can also be extracted using the longitudinal spacing between 

the consecutive wave maxima as shown. Between outputs 1 and 2, the positions of the output field maxima are 

separated by a distance of approximately Δ𝐿21 = 144nm. This corresponds to a phase difference of  𝜃(2) − 𝜃(1) =

(2𝜋 𝜆⁄ )𝑛eff Δ𝐿21 = 0.53𝜋 where 𝑛eff = 2.84 is the effective index of the TE slab mode as before. This matches 

well with the desired phase offset of π/2 that is used for the calculation of the FOM. Similarly, a phase difference 

of 0.36𝜋 is measured using the longitudinal position offset of Δ𝐿31 = 97nm between the wave maxima at outputs 

one and three. This measurement once again matches well with the target phase difference of π/3 that was used in 

the FOM calculation. These results prove the effectiveness of the adaptively-scheduled FOM calculation in 

achieving arbitrarily-specified phase differences between the optical outputs. 
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Figure 4. Close-up view of the output waveguides showing the guided wave output. The vertical lines indicate the positions 

of the wave maxima. The longitudinal separation of these maxima determine the phase difference between the outputs for each 

waveguide pair as shown. 

The progression of these performance metrics throughout the adaptively-scheduled optimization procedure we 

described is shown in Figure 5. As with successful device optimizations, we observe the convergence of the phase 

offsets and the transmissions to the specified targets at the end of optimization. More specifically, during the first 

stage of optimization where no phase calculations are considered, the transmissions at each one of the three outputs 

tend gradually towards the specified target of 1/3. The iteration at which phase terms are introduced in the 

optimization is marked with the red, vertical dashed line. The terms included in the FOM are indicated above the 

corresponding red arrows shown. As soon as the phase terms are included, the transmissions experience a 

significant drop due to the sudden modification of the FOM calculation. However, the optimizer quickly recovers 

and successfully modifies the device in order to achieve near lossless and even transmission at each output port. 

The final transmissions at each output are recoded as 0.317, 0.317, and 0.310. The overall insertion loss of the 

device is calculated as 0.25 dB. This result is consistent with the design of similar couplers in literature, even though 

these prior demonstrations do not include phase-dependent performance metrics [13, 14, 29]. As expected, we also 

observe the convergence of phase offsets 𝜃(2) − 𝜃(1) and 𝜃(3) − 𝜃(1) within close proximity of the desired π/2 and 

π/3 targets respectively, by the end of optimization. 
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Figure 5. Evolution of (a) phase and (b) optical transmission at each output port of the 1-input 3-output device. Dashed lines 

indicate target phase offsets (𝜃(2) − 𝜃(1) = 𝜋/2 and 𝜃(3) − 𝜃(1) = 𝜋/3) included in the FOM calculation. 

3.2. Demonstration of a 1 × 2 Nanophotonic Splitter with Wavelength-Dependent Phase Offsets 

Our design procedure with arbitrarily defined phase offsets between the outputs and their adaptive inclusion in the 

FOM calculation extends beyond single wavelength devices. When specifying the device objective, these phase 

offsets can also be configured as a function of wavelength as expressed by the FOMs 𝑭𝟑 and 𝑭𝟒 in Eq. (8) and (9). 

For this demonstration, we choose four operating wavelengths between 1500nm and 1600nm, and specify target 

phase offsets as a function of this wavelength as shown in Table 1. These offsets can be arbitrarily chosen as before, 

and are only used as examples for this specific device. As before, we use the fundamental TE mode of a 500nm-

wide waveguide as the optical input to the device. The target transmission at each output port of the device is 

specified to be 𝟏/𝟐 for even splitting, as required by many interferometry applications. As before, we also target a 

mode overlap of 𝚪(𝒋) = 𝟏 at all outputs and for all wavelengths. For this device with a more complex and 

wavelength dependent FOM, we specify an optimizable design area of 12μm × 12μm, in order to provide sufficient 

degrees of freedom to the optimizer. Similar to the previous device, a spatial Gaussian kernel of 200 nm radius and 

a projection with gradually increasing strength is applied in order to ensure fabrication compatibility of the final 

structure.  

Table 1. Wavelength-Dependent Phase Offset Specifications for Output Waveguides 

Wavelength 

(nm) 

Desired Phase Offset 

(radians) 

1500 0 

1530 𝜋/3 

1560 2𝜋/3 

1600 𝜋/2 

The device is optimized using these specifications with an L-BFGS-B optimizer as shown by the progression in 
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Figure 6. First, the typical FOM optimization procedure is performed using 𝐹3 where the progress in the FOM is 

plotted by the red curves in Figure 6(a). Each curve represents a separate and randomly chosen initial condition for 

the device. As before, all examples face abnormal termination due to unpredictable changes in the FOM and 

gradient information, resulting in unsuccessful device optimizations. These devices also do not reach the stages 

with sufficiently large projection strengths necessary for fabrication-compatible results. In contrast, the modified 

approach where we include phase targets for all outputs using 𝐹4 is shown by the orange curve in Figure 6(b). 

Including all terms in Eq. (10) in the FOM from the beginning of optimization, the iterative design procedure 

completes in 2001 iterations with a final FOM of 4 × 10−3. After this threshold, the device performance exhibits 

only negligible changes. Due to gradual increases in the projection strength starting with 𝛽 = 10, sudden increases 

in the FOM are observed at iterations 394, 629, 1381, 1539, and 1737 until 𝛽 = 320 is reached. The increased 

number of iterations here compared to the previous 1 × 3 device can be attributed to the increased complexity of 

device functionality, for achieving wavelength-dependent phase offsets at the outputs. Once again, our modified 

approach with 𝐹4 where phase targets are explicitly specified for each output demonstrates successful convergence; 

whereas 𝐹3 with only the relative phase difference terms fails to converge. 

 
Figure 6. The optimization progress for a multi-wavelength, nanophotonic, phase-dependent power splitter with one input and 

two outputs showing (a) typical FOM 𝐹3 and (b) modified FOM 𝐹4. For the case of 𝐹4, standard (orange) and adaptively-

scheduled (blue) approaches are plotted separately. 

We also implement our adaptive scheduling of phase-dependent terms in the FOM calculation for this multi-

wavelength device. In this approach, the terms that depend on 𝜃(𝑗)(𝜆𝑘) in Eq. (9) at all wavelengths are included 

only after a FOM of 8 × 10−3 is reached, and the device achieves a discreteness of above 50%. These conditions 

are met relatively quickly (only after 49 iterations) as indicated by the blue curve, as the device operates simply as 

a 3 dB splitter without the phase-dependent functionality. At iteration 50, when the phase-dependent terms are 

added in the FOM calculation, the plotted FOM experiences a sudden jump as the device no longer operates near 

a local minimum of this updated FOM. However, this difference is recovered relatively quickly; and the device 

achieves the same convergence criterion as the standard method in 449 iterations. As a result, our adaptive 

scheduling of phase terms improves convergence speed by a factor of over 4.4 times (in less than 1/4th of iterations). 

The combination of separate phase target specification for all outputs and their adaptively-scheduled introduction 

into the FOM allow for successful and efficient nanophotonic device optimizations with simultaneous multi-

wavelength, multi-output, and phase-dependent capabilities.  

The final geometrical structure and the output fields for this device are plotted in Figure 7. Similarly, the regions 

corresponding to Si and SiO2 in the final device are shown with black and white, respectively. Once again, the 

optimizer returns a physically non-intuitive, yet functionally near-perfect device at the end of the design process. 
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From a qualitative perspective, the transmission achieved at each output port for all four wavelengths is visually 

even, with only small amounts of field visibly lost towards the simulation boundaries. Moreover, despite the 

difficulty of the both wavelength-dependent and phase-dependent FOM specified, the final device exhibits 

relatively large and smooth geometrical features as well as a fully binary structure with only Si (black) and SiO2 

(white) regions, due to the spatial filtering and projection operations used in the design process. These qualities 

point to the overall success of the optimizer at designing low-loss devices with the desired characteristics. 

 

 
Figure 7. (a) Optimized 1 x 2 device with wavelength-dependent phase offsets at output ports, with a 12μm × 12μm footprint, 

using an SOI platform with a 220 nm-thick silicon device layer. (b)-(e) Spatial profiles of 𝐻𝑧 at all four optimization 

wavelengths demonstrating even power splitting with different phase offsets. Scale bars added for reference. 

More specifically, the effects of gradual updating of design parameters on the transmission and phase characteristics 

of the device are plotted in Figure 8 and Figure 9. Due to the increments in the projection strength 𝛽, the change in 

the output transmissions at the two ports undergo significant and sudden changes before iteration 49. After the 

phase terms are introduced, these transmissions gradually recover and settle around several percentage points below 

the 1/2 target as shown in Figure 8. Specifically, the device exhibits at most 0.2dB insertion loss at these four 

design wavelengths, which is comparable to previously demonstrated devices even though no phase-dependent 

objectives were reported [13, 29, 30]. In contrast, the phase difference between the outputs is only optimized after 

iteration 49, as the phase-related terms are included in the updated FOM calculation. Once these terms are included, 

the phase difference between the two outputs quickly achieves the design targets within less than only 15 iterations, 

as demonstrated by the convergence behavior in Figure 9. This indicates the relative ease of achieving phase-

dependent objectives in nanophotonic splitters, whereas simultaneously achieving desired transmission 

characteristics can be more difficult as shown by the gradual improvements in Figure 8 from iteration 49 until the 

end of optimization. As a result, our demonstrated findings present a straightforward and methodical approach 

towards achieving phase-dependent output profiles, unlike prior approaches that modify the input field as a function 

of the desired output phases [17].  
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Figure 8. Progression of transmission at the two outputs of nanophotonic splitter with wavelength-dependent phase offsets at 

(a) 1500 nm, (b) 1530 nm, (c) 1560 nm, and (d) 1600 nm. 

 

Figure 9. Progression of phase difference between the two outputs of the 1x2 nanophotonic splitter at four wavelengths 

throughout optimization. 

3.3. Computational Performance of Adaptively-Scheduled Device Optimization 

To the best of our knowledge, in addition to being one of the only optimization approaches that robustly and 

consistently enables arbitrary phase offsets at the outputs with remarkable device performance, our phase-scheduled 

algorithms also demonstrate superior computational efficiency. More importantly, our optimization approach does 

not introduce any additional or mathematically intensive calculations other than the simple phase extraction shown 

in Eq. (5), and therefore maintains the inherent computational efficiency of frequency-domain approaches. 

Specifically, for our first device (1×3 splitter), the entire optimization shown by the blue curve in Figure 2(b) 

completes in 280 s, resulting in an average of 1.4 s per each iteration. As already anticipated, compared to other 

FDTD-based methods that could result in optimizations lasting several days [14, 24, 31, 32], this result illustrates 

the ability of our demonstrated algorithm to reach convergence many orders of magnitude times faster.  The 

asymptotic computational time and memory complexity of our FDFD-based algorithm is the same as other FDFD-

based methods [26, 33], as the underlying operations for a system of Maxwell’s equations solutions remain 

unchanged. As a result, our resulting per-iteration computational times are consistent with comparable frequency-

domain optimizations in literature [25]. Yet, our optimization algorithm can reach overall convergence faster than 
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several of these previously demonstrated results, due to the adaptive introduction of selected terms in the figures 

of merit, consequently enabling convergence in fewer iterations. 

In contrast, our second (1×2 splitter) device with wavelength-specific phase differences targets a significantly more 

challenging objective than a single-wavelength device. As a result, the optimization shown by the blue curve in 

Figure 6(b) takes significantly longer and completes in 3825 s (about 64 min), corresponding to 8.5 s per iteration 

(approximately 2.1 s per FDFD simulation at each one of the four wavelengths). These simulations at each 

wavelength are approximately 1.5 times slower than our first device, since this second device has a larger footprint 

(12μm × 12μm vs. 10μm × 10μm), and a greater number of resulting discretized cells. As such, even though the 

asymptotic computational complexity is the same as our previous device, the larger simulation area, simulations 

repeated at each wavelength, and the more complex target objective contribute to a longer overall optimization. 

Still, the final result is obtained much faster than the FDTD-based methods, and in consistent time scales as other 

FDFD-based methods referenced above. 

4. Conclusion 

In summary, we have demonstrated a novel and adaptive method for reliably and consistently achieving arbitrarily-

specified phase differences between the outputs of nanophotonic splitters. Instead of only using phase differences, 

by including phase targets for all outputs in the FOM calculations, we have shown that iterative optimizers like L-

BFGS-B can be configured to robustly and reliably design devices with specific phase offsets. Additionally, we 

have also demonstrated that instead of including these phase-dependent terms right at the beginning of optimization, 

adaptively scheduling their introduction later on during the optimization process drastically improves the overall 

convergence speed. Even though our adaptive scheduling method is one of the only approaches demonstrated so 

far that can reliably enable output phase offsets, this capability does not sacrifice the underlying computational 

efficiency of FDFD simulations. Overall computational times vary from several minutes to just over one hour for 

the two types of devices we demonstrated, in agreement with previous frequency-domain optimizers. Our 

demonstrated method works well for the design of single-wavelength and multi-wavelength devices as shown 

above, making it applicable for a large set of photonic systems in optical communications, sensing, and computing. 
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