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Abstract: The Gaunt coefficient is one of the important coefficients to be known for 

calculating molecular integrals in quantum theory of coupling of three angular momenta. 

Generally, these coefficients are calculated analytically by using the properties of the 

associated Legendre polynomials. In this study, Gaunt coefficients were calculated 

algebraically by using the recurrence relations and orthogonality conditions of spherical 

harmonics and different mathematical expressions were obtained from known analytical 

expressions for Gaunt coefficients in terms of factorial functions or binomial coefficients. By 

using the program written in the Mathematica programming language, both the analytical 

expressions and the algebraic expressions were calculated, and the numerical results obtained 

were compared. Numerical results are in quite agreement with the literature and each other. 

Key words: Clebsch – Gordan coefficients, Vector coupling coefficients, Gaunt coefficients. 

1. Introduction 

Since atoms and molecules are quantum mechanical systems, in order to study their 

electronic structure, physical and chemical properties, the Hamiltonian operator of the 

system must be written, and the Schrödinger equation of the system must be solved. The 

repulsive Coulomb potential energy term between electrons in atoms and molecules 

depends on the distances between two electrons and is inversely proportional to the 

distance term dependent on the coordinates of both electrons. Therefore, this interaction 

term between electrons cannot be written separately depending on the coordinates of 

individually electrons. This makes it impossible to solve the Schrödinger equation 

analytically for multi-electron systems without using approximate methods. It should be 

known that there is no mathematical difficulty in single-electron systems. The most 

suitable coordinate system to solve the Schrödinger equation in such systems is 

spherical coordinates. If spherical coordinates are used, the kinetic energy operators of 

individual particles are written as 

 

𝑇 =  − 
ℏ2

2 𝑚
 {

1

𝑟2
 

𝜕

𝜕𝑟
 (𝑟2  

𝜕

𝜕𝑟
) −  

𝐿2

ℏ2 𝑟2
  } (1) 

 

the form of the square of the angular momentum operator. 

In central field problems, since the Hamiltonian operator of the system commute with 

the square of the angular momentum and the component z of the angular momentum. 

The spherical harmonics are the eigenfunctions of 𝐿2 and also the eigenfunctions of the 

Hamiltonian operator. Therefore, the angular part of the spatial wave functions of all 

atoms and molecules is composed of spherical harmonics.  
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Spherical harmonics are given by associated Legendre polynomials, 𝑃𝑙
𝑚, as follows [1] 

 

𝑌𝑙
𝑚(𝜃, 𝜙) =  (−1)𝑚 √

2 𝑙 + 1

4𝜋
 
(𝑙 − 𝑚) !

(𝑙 + 𝑚) !
 𝑃𝑙

𝑚(𝑐𝑜𝑠𝜃) 𝑒𝑖 𝑚 𝜙 , 𝑚 ≥ 0 (2.a) 

Spherical harmonics for negative superscript is given by 

𝑌𝑙
−|𝑚|(𝜃, 𝜙) =  (−1)𝑚 [𝑌𝑙

|𝑚|(𝜃, 𝜙)]
∗
 (2.b) 

Spherical harmonics have a very wide range of applications not only in atomic and 

molecular physics, but also in solid-state physics, nuclear physics, astrophysics, and 

many areas of chemistry. 

In the second part of this study, functions consisting of the product of spherical 

harmonics and trigonometric functions are written again in terms of spherical 

harmonics. In the third part, the Gaunt coefficients are calculated algebraically using the 

integral expression for the Gaunt coefficients and the recurrence relations of the 

spherical harmonics in the second part. The numerical results of the obtained 

mathematical expression are calculated with the Mathematica program, the results are 

presented as Table 1 in the fourth part. The accuracy of the results found was checked 

using the orthogonality relation and compared with the literature. 

2. Material and Method 

2.1. Recurrence relations for spherical harmonics 

In multipole moment transitions that occur as a result of the interaction of atoms with 

the external electric and magnetic fields, the products of one spherical harmonic and 

trigonometric function (or product of trigonometric and exponential function) emerge. 

To calculate multipole moment integrals, it is possible to write recurrence relations for 

spherical harmonics using the recurrence relations provided by the associated Legendre 

polynomials. Some of these relations are given below [1, 2]. 

 

𝑐𝑜𝑠𝜃 𝑌𝐿
𝑀(𝜃, 𝜙) = √

(𝐿−𝑀+1)(𝐿+𝑀+1)

(2𝐿+1)(2𝐿+3)
 𝑌𝐿+1

𝑀 + √
(𝐿−𝑀)(𝐿+𝑀)

(2𝐿−1)(2𝐿+1)
 𝑌𝐿−1

𝑀   (3) 

  

𝑠𝑖𝑛𝜃 𝑌𝐿
𝑀(𝜃, 𝜙) 𝑒𝑖 𝜙 = −√

(𝐿+𝑀+1)(𝐿+𝑀+2)

(2𝐿+1)(2𝐿+3)
 𝑌𝐿+1

𝑀+1 + √
(𝐿−𝑀−1)(𝐿−𝑀)

(2𝐿−1)(2𝐿+1)
 𝑌𝐿−1

𝑀+1  (4) 

 

𝑠𝑖𝑛𝜃 𝑌𝐿
𝑀(𝜃, 𝜙) 𝑒−𝑖 𝜙 = √

(𝐿−𝑀+1)(𝐿−𝑀+2)

(2𝐿+1)(2𝐿+3)
 𝑌𝐿+1

𝑀−1 − √
(𝐿+𝑀−1)(𝐿+𝑀)

(2𝐿−1)(2𝐿+1)
 𝑌𝐿−1

𝑀−1  

 

(5) 

  

(2𝐿 − 1)(2𝐿 + 3) cos2 𝜃 𝑌𝐿
𝑀(𝜃, 𝜙) = (2𝑙 − 1)√

((𝐿+1)2−𝑀2)((𝐿+2)2−𝑀2)

(2𝐿+1)(2𝐿+5)
 𝑌𝐿+2

𝑀     

  

                                                           +[2𝐿(𝐿 + 1) − 2𝑀2 − 1] 𝑌𝐿
𝑀 (6) 

  

                                                                    +(2𝑙 + 3)√
(𝐿2−𝑀2)((𝐿−1)2−𝑀2)

(2𝐿+1)(2𝐿−3)
 𝑌𝐿−2

𝑀    

 

    (2𝐿 − 1)(2𝐿 + 3) 𝑠𝑖𝑛𝜃 cos 𝜃 𝑒𝑖𝜙 𝑌𝐿
𝑀(𝜃, 𝜙)  = 
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                                       −(2𝑙 − 1)√
((𝐿+1)2−𝑀2)(𝐿+𝑀+2)(𝐿+𝑀+3)

(2𝐿+1)(2𝐿+5)
 𝑌𝐿+2

𝑀+1    

   

                                    −(2𝑀 + 1)√𝐿(𝐿 + 1) − 𝑀(𝑀 + 1) 𝑌𝐿
𝑀+1 (7) 

  

                                  +(2𝑙 + 3)√
(𝐿2−𝑀2)(𝐿−𝑀−1)(𝐿−𝑀−2)

(2𝐿+1)(2𝐿−3)
 𝑌𝐿−2

𝑀+1   

 

    (2𝐿 − 1)(2𝐿 + 3) 𝑠𝑖𝑛𝜃 cos 𝜃 𝑒−𝑖𝜙 𝑌𝐿
𝑀(𝜃, 𝜙)  =   

 

  

                                       (2𝐿 − 1)√
((𝐿+1)2−𝑀2)(𝐿−𝑀+2)(𝐿−𝑀+3)

(2𝐿+1)(2𝐿+5)
 𝑌𝐿+2

𝑀−1    

  

                                     −(2𝑀 − 1)√𝐿(𝐿 + 1) − 𝑀(𝑀 − 1) 𝑌𝐿
𝑀−1 (8) 

  

                                  −(2𝑙 + 3)√
(𝐿2−𝑀2)(𝐿+𝑀−1)(𝐿+𝑀−2)

(2𝐿+1)(2𝐿−3)
 𝑌𝐿−2

𝑀−1   

 

     (2𝐿 − 1)(2𝐿 + 3) sin2 𝜃  𝑒2𝑖𝜙 𝑌𝐿
𝑀(𝜃, 𝜙)  = 

 

 

  

                               
2𝐿−1

√(2𝐿+1)(2𝐿+5)
√

(𝐿+𝑀+4)!

(𝐿+𝑀)!
 𝑌𝐿+2

𝑀+2    

   

                                                           +
2𝐿+3

√(2𝐿+1)(2𝐿−3)
√

(𝐿−𝑀)!

(𝐿−𝑀−4)!
 𝑌𝐿−2

𝑀+2 (9) 

  

                         −2√
(𝐿+𝑀+2)!(𝐿−𝑀)!

(𝐿−𝑀−2)!(𝐿+𝑀)!
 𝑌𝐿

𝑀+2    

   

     (2𝐿 − 1)(2𝐿 + 3) sin2 𝜃  𝑒−2𝑖𝜙 𝑌𝐿
𝑀(𝜃, 𝜙)  =  

 

                                    
2𝐿−1

√(2𝐿+1)(2𝐿+5)
√

(𝐿−𝑀+4)!

(𝐿−𝑀)!
 𝑌𝐿+2

𝑀−2    

   

                                                           +
2𝐿+3

√(2𝐿+1)(2𝐿−3)
√

(𝐿+𝑀)!

(𝐿+𝑀−4)!
 𝑌𝐿−2

𝑀−2 (10) 

  

                          −2√
(𝐿−𝑀+2)!(𝐿+𝑀)!

(𝐿+𝑀−2)!(𝐿−𝑀)!
 𝑌𝐿

𝑀−2    

   

In many-particle systems, the total angular momentum of the system is composed of the 

vector sum of the orbital angular momenta of the particles. The situation is a bit more 

complicated in atoms and molecules. Because, in addition to the orbital angular 

momenta of the electrons, there are also spin angular momenta that are independent of 

the orbital motion. In atoms and molecules, the total angular momentum which is 

expressed of the sum of these two angular momenta, needs to be investigated. H 

Hamiltonian operator of the system commutes with 𝐿2, 𝑆2, 𝐿𝑧 and 𝑆𝑧 so that these are 

constants of motion and corresponding quantum numbers 𝑙, 𝑠, 𝑚𝑙 and 𝑚𝑠 are all good 

quantum numbers. It is possible to write the wave function of the system that is 

composed of the individual wave functions of the electrons (superposition principle). In 
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this case, the linear combination coefficients are called Clebsch – Gordan coefficients 

[2] and are defined in terms of 𝐹(𝑎, 𝑏) binomial coefficients [3] as follows. 

 

𝐶𝑙1𝑚1,𝑙2𝑚2

𝐿 𝑀 = ⟨𝑙1𝑚1 𝑙2𝑚2|𝑙1𝑙2𝐿𝑀⟩ = ⟨𝑙1𝑙2𝐿𝑀|𝑙1𝑚1 𝑙2𝑚2⟩ 

(11) 

                     = 𝛿𝑀,𝑚1+𝑚2
[

𝐹(2𝑙1,𝑙1+𝑙2−𝐿) 𝐹(2𝑙2,𝑙1+𝑙2−𝐿)

𝐹(𝑙1+𝑙2+𝐿+1,𝑙1+𝑙2−𝐿)𝐹(2𝑙1,𝑙1−𝑚1)𝐹(2𝑙2,𝑙2−𝑚2)𝐹(2𝐿,𝐿−𝑀)
]

1/2

 

                                  ∑ {(−1)𝑧𝐹(𝑙1+𝑙2 − 𝐿, 𝑧)𝑧   

                                 𝐹(𝑙1−𝑙2 + 𝐿, 𝑙1 − 𝑚1 − 𝑧)𝐹(−𝑙1 + 𝑙2 + 𝐿, 𝑙2+𝑚2 − 𝑧)} 

where the summation index z is described in Refs. [2, 3]. 

To calculate the Clebsch – Gordan coefficients, the raising/lowering operators of the 

angular momentum operators are used. This is quite laborious task for high quantum 

numbers. In the use of computers, there is a problem of memory stacking. Clebsch – 

Gordan coefficients have been calculated analytically by many researchers using 

analytical methods, and the results are generally given in terms of factorial functions or 

binomial coefficients [4-12]. 

Clebsch – Gordan coefficients are the most general coefficients related to rotational 

motion. Therefore, all other coefficients related to rotation are written in terms of 

Clebsch – Gordan coefficients. One of these rotation coefficients is the Gaunt 

coefficient. Gaunt coefficients are defined as the product of three spherical harmonics 

by following form in terms of Clebsch – Gordan coefficients [13-19].  

For ∆𝑀 = 𝑚1 − 𝑚2    

 

 𝑌𝑙1𝑚1,𝑙2𝑚2

𝐿 𝑀 =  ∫ ∫ (𝑌𝑙1

𝑚1)
∗
 𝑌𝑙2

𝑚2  𝑌𝐿
𝑀 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙

𝜋

0

2 𝜋

0

 (12) 

 

                               = (−1)𝑚2 √
(2 𝑙1+ 1) (2 𝑙2+ 1) 

4 𝜋 (2𝐿+1)
 𝐶𝑙10,𝑙20

𝐿0 𝐶𝑙1𝑚1,𝑙2−𝑚2

𝐿𝑀  
 

 

and for ∆𝑀 = 𝑚1 + 𝑚2  

 

𝑌𝑙1𝑚1,𝑙2𝑚2

𝐿 𝑀 =  ∫ ∫ 𝑌𝑙1

𝑚1  𝑌𝑙2

𝑚2  (𝑌𝐿
𝑀)∗ 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙

𝜋

0

2 𝜋

0

 (13) 

                         

                            = √
(2 𝑙1+ 1) (2 𝑙2+ 1) 

4 𝜋 (2𝐿+1)
 𝐶𝑙10,𝑙20

𝐿0 𝐶𝑙1𝑚1,𝑙2𝑚2

𝐿𝑀    

Using the Clebsch – Gordan coefficients given in Refs. [5, 7, 20] in terms of factorial 

and binomial coefficients and Eqs. (12, 13), the Gaunt coefficients are written in terms 

of generalized hypergeometric functions whose argument is equal to 1 [21]. 

 𝑌𝑙1𝑚1,𝑙2𝑚2

𝐿 𝑀 = (−1)
3𝑙1+𝑙2−𝐿−2𝑚1

2 (
1+(−1)𝑙1+𝑙2+𝐿

2
) √

(2𝑙1+1)(2𝑙2+1)(2𝐿+1)

4𝜋
  

  

(14) 
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𝐹(𝑙2,

𝑙2+𝐿−𝑙1
2

) 𝐹(
𝑙1+𝑙2+𝐿

2
, 𝑙2) 𝐹(𝑙2+𝐿−𝑚1,𝑙2−𝐿+𝑚1)

(𝑙1+𝑙2+𝐿+1) 𝐹(2𝐿,2𝑚1)
  

  

                                √
𝐹(−𝑙1+𝑙2+𝐿,𝐿) 𝐹(2𝐿,𝑙1−𝑙2+𝐿) 𝐹(𝐿+𝑀,𝐿−𝑀) 𝐹(2𝑚1+2𝑚2,2𝑚1)

𝐹(𝑙1+𝑙2+𝐿,2𝐿) 𝐹(2𝐿,𝐿) 𝐹(𝐿,𝑙2−𝑙1) 𝐹(𝑙1+𝑙2+𝐿,2𝐿) 𝐹(𝑙2+𝑚2,𝑙2−𝑚2)
  

 

 

                          𝐹2 [
𝑙1 + 𝑚1 + 1, −𝑙1 +  𝑚1, −𝐿 + 𝑀 
−𝑙1 − 𝐿+𝑚1, 𝑙2 −  𝐿 +  𝑚1 + 1

| 1]3  
 

 

In this study, Gaunt coefficients were calculated algebraically using the recurrence 

relations of spherical harmonics and numerical values were obtained by using the 

Mathematica programming language [22].  

2.2. Gaunt coefficients 

According to Eq. (12 or 13), the expansion of spherical harmonics given by Eq. (2) 

should be used to calculate the Gaunt coefficients analytically. Since the double integral 

over a sphere (both 𝜃 and 𝜙 limits are constant) is product, the Gaunt coefficients are 

written as the product of two independent integrals. While it is difficult to calculate 

integrals via the associated Legendre polynomials, it is quite easy to calculate the 

integral via the azimuthal angle which gives the necessary selection rules for the Gaunt 

coefficients to be nonzero. The selection rules are ∆𝑀 = 𝑚1 ± 𝑚2 according to the 

spherical harmonic chosen as the complex. If the Gaunt coefficients are calculated using 

the Eqs. (12-14), these selection rules must be taken into account. Because, when the 

condition ∆𝑀 = 𝑚1 − 𝑚2 is satisfied, the Gaunt coefficient is different from zero but 

the Clebsch – Gordan coefficient becomes zero unless 𝑚2 = −𝑚2 in the expressions for 

the Clebsch – Gordan coefficient. 

When algebraic methods will be used instead of analytical methods to calculate the 

Gaunt coefficients, recurrence and orthogonality relations of spherical harmonics given 

by Eqs. (3-10) will be used. For 𝑙2 = 1 and 𝑚2 = 0, if  special values of spherical 

harmonics for this quantum sets is used, Eq. (12) rewritten as follows 

 

𝑌𝑙1𝑚1,10
𝐿 𝑀 = √

3

4𝜋
 ∫ ∫ (𝑌𝑙1

𝑚1)
∗
 (𝑐𝑜𝑠𝜃 𝑌𝐿

𝑀) 𝑠𝑖𝑛𝜃 𝑑𝜃 𝑑𝜙
𝜋

0

2 𝜋

0
   

 

In this equation, if the recurrence relation given by Eq. (3) is replaced with the product 

of trigonometric function and spherical harmonics, the orthogonality relation of 

spherical harmonics is used in the integral expression and then obtained. 

 

 𝑌𝑙1𝑚1,10
𝐿𝑀 = √3 {√

(𝐿−𝑀+1)(𝐿+𝑀+1)

(2𝐿+1)(2𝐿+3)
 𝑌𝑙1𝑚1,00

𝐿+1𝑀 + √
(𝐿−𝑀)(𝐿+𝑀)

(2𝐿−1)(2𝐿+1)
 𝑌𝑙1𝑚1,00

𝐿−1𝑀 }  (15) 

 

In order to calculate the  𝑌𝑙1𝑚1,10
𝐿𝑀  Gaunt coefficients, it is sufficient to give only L and M 

quantum numbers to this obtained equation. 

By changing the values of the 𝑙2 and 𝑚2 quantum numbers and repeating the above 

operations, the Gaunt coefficients for different quantum sets can be obtained as follows: 

 

 𝑌𝑙1𝑚1,11
𝐿𝑀 = √3/2 {√

(𝐿+𝑀+1)(𝐿+𝑀+2)

(2𝐿+1)(2𝐿+3)
 𝑌𝑙1𝑚1,00

𝐿+1𝑀+1 − √
(𝐿−𝑀)(𝐿−𝑀−1)

(2𝐿−1)(2𝐿+1)
 𝑌𝑙1𝑚1,00

𝐿−1𝑀+1}  

 

(16) 

  

(17) 
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 𝑌𝑙1𝑚1,1−1
𝐿𝑀 = √3/2 {√

(𝐿−𝑀+1)(𝐿−𝑀+2)

(2𝐿+1)(2𝐿+3)
 𝑌𝑙1𝑚1,00

𝐿+1𝑀−1 − √
(𝐿+𝑀)(𝐿+𝑀−1)

(2𝐿−1)(2𝐿+1)
 𝑌𝑙1𝑚1,00

𝐿−1𝑀−1}  

 

 𝑌𝑙1𝑚1,20
𝐿𝑀 = √5 {

3

2(2𝐿−1)(2𝐿+3)
[(2𝐿 − 1)√

((𝐿+1)2−𝑀2)((𝐿+2)2−𝑀2)

(2𝐿+1)(2𝐿+5)
 𝑌𝑙1𝑚1,00

𝐿+2𝑀   
 

 
 +(2𝐿(𝐿 + 1) − 2𝑀2 − 1) 𝑌𝑙1𝑚1,00

𝐿𝑀  

 

(18) 

 

                                     +(2𝐿 + 3)√
(𝐿2−𝑀2)((𝐿−1)2−𝑀2)

(2𝐿+1)(2𝐿−3)
 𝑌𝑙1𝑚1,00

𝐿−2𝑀 ] −
1

2
  𝑌𝑙1𝑚1,00

𝐿𝑀 }  
                 

 

 𝑌𝑙1𝑚1,21
𝐿𝑀 = 3√

5

6
{

1

(2𝐿−1)(2𝐿+3)
[(2𝐿 − 1)√

((𝐿+1)2−𝑀2)(𝐿+𝑀+2)(𝐿+𝑀+3)

(2𝐿+1)(2𝐿+5)
 𝑌𝑙1𝑚1,00

𝐿+2𝑀+1  
 

 

                   +(2𝑀 + 1)√𝐿(𝐿 + 1) − 𝑀(𝑀 + 1) 𝑌𝑙1𝑚1,00
𝐿𝑀+1  

 

(19) 

 

                         −(2𝐿 + 3)√
(𝐿2−𝑀2)(𝐿−𝑀−1)(𝐿−𝑀−2)

(2𝐿+1)(2𝐿−3)
 𝑌𝑙1𝑚1,00

𝐿−2𝑀+1]} 

 

 

 𝑌𝑙1𝑚1,2−1
𝐿𝑀 = 3√

5

6
{

1

(2𝐿−1)(2𝐿+3)
[(2𝐿 − 1)√

((𝐿+1)2−𝑀2)(𝐿−𝑀+2)(𝐿−𝑀+3)

(2𝐿+1)(2𝐿+5)
 𝑌𝑙1𝑚1,00

𝐿+2𝑀−1   

 

                                         −(2𝑀 − 1)√𝐿(𝐿 + 1) − 𝑀(𝑀 − 1) 𝑌𝑙1𝑚1,00
𝐿𝑀−1  

 

(20) 

 

                         −(2𝐿 + 3)√
(𝐿2−𝑀2)(𝐿+𝑀−1)(𝐿+𝑀−2)

(2𝐿+1)(2𝐿−3)
 𝑌𝑙1𝑚1,00

𝐿−2𝑀−1]}  
 

 

 𝑌𝑙1𝑚1,22
𝐿𝑀 = 3√

5

24
{

1

(2𝐿−1)(2𝐿+3)
[

2𝐿−1

√(2𝐿+1)(2𝐿+5)
√

(𝐿+𝑀+4)!

(𝐿+𝑀)!
 𝑌𝑙1𝑚1,00

𝐿+2𝑀+2  
 

 

    +
2𝐿+3

√(2𝐿+1)(2𝐿−3)
√

(𝐿−𝑀)!

(𝐿−𝑀−4)!
 𝑌𝑙1𝑚1,00

𝐿−2𝑀+2  

 

(21) 

 

                                     −2√
(𝐿+𝑀+2)!(𝐿−𝑀)!

(𝐿−𝑀−2)!(𝐿+𝑀)!
 𝑌𝑙1𝑚1,00

𝐿𝑀+2 ]}  

 

 

 𝑌𝑙1𝑚1,2−2
𝐿𝑀 = 3√

5

24
{

1

(2𝐿−1)(2𝐿+3)
[

2𝐿−1

√(2𝐿+1)(2𝐿+5)
√

(𝐿−𝑀+4)!

(𝐿−𝑀)!
 𝑌𝑙1𝑚1,00

𝐿+2𝑀−2   

 

                                         +
2𝐿+3

√(2𝐿+1)(2𝐿−3)
√

(𝐿+𝑀)!

(𝐿+𝑀−4)!
 𝑌𝑙1𝑚1,00

𝐿−2𝑀−2 

 

(22) 

 

                                         −2√
(𝐿−𝑀+2)!(𝐿+𝑀)!

(𝐿+𝑀−2)!(𝐿−𝑀)!
 𝑌𝑙1𝑚1,00

𝐿𝑀−2 ]}  

 

 

All Gaunt coefficients given by the Eqs. (15-22) are expressed in terms of the basic 

Gaunt coefficient defined as 
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 𝑌𝑙1𝑚1,00
𝐿𝑀 =

1

√4𝜋
𝛿𝑙1,𝐿𝛿𝑚1,𝑀 (23) 

3. Results  

As can be seen from the Eqs. (15-22), it is possible to find the Gaunt coefficients 

numerically according to the given quantum sets by calculating the multipliers of the 

basic Gaunt coefficients. Given Eqs. (14 and 15-22) Gaunt coefficients were calculated 

by algorithm written in Mathematica programming language based on these formulas 

and the results are given in Table 1. The numerical values given in Table 1 are in 

agreement with Refs. [15, 16, 19 and 23]. 

 

Written program by using Eqs. (14 and 15-22) are run on Intel (R) Core (TM) i5-6200U 

CPU @ 2.30 Ghz computer for some sets of quantum numbers and the CPU times are 

found, and the results are given in seconds in Table 2. Since the computers used have 

different hardware, the CPU times are not compared with the literature. 

 
Table 1. Gaunt coefficients for different sets of quantum numbers by using Eqs. (15-22 and 14). 

𝑙1 𝑚1 𝑙2 𝑚2 𝑙 𝑚 
1

√𝜋
 Eqs. (15-22) Eq. (14) 

10 5 0 0 10 5 1/2 0.2820947917738781 

15 8 1 0 14 8 
1

2
√483/899 0.2067705997734994 

25 -8 1 0 26 -8 3/√53 0.2324921981102874 

20 13 1 1 19 12 2√33/533 0.2807685277668304 

30 -15 1 1 31 -16 −
1

2
√1081/1281 −0.2591393410513699 

40 18 1 -1 39 19 
1

6
√77/79 0.09283369360381252 

15 5 1 -1 16 6 −
1

2
√21/31 −0.2321794983075630 

12 6 2 0 10 6 9

46
√17/7 0.1720224711335037 

14 7 2 0 14 7 7√5

186
 0.04747830014554065 

6 5 2 0 8 5 
3

√170
 0.1298140972960522 

64 50 2 1 62 49 14

635
√12882/43 0.2152964127263299 

8 4 2 1 8 3 
7

19√2
 0.1469787348847384 

12 7 2 1 14 6 −
2

9
√14/19 −0.08711191655125597 

38 15 2 -1 36 16 1

10
√1219/365 0.1031051798730726 

53 9 2 -1 53 10 −
19

109
√33/70 −0.06752430402507384 



DOI:10.29233/sdufeffd.1312399  2023, 18(3): 213-222y 

 

 

220 

 

45 18 2 -1 47 19 −
8

31
√55/19 −0.2477181917039297 

79 24 2 2 77 22 5

314
√530553/1643 0.1614399541279544 

83 65 2 2 85 63 5

338
√77/167 0.005667160268083574 

34 27 2 2 34 25 
−

90√61

4757
 −0.08336799160917377 

49 5 2 -2 47 7 1

194
√12341/19 0.07411766167839542 

24 9 2 -2 26 11 5

2
√111/6307 0.1871178187511329 

96 47 2 -2 96 49 
−

84√58

2483
 −0.1453588997129646 

   

 

Table 2. Computational times for some sets of quantum numbers in Table 1.   

𝑙1 𝑚1 𝑙2 𝑚2 𝑙 𝑚 
CPU (in seconds) 

Eqs. (15-22) Eq.(14) 

10 5 0 0 10 5 0.234 0.266 

30 -15 1 1 31 -16 0.296 0.218 

64 50 2 1 62 49 0.328 0.282 

53 9 2 -1 53 10 0.329 0.328 

83 65 2 2 85 63 0.297 0.344 

96 47 2 -2 96 49 0.266 0.329 

   

4. Conclusion 

To check the accuracy of the obtained numerical results, we used orthogonality relation 

for the Gaunt coefficients provided by following form [23] 

 

 ∑ ∑ 𝑌𝑙1𝑚1,𝑙2𝑚2

𝐿 𝑀 𝑌𝑙1𝑚1,𝑙2𝑚2

𝐿′ 𝑀′
= 𝑌𝑙10,𝑙20

𝐿 0 √
(2 𝑙1+ 1) (2 𝑙2+ 1)

4 𝜋 (2𝐿+1) 
𝛿𝐿,𝐿′𝛿𝑀,𝑀′  

𝑙2
𝑚2=−𝑙2

𝑙1
𝑚1=−𝑙1

 (24) 

 

Since the 𝑚2 value is constant in the Eqs. (15-22), it is sufficient to add only summation 

via  𝑚1 instead of the two sums in the orthogonality relation.  

In this study, the advantage of the formulas obtained for the Gaunt coefficients is that 

they are valid when both selection rules of the form ∆𝑀 = 𝑚1 ± 𝑚2 are satisfied. 
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