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 This study investigates the application of deep learning algorithms and high-resolution aerial 
imagery for individual tree detection in urban areas, using a neighborhood in Mersin, Turkey, 
as a case study. Employing the DeepForest Python package, we utilize high-resolution (7cm) 
aerial imagery to detect and map the city's tree population accurately. The results showcase 
an impressive accuracy rate of 80.87%, demonstrating the potential of deep learning in urban 
forestry applications and contributing to effective urban planning. The information generated 
from this study is crucial for conserving urban green spaces, enhancing resilience to climate 
change, and supporting urban biodiversity. While this research is focused on Mersin, the 
methods employed are globally adaptable, laying a foundation for further refinement and 
potential identification of different tree species in future work. This investigation highlights 
the transformative role of advanced technology in fostering sustainable urban environments.   

 
 
 

1. INTRODUCTION  

The identification of land characteristics and assets 
is essential for planning purposes. Land's natural and 
cultural resources are a compass for decision-making 
during the planning process (Selim et al., 2019). The most 
crucial data source for land management is determining 
ecological infrastructure, such as forests, streams, lakes, 
meadows and pastures, agricultural texture, etc. The 
management of lands will be facilitated by the rapid and 
precise detection of ecosystem assets and the ability to 
make future planning decisions (Peña-Barragán et al., 
2011). In addition, exposing agricultural components 
such as crop pattern determination, present and 
potential product quantity, tree numbers, and crown 
diameters is beneficial because they are the essential 
data sources for directing the food policies of nations and 
regions. Consequently, studies on identifying flora have 
always been a top priority for nations. With the 
development of remote sensing and geographic 
information systems, these auto-detection and automatic 
extraction studies are expanding significantly (Lin et al., 
2015). 

 
Satellites are the most significant and frequently 

used data source in remote sensing. However, unmanned 
aerial vehicles (UAVs), or drones, are rapidly increasing 
with technological advances. Utilizing UAVs in remote 
sensing research is primarily motivated by their low cost 
and practicality (Díaz-Varela et al., 2015). In addition, 
this system's advantages include the availability of up-to-
date, high-resolution data in a reduced amount of time 
and its high manoeuvrability. UAV images can be 
obtained at a lower cost than airborne LiDAR images. A 
low-cost camera can acquire color images when 
integrated into controllable UAV imaging systems. (Lim 
et al., 2015) These images are evaluated using a 
classification process based on their intended use. 
Unmanned aerial vehicles (UAVs) are a form of near-
surface remote sensing that could significantly advance 
forest and tree monitoring. Images captured by 
unmanned aerial vehicles (UAVs) can cover areas 
ranging from hectares to square kilometers, thus 
encompassing enough trees to provide large sample sizes 
for numerous species. Since UAV images view crowns 
directly from above and can be georeferenced, data on 
species identity, stem diameter, growth rate, 
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physiological measurements, and micro environmental 
conditions can be associated with each crown in the 
image.  

As with detecting individual trees, this method is 
insufficient for data processing and information 
extraction. To cover this vacuum, the Deep Learning (DL) 
algorithm is used to detect trees in UAV-captured images. 
The advent of deep learning techniques, coupled with the 
growing accessibility of high-resolution aerial imagery, 
has profoundly revolutionized the methodology of 
individual tree detection (LeCun et al., 2015; Orhan et al., 
2021). This convergence of cutting-edge technology with 
ecological research promises unprecedented precision 
and efficiency, laying the groundwork for a new era in 
understanding and managing forest ecosystems (Popkin, 
2019). Traditional methods of tree detection, often 
reliant on manual field surveys or interpretation of 
satellite images, have been constrained by significant 
time and resource demands (Wulder et al., 2012). In 
addition, these methods tend to yield a somewhat rough 
overview of the forest landscape (Franklin, 2001). They 
can indicate the presence of trees but often fail to provide 
detailed information on the tree species, health status, or 
precise count, especially in denser or more diverse forest 
landscapes.  

In contrast, combining deep learning algorithms 
with high-resolution aerial imagery heralds a 
transformation (Ma et al., 2019). Deep learning, a 
subfield of artificial intelligence, excels in identifying 
intricate patterns in large, complex datasets (Goodfellow 
et al., 2016). When trained on high-resolution aerial 
images, these algorithms can learn to distinguish 
between different tree species, discern their health 
status, estimate their age, and even predict their growth. 
This capability is particularly crucial in areas with high 
biodiversity, where manual identification can be 
challenging and prone to errors (Weinstein, 2018). The 
adoption of this method extends beyond just the speed 
and accuracy of tree detection. It also holds the potential 
to revolutionize how forest inventories are conducted 
(Duncanson et al., 2015). In traditional forestry, 
managing resources has often been arduous, involving 
lengthy field surveys to estimate the number and species 
of trees. However, With this innovative approach, forest 
managers can gain a precise and detailed overview of the 
forest resources, making management decisions far more 
efficient and informed. 

From a conservation perspective, this methodology 
offers significant advantages as well. Conserving 
biodiversity and maintaining healthy ecosystems require 
accurate data on the distribution and status of different 
tree species. Applying deep learning techniques to high-
resolution aerial imagery can provide conservationists 
with this essential information, facilitating the 
development of targeted and effective conservation 
strategies.  

Urban planners also stand to gain from this 
advanced tree detection technique (McHale et al., 2009). 
As urban areas continue to expand, striking a balance 
between infrastructure development and the 
preservation of green spaces becomes increasingly 
challenging. Detailed information on tree distribution 
and health can guide urban planners in designing cities 

that are not only functional but also environmentally 
sustainable. 

The implications for climate science are equally 
profound. Forests are critical in sequestering carbon, 
helping mitigate climate change's impacts (Pan et al., 
2011). With the ability to detect individual trees and 
assess their health status, scientists can more accurately 
model the carbon sequestration potential of different 
forests, contributing to our understanding of global 
carbon dynamics. 

In comparison to other methods of tree detection, 
the synergy of deep learning and high-resolution aerial 
imagery stands as a formidable contender. Conventional 
remote sensing techniques often struggle to accurately 
identify individual trees, particularly in dense or diverse 
forests. Traditional machine learning algorithms, while a 
step up, are dependent on manually engineered features 
and might not generalize well across varied landscapes. 
On the other hand, deep learning methods automatically 
recognize complex patterns and features, demonstrating 
superior adaptability and accuracy across a wide range 
of ecosystems. 

In summary, integrating deep learning with high-
resolution aerial imagery in tree detection represents a 
considerable leap forward in forest ecology and 
management. By improving the speed, accuracy, and 
level of detail in tree detection, this approach presents 
exciting opportunities across multiple domains - from 
forestry and conservation to urban planning and climate 
science. This advancement underscores the 
transformative potential of technology in addressing 
complex environmental challenges and shaping a more 
sustainable future. 

2. METHOD 

2.1. Study Area 

Our study area encompasses a neighborhood in 
Mersin, Turkey's rapidly urbanized city (Figure 1). As a 
prominent port city on the Mediterranean coast, Mersin 
has experienced rapid urban expansion in recent years. 
While urbanization provides economic and social 
benefits, it can also strain local ecosystems and alter 
natural landscapes. Among these alterations, tree loss is 
particularly concerning due to trees' critical role in urban 
environments (Escobedo et al., 2011). 
 

 
Figure 1. Study Area 
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Trees provide numerous ecosystem services vital 
for maintaining the quality of life in urban areas. They act 
as natural air purifiers, absorbing harmful pollutants and 
releasing oxygen. They provide shade, thereby reducing 
the heat island effect often associated with urban areas, 
and help conserve energy by reducing the demand for air 
conditioning. Trees also contribute to stormwater 
management by reducing runoff and erosion (Xiao & 
McPherson, 2011). Moreover, they enhance the aesthetic 
appeal of urban areas and provide habitats for various 
birds and insects, thereby supporting urban biodiversity 
(Shanahan et al., 2015). 

As a coastal city, Mersin is vulnerable to the effects 
of climate change, such as rising temperatures and 
changing precipitation patterns. A healthy urban tree 
population can help mitigate these effects, making the 
city more resilient to climate change (Livesley et al., 
2016). This approach can inform tree planting, 
maintenance, and protection policies by accurately 
mapping and monitoring the city's tree population. It can 
guide urban planners in creating a cityscape that 
balances development with green spaces, enhancing the 
livability and sustainability of Mersin. 

2.2. Data  

The foundation of this study lies in the utilization of 
very high-resolution aerial imagery with a precision of 
up to 7cm. Such high-resolution imagery is a rich source 

of detailed and accurate spatial information, which is 
instrumental in detecting individual trees in the study 
area. The importance of using high-resolution data in this 
context cannot be overstated. 

The high degree of detail captured in these images 
allows for precise delineation of tree crowns, 
differentiation between tree species based on their 
unique spectral signatures, and identification of tree 
health indicators such as color, texture, and shape. This 
granularity of data significantly enhances the accuracy of 
the tree detection process, enabling the deep learning 
model to make nuanced distinctions between different 
trees and other vegetation or structures in the urban 
landscape. 

The use of very high-resolution aerial imagery in 
this study is pivotal. It enables the collection of detailed 
and accurate spatial information, enhancing the 
precision of the tree detection process and, consequently, 
the overall quality of the research outcomes. The 
contribution of such data to the study is instrumental in 
advancing our understanding of urban tree populations 
and informing sustainable urban planning practices 
(Díaz et al., 2018). 

2.3. Method  

The general workflow for the tree extraction 
implemented in this study is given in Figure 2. 

 
 

 
Figure 2. The general workflow for the tree extraction from UAV photogrammetry orthomosaic data using the DL 
algorithm. 
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2.3.1. Image Processing  

The UAV images were captured in March 2022 using 
a fixed-wing Sensefly Ebee Plus UAV equipped with a 20-
megapixel RGB camera and a 10.5-millimetre autofocus 
lens (See Table 1 for detailed information.) The axis is 
parallel to the terrain and vertical for a nadir view of the 
images. With a cruising pace of 43ms, the UAV flew 305 
m above the study area. A total of 523 images with a front 
of 85% and a side of 70% overlap were captured for two 
flights separated by approximately sixty-five minutes 
and conducted between 10:00 and 12:00 am. Before the 
missions, eight triangular ground control points (GCPs) 
were established along the study area's perimeter. A 
dual-frequency GNSS receiver was installed at each GCP 
to acquire GPS and GLONASS data for two minutes. 
Following post-processing, the average horizontal and 
vertical precision of the GCPs were 1.4 cm and 3 cm, 
respectively. Finally, the Agisoft Metashape software's 
Structure from Motion (SfM) algorithm was used to 
generate an orthomosaic of the study area with a ground 
sampling distance (GSD) of 7 cm. 

Table 1. Sensefly Ebee Plus UAV and S.O.D.A Camera's 
basic technical features 

Specialty Value 
Weight/ Size 1100 g /1100 mm 
Cruising speed 40-110 m/s 
Max of flight time About 50 minutes 
PPK/RTK + 
Radiolink distance 3 km 
Sensor type/ Sensor size R-G-B (20 mp)/ 1-inch 
Image Width/Height 5280 X 3956 px 
Sensor Width/Height 12.75 X 8.5 mm 
Focal Length 10.5 mm 

 
A dense point cloud is a collection of millions of 

points positioned in three dimensions (x,y,z) by GNSS 
(Global Navigation and Satellite System). It is utilized to 
produce the DSM and ortho mosaics (Şasi & Yakar, 2017). 
A DSM contains the altitude of each pixel relative to the 
earth datum and serves as a validation tool for nDSM in 
our investigation. Orthomosaic images comprise all 
unprocessed images from each flight and are 
geographically corrected to their true position, thereby 
reducing camera, lens, and topographic distortion 
(Mesas-Carrascosa et al., 2016; Kabadayı, 2022). An 
orthomosaic facilitates the labelling of trees to develop 
DL's training and assessment patches. After aligning the 
raw RGB images of each flight using Agisoft Metashape, 
dense point clouds and orthomosaics were produced for 
this study. The dense point cloud and orthomosaics for 
each flight's entire dataset were generated in Metashape 
using the bulk procedure (Lucieer et al., 2013; Hamal & 
Ulvi, 2022). First, each set of RGB images were aligned 
without using ground control points (GCP) with an 
accuracy limit of 40,000 key points and zero bind points. 
The "optimize alignment" phase was then reset to its 
default value. Next, the "dense point cloud" (high quality, 
aggressive filtration), "mesh", and "texture" were 
constructed. DSM (interpolation enable) and 
orthomosaics (surface = DSM, blending mode = mosaic, 
hole infill = yes) were used to complete the procedure. All 

dense point clouds, digital surface models, and 
orthomosaics were exported to the International 
Terrestrial Reference Frame96 3 degrees 33N Zone. The 
exact pixel size and extent were specified for each flight's 
orthomosaic to overlay and process in Python. This is the 
initial step, followed by the detection of treetops, 
classification of treetops, and, ultimately result in 
validation. 

The SfM procedure begins by acquiring photographs 
of the object of interest from multiple positions and 
angles with sufficient overlap (e.g., 85% front and 70% 
side in this study). Based on advancements in image 
feature recognition, such as the scale-invariant feature 
transform (SIFT) (Lowe, 2004; Hamal, 2022), it is 
possible to autonomously detect, describe, and match 
characteristic image objects between photographs 
(Yakar & Doğan, 2019). Then, a bundle block adjustment 
is performed on the matched features to determine the 
3D position and orientation of the cameras, as well as the 
XYZ location of each feature in the photographs, resulting 
in a sparse 3D point cloud (Snavely et al., 2008; Yüksel et 
al., 2022). Using multi-view stereopsis (MVS) or depth 
mapping techniques (Campbell et al., 2008; Kabadayı & 
Uysal, 2020; Tükenmez & Yakar, 2023), a subsequent 
densification technique can be used to derive highly 
dense 3D models. Georeferencing of the 3D model in a 
real-world coordinate system is possible through GCPs 
and the incorporation of camera GPS locations. Last, the 
model can be exported to a grid-based DEM, and 
orthophoto mosaics (orthomosaics) can be derived from 
projected and blended photographs. The SfM workflow 
was utilized in this investigation, as implemented by the 
commercial software Agisoft Metashape.  

Initially, SfM techniques extract individual features 
from each image of the photogrammetric block, which is 
then matched with their corresponding feature in the 
other images of the photogrammetric block (Guerra-
Hernández et al., 2018). These characteristics are used to 
ascertain the sensor's relative position during flight, 
allowing the position and orientation of each sensor to be 
calculated. At this juncture, the results' spatial quality 
depends on the geolocation sensor, GNSS sensor, and 
IMU sensor (Cruzan et al., 2016). Generally, the 
geolocational precision of images captured by 
commercial UAVs is moderate to low. Therefore, this 
investigation determined geolocation using aerial 
triangulation (Ebrahimikia & Hosseininaveh, 2022). A 
group of GCPs was dispersed throughout the study area 
to enhance the spatial quality of the results. These GCPs 
were measured with greater spatial precision than GSD 
on a field. After aerial triangulation was computed, a DSM 
was produced in three steps: feature extraction, multi-
image matching, and error detection. Using DSM and 
external orientation, each image was orthorectified. 
Finally, individual orthorectified images were mosaicked 
to produce a UAV orthomosaic of the entire study area. 
Each orthomosaic was created with the same GSD as the 
corresponding UAV flight. 
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2.3.2. Deep Learning 

The methodology adopted for individual tree 
detection using deep learning techniques and high-
resolution aerial imagery comprises several stages. 
These include data acquisition and preprocessing, model 
training and validation, and finally, model testing and 
evaluation (Wäldchen & Mäder, 2018). The DeepForest 
Python package, which forms the core of this process, is 
built upon deep learning libraries like PyTorch and 
utilizes a pre-trained neural network model for tree 
crown detection (Weiss et al., 2014).  

At the heart of this methodology is the DeepForest 
Python package, which utilizes a variant of the Region 
Convolutional Neural Networks (R-CNN), a state-of-the-
art object detection algorithm. R-CNNs are adept at 
identifying and localizing objects within an image, 
making them suitable for detecting individual tree 
crowns (Zou et al., 2018). 

The DeepForest model is pre-trained on a large 
dataset of RGB aerial images, where individual trees have 
been manually annotated. In the training phase, the 
model learns to recognize patterns and features that 
distinguish tree crowns from the rest of the forest 
canopy. The model adjusts its parameters through 
backpropagation to minimize discrepancies between its 
predictions and annotations. 

The DeepForest package leverages the 
computational efficiency and flexibility of the PyTorch 
library, a popular choice for deep learning applications 
(Paszke et al., 2019). PyTorch provides a dynamic 
computational graph, which allows for more flexibility in 
building and modifying models, a feature that is 
particularly useful when dealing with complex tasks like 
tree detection. Additionally, PyTorch's compatibility 
with GPU acceleration enables faster model training, 
which is essential when working with large image 
datasets. 

Following the training phase, the model undergoes 
testing to evaluate its performance in detecting trees in 
new, unseen aerial images (Huang et al., 2017). Metrics 
such as precision, recall, and F1 score are computed to 
assess the model's accuracy and reliability. These metrics 
provide a comprehensive overview of how well the 
model identifies and localizes individual tree crowns (Gu 
et al., 2018). 

Incorporating deep learning into tree detection 
methodology via the DeepForest package significantly 
advances accuracy, efficiency, and scalability. This 
approach empowers researchers and practitioners alike 
to glean valuable insights from high-resolution aerial 
images, advancing our understanding and management 
of forest ecosystems. 

Moreover, we also use ArcGIS Pro’s TreeDetection 
deep learning package. Although specific details about 
the architecture used in the Tree Detection package are 
proprietary information and not publicly available, it 
likely uses a form of Convolutional Neural Network 
(CNN), commonly used for image classification tasks. 

In tree detection, CNNs can be trained to identify 
features and patterns unique to trees in imagery. The 
first step in this process is training the model on a large 
dataset of labelled images, where the presence or 
absence of trees has been manually annotated. The 
trained model can then be used to predict the presence 
of trees in new, unlabeled images. The model scans the 
new image in the inference phase, applying the learned 
filters and weights to identify tree-like features. If the 
aggregate of these features surpasses a certain threshold, 
the model classifies that section of the image as 
containing a tree. 

3. RESULTS 

A tree detection algorithm based on the R-CNN 
architecture was applied to Very High-Resolution Aerial 
Imagery and successfully detected trees. The algorithm 
used a combination of convolutional neural networks 
and region recommendation networks to identify trees in 
the images. The identified trees were then extracted and 
displayed on a map showing their location and 
distribution. Figure 3 shows the map with the extracted 
trees using DeepForest. Moreover, Figure 4 shows the 
map with extracted trees using ArcGIS Pro’s 
TreeDetection deep learning package. 

The map shows that the detected trees are 
distributed in various areas of the image and indicates 
the presence of trees in these locations. The proposed 
algorithm was able to detect small trees as well as large 
trees with high accuracy. The false positive rate is also 
low, indicating that the algorithm does not misidentify 
other image features as trees. 

The proposed tree detection algorithms 
(DeepForest and ArcGIS Pro) achieved an overall 
accuracy of 80.87% and 48.95% on the test dataset of 
Very High-Resolution Aerial images. The DeepForest 
algorithm successfully detected trees of different sizes 
and shapes. The precision and recall values are 82.15% 
and 94.59%, respectively, indicating a good balance 
between false positive and false negative errors (Table 
2). 

Table 2. Accuracy Analysis  

Total TP FP FN Recall 
F1 
Score 

Precision 
(UAcc) 

Deep 
Forest 

213 175 38 10 0.9459 
0.879
4 

0.8215 

ArcGIS 
Pro 

70 32 38 35 0.48 0.47 0.46 

Overall, the proposed tree detection algorithm 
based on R-CNN architecture using Very High-Resolution 
Aerial images data has shown promising results and 
proved its effectiveness in Very High-Resolution Aerial 
images. The proposed algorithm can be applied to real-
time tree detection and monitoring systems. 
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Figure 3. Detected trees in the study area with DeepForest 

 

 
Figure 4. Detected trees in the study area with ArcGIS Pro 

4. CONCLUSION  

This study demonstrates the immense potential of 
employing deep learning techniques in combination with 
high-resolution aerial imagery to detect individual trees 
in urban environments. Achieving an impressive 
accuracy of 80.87% in our case study of Mersin, Turkey, 
this methodology underscores the feasibility and  
effectiveness of using advanced machine learning models 
to analyze and understand urban green spaces. 

Detecting and analysing individual trees in urban 
landscapes is critical, given trees' various ecosystem 
services. From enhancing air quality and reducing urban 
heat islands to supporting biodiversity and aesthetic 
appeal, trees are an indispensable component of 
sustainable and resilient cities. Accurate tree detection, 

thus, lays the groundwork for informed urban planning 
and management strategies, enabling the design of cities 
that harmoniously blend development with nature. 

We use the DeepForest model and high-resolution 
aerial imagery to create detailed and dynamic maps of 
urban tree populations. The application of this 
methodology extends beyond Mersin, as it can be 
adapted for different urban contexts worldwide, 
contributing to the global goals of urban sustainability 
and resilience. 

However, despite the promising results, the field of 
tree detection using deep learning and aerial imagery is 
still relatively nascent. As we move forward, there are 
several avenues for further research. One potential 
direction is to enhance the model's precision and recall, 
perhaps by refining the training process or integrating 
other data sources like LiDAR. Another intriguing 
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prospect is to extend the model to identify individual 
trees and different tree species, which would add another 
dimension to our understanding of urban green spaces. 

In conclusion, this study represents a significant 
stride in using deep learning for environmental 
applications. It illuminates the path towards a more 
nuanced understanding of our urban ecosystems and 
underlines the pivotal role of technology in fostering 
sustainable urban futures. 
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