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Abstract: Self-transport and control of droplets play an essential role in the 
development of microfluidic devices, self-cleaning, water harvesting, and heat 
transfer enhancement. Droplet manipulation without an external force can be 
accomplished if a wetting gradient is structured on surfaces. The contact angle 
hysteresis generates a driving force toward the more wetting side. If this force is 
balanced by the viscous stresses near moving contact lines, droplets on such 
surfaces may attain constant translational speed determined by this balance. The 
D2Q9 lattice Boltzmann method is employed for the simulation of the self-driven 
droplets on wettability gradient surfaces. By varying the surface energy and fluid 
viscosities, the behavior of single droplets on surfaces, their merging mechanism, 
and equilibrium shapes and motions within confined channels are studied 
systematically. If the droplet moves in a more viscous fluid, the droplet’s speed 
dependence on the wetting gradient is observed to weaken. For large aspect ratio 
channel flows, it is shown that two-dimensional prediction of the interface motion 
approaches the three-dimensional D3Q19 model computations. 

Islanabilirlik Gradyan Yüzeylerinde Kendi Kendini Yürüten ve Birleştiren Damlacıklar: 
Bir Lattice Boltzmann Çalışması 

Anahtar Kelimeler 
Arayüzey akışı, 
Temas hattı, 
Islanabilirlik gradyanı, 
Lattice Boltzmann metodu 

Öz: Damlacıkların kendi kendine taşınması ve kontrolü, mikroakışkan cihazların 
geliştirilmesinde, kendi kendini temizlemede, su toplamada ve ısı transferini 
geliştirmede önemli bir rol oynar. Yüzeylerde bir ıslatma gradyanı 
yapılandırılmışsa, harici bir kuvvet olmadan damlacık manipülasyonu elde 
edilebilir. Temas açısı histerezisi, daha çok ıslanan tarafa doğru bir itici güç 
oluşturur. Bu kuvvet, hareketli temas hatlarının yakınındaki viskoz gerilimlerle 
dengelenirse, bu tür yüzeyler üzerindeki damlacıklar, bu denge tarafından 
belirlenen sabit öteleme hızına ulaşabilir. Bu çalışmada D2Q9 lattice Boltzmann 
yöntemi, ıslanabilirlik gradyan yüzeylerinde kendiliğinden hareket eden 
damlacıkların simülasyonu için kullanılmıştır. Yüzey enerjisi ve akışkan 
viskoziteleri değiştirilerek, tek damlacıkların yüzeyler üzerindeki davranışı, 
bunların birleştirme mekanizması ve sınırlandırılmış kanallar içindeki denge 
şekilleri ve hareketleri sistematik olarak incelenmiştir. Damlacık daha viskoz bir 
akışkan içinde hareket ederse, damlacık hızının ıslanma gradyanına bağlılığının 
zayıfladığı gözlemlenmiştir. Büyük görünüm oranlı kanal akışları için, arayüz 
hareketinin iki boyutlu tahmininin üç boyutlu D3Q19 modeli hesaplamalarına 
yaklaştığı gösterilmiştir. 

1. Introduction

Self-transport and manipulation of droplets are 
essential for many applications like microfluidic 
devices [1] and lab-on-a-chip systems [2], biomedical 

applications [3], heat transfer enhancement [4], self-
cleaning [5], to name a few [6]. For example, in heat 
transfer on surfaces, manipulation of droplets by 
wetting gradients is promising to increase the 
efficiency of heat transfer. The occurrence of 
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condensation either as film-wise condensation or 
drop-wise condensation affects the mechanism of heat 
transfer. Because the continuous film creates a 
resistance for heat transfer, dropwise condensation is 
more effective. But in high rates of temperature 
differences, it cannot be possible to observe dropwise 
condensation [4,7]. 

The manipulation of the interfaces, however, is 
possible by playing with the wettability of the 
surfaces. This change in the surface wetting may 
provide self-propulsion (passive control) which is a 
preferred mechanism since it does not require 
external forcing (active control). The idea of changing 
the wettability of surfaces can be utilized to vary the 
droplet speed [8], the orientation by combining it with 
a liquid infusion or lubricant impregnation [9,10], the 
size [11], to control water droplet motion by varying 
the wall energy [12] or topography [13], etc. 

When a liquid droplet is placed on a surface that is 
atomically smooth and chemically homogeneous, the 
contact angle between the liquid-vapor interface and 
the surface is unique. The existence of imperfections 
due to surface roughness and/or energy distribution, 
however, alters this uniqueness. The droplet may 
attain an equilibrium shape, pin (depin) to (from) 
structures, and move due to hysteresis [14]. For 
example, if the surface is more wetting (more prone to 
spreading out) at one end than at the other, the droplet 
tries to move towards the more wetting end. This 
happens because the liquid spreads more and makes a 
larger contact area with the solid substrate at the more 
wetting end, which can cause the droplet to be pulled 
towards that direction due to capillary forces [15,16]. 
In other words, the droplet moves from the low-
surface energy side towards the high-surface energy 
side because the liquid particles are attracted more 
onto the high-surface energy substrates (more 
wetting) than the low-surface energy substrates (less 
wetting). The motion is also possible if a wedge like 
wettability patterning exist on the surfaces [17,18].  

A gradient on the surface wettability generates a 
driving force. It is known that self-transport is faster 
for low-surface tension fluids like ethanol compared to 
water as it is more wetting [19,20] on a fixed 
substrate. But without altering the surface tension of 
the droplet, its shape or motion can be controlled by 
varying the surface energy of the surfaces [21]. 
Geometric gradients like the self-motion of droplets on 
conical surfaces are also possible (see, e.g., Ding et al. 
2023 [22]). Assisted by both surface gradients and 
wetting gradients, a droplet may further be 
accelerated. Recently, Raj et al. 2023 [23] utilize 
wetting gradient for controlled water collection, Xie et 
al. 2023 [24] discuss switchable wettability patterns 
for the spontaneous and controlled motion of droplets 
and subaqueous bubbles, and Sung et al. 2023 [25] 
fabricate 3D printed wetting gradient surfaces to 
minimize splashing of water droplets. 

The lattice Boltzmann method is one of the numerical 
methods to be able to integrate the governing 
equations controlling the motion of two-phase 
systems. In this paper, the lattice Boltzmann method is 
used for simulating the model problems because of the 
method’s mobility for wetting problems. This 
mesoscopic numerical method is capable of solving a 
wide range of problems from simple fluids to complex 
chemical reactions and has lower computing cost due 
to its step-by-step solution (i.e., no requirement of 
matrix inversion), compared to traditional methods 
such as Finite Volume Method, Finite Element Method, 
Boundary Element Method, etc. 

The purpose of this study is to consider only the 
gradient in the surface energy for droplet 
manipulation by using the Lattice Boltzmann Method 
and to propose how to use wetting gradients to 
manipulate such interfaces either as single or multiple 
droplets. The following is believed to be novelty of this 
study: (i) the mechanisms of self-motion for droplets 
on surfaces and confined between two surfaces are 
explained, (ii) the droplet can be moved to or merged 
at a desired location, (iii) the effect of the viscosity 
ratio on the motion for both single and merging 
droplets is also discussed, (iv) the plane model which 
is considered in this study can be used as a guide for 
three-dimensional interfaces, especially for confined 
droplets within large aspect ratio channels. 

In the following sections, first the numerical method is 
introduced and various problems are analyzed for 
validation purposes. Then, the mechanisms of self-
driven single or multiple droplets on and within 
chemically structured surfaces are discussed. 

2. Material and Method

2.1. Numerical Method 

Lattice Boltzmann method is a mesoscopic numerical 
integration method for fluid dynamics which comes 
from the discretization of the Boltzmann equation. It 
defines the behavior of a gas or liquid at this level by 
expressing the evolution of particle distribution 
functions on a lattice grid. These distribution functions 
describe the chances that particles travelling at 
particular velocity will be present at each lattice 
location. The method controls the temporal evolution 
of these distribution functions as a result of particle 
advection and collisions. The D2Q9 model is a specific 
lattice Boltzmann method that uses a two-dimensional 
lattice with nine discrete velocity vectors, and it 
provides a wide range of fluid flow simulations. 

D2Q9 model is capable of capturing the 
thermodynamic variations, such as temperature and 
pressure, by introducing a free energy functional into 
the Boltzmann equation. This functional represents 
the total energy of the system, including both kinetic 
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and potential energy, and can be used to compute 
quantities such as the equation of state, heat capacity, 
and surface tension along the drop interface 𝛾𝐿𝑉[26]. 

To implement the free energy in the D2Q9 model, 
firstly, distribution functions are defined, which 
describe the probability of finding a particle with a 
particular velocity at a given point in space and time. 
These distribution functions are then evolved using 
the Boltzmann equation, which takes into account the 
collision of particles and their interactions with the 
surrounding fluid. 

Binary fluid is modeled by a Landau free energy 

functional. The free energy density,  𝜑, is introduced 
into the Boltzmann equation by adding a term that 
represents the change in free energy due to the 
collision of particles. The bulk free energy density 
𝜑(∅)  as function of fluid density 𝜌 , order parameter 
(phase) ∅, is given as [27] 

𝜑(∅) =
𝑐2

3
𝜌ln𝜌 + 𝑎 (−

1

2
∅2 +

1

4
∅4). (1) 

In equation (1), c is the lattice velocity parameter 

defined as c=
∆𝑥

∆𝑡
,  a is constant affecting the surface 

tension and interface width. Equation (1) enables 
binary phase separation as ∅ = ±1 . The governing 
equations modeling the motion of fluid particles as 
continuity and Navier-Stokes are recovered with LBM 
by using Chapman-Enskog expansion [28]. In the 
continuum regime, the continuity (equation (2)) and 
linear momentum balances (equation (3)), in index 
notation, are 

𝜕𝑡𝜌 + 𝜕𝑘(𝜌𝜗𝑘) = 0, (2) 

𝜕𝑡(𝜌𝜗𝑗) + 𝜕𝑘(𝜌𝜗𝑘𝜗𝑗) = −𝜕𝑘𝑃𝑘𝑗 +

𝜕𝑘[𝜂(𝜕𝑗𝜗𝑘 + 𝜕𝑘𝜗𝑗)] + 𝜌𝐹𝑗 ,  
(3) 

where 𝜌 is the fluid density, 𝜗 is the fluid velocity, 𝜂 is 
the dynamic viscosity of fluid,  𝑃𝑘𝑗  is the pressure

tensor and 𝐹𝑗  is the body force. In equations (2) and

(3), j is free while the k is dummy indices, respectively. 
For two-dimensional problems j, k=1,2 and for three-
dimensional problems j, k=1,2,3. In modeling two-
phase flows (binary systems), two distribution 
functions are utilized as 𝑓𝑖(𝒓, 𝑡)  and 𝑔𝑖(𝒓, 𝑡). 
Distribution function f recovers the physical 
properties and g recovers order parameters. Because 
of the D2Q9 model that is used, there exist nine 
directions with subscript 𝑖  defining the directions 
varying from 1 to 9. The directions are given as [26]  

𝒆 = [0,0; 1,0; −1,0; 0,1; 0, −1; 1,1; −1, −1; −1,1; 1, −1]. (4a) 

For the three-dimensional models, however, D3Q19 
model is used with nineteen directions which in its 
vector form is defined as [29] 

𝒆 = [0,0,0; 1,0,0; −1,0,0; 0,1,0; 0, −1,0; 0,0,1; 0,0, −1; 
1,1,0; −1,1,0; 1, −1,0; −1, −1,0; 0,1,1; 0, −1,1; 

0,1, −1; 0, −1, −1; 1,0,1; −1,0,1; 1,0, −1; −1,0, −1]. 
(4b) 

In this case, the subscript i for the distribution 
functions varies from 1 to 19. The vectors in equations 
(4a) and (4b) are the lattice velocity vectors for c=1.  

Physical parameters can be found by using 
distribution functions as in equation (5) below.  

𝜌 = ∑ 𝑓𝑖

𝑖

, ∅ = ∑ 𝑔𝑖

𝑖

, 𝜌𝑣 = ∑ 𝑓𝑖𝑒𝑖

𝑖

 (5) 

The distribution functions are evolved in time by 
collision and streaming steps. In equations (6) and (7), 
collision and streaming steps are shown in one 
equation. 

𝑓𝑖(𝒓 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(𝒓, 𝑡) −

𝑴−𝟏[𝑺(𝑴[𝑓𝑖 − 𝑓𝑖
𝑒𝑞

])]
(6) 

𝑔(𝒓 + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑔𝑖(𝒓, 𝑡) −
1

𝜏𝜙
[𝑔𝑖 − 𝑔𝑖

𝑒𝑞
] (7) 

where 𝜏𝜙 is relaxation parameter. Multiple-Relaxation 

Time (MRT) operator is used for the collision equation 

in (6) where the collision term [𝑓𝑖 − 𝑓𝑖
𝑒𝑞

]  is

multiplied with 𝑴−𝟏
𝑺𝑴 . It gives more accurate

results due to having more than two parameters as 
free and tunable parameters and possible choice for 

the matrices 𝑴  and 𝑺, distribution functions 𝑓𝑖
𝑒𝑞

and

𝑔𝑖
𝑒𝑞

 and details of the LBM implementation can be

found in the study of Pooley et al. [30] and of Boylu 
[31].  

To satisfy the no-slip boundary conditions on the 
walls, the mid-way bounce back technique is utilized 
and wetting boundary condition is provided by setting 
the wall normal gradient of the order parameter ∅ 
[26]. 

2.2. Validation 

The problems that are interested in this study are 
affected greatly by the contact line dynamics. The 
contact angle between the liquid-vapor interface and 
the surface determines the statics and dynamics of the 
problem. To this end, the solver is validated for both 
static and dynamic problems. 

The problem setup is shown in Figure 1. For single 
droplets, the bottom surface interacts with the droplet 
on which the surface energy is varied. The top surface 
is away from the droplet. For the confinement effect, 
the top surface touches the droplet interface. The left 
and right ends of the domain are treated as periodic. 
The number of lattices in both directions varies for 
different problems. The green color represents the 
droplet as fluid 1 and the blue color represents the 
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outside fluid as fluid 2. The number of lattices in x and 
y directions vary for different problems. 

Figure 1. Problem domain, 𝑛𝑥  and 𝑛𝑦  are the number of 

lattices used along x and y directions, the contact angle 𝜃 
may be unique or different at both contact lines 

For droplets on surfaces with uniform surface energy, 
the computed angles and Laplace pressures are 
measured at the equilibrium state for several 
wettabilities. By setting the normal gradient of the 
phase field (order parameter) at the surface, it is 
possible to define the equilibrium contact angles. If 
there is deformation, the dynamic angles are 
determined as part of the solution which deviate from 
the equilibrium angle. The measured contact angles 
and shape of the droplets are shown in Figure 2.  

Figure 2. The variation of measured contact angles with 
respect to normal gradient of 𝜙 at the wall. The dashed line 
is theoretical relation [27], squares are for 𝜏1 = 𝜏2 = 1 , 
lower triangles are for 𝜏1 = 3, 𝜏2 = 0.7.  The insets show 
representative equilibrium profiles for partial wetting cases 

The pressure difference across the interface at 
equilibrium is also measured and validated: Balancing 
forces normal to an interfacial element, the pressure 
difference in an out of a droplet is balanced by the 
resultant force per unit area due to uniform surface 
tension 𝛾  between droplet and exterior fluid. This 
uniform surface tension force in the normal direction 
is determined by 𝛾∇ ∙ 𝒏 with 𝒏 being unit normal from 
droplet to outside fluid. The divergence of the unit 
normal for a spherical droplet of radius r is 2/r. This 
shows that the pressure difference across such 
interface scales as 𝑝𝑑 − 𝑝𝑜~𝛾/𝑟  where 𝑝𝑑  is the 
pressure inside the droplet, 𝑝𝑜 is the outside pressure. 
The slope determines the surface tension. 

Two different tau parameter pairs are used to validate 
different viscosity ratio fluids that is studied later. 
While 𝜏1 determines the kinematic viscosity of fluid 1, 
𝜏2  determines the kinematic viscosity of fluid 2. The 
viscosity ratio, λ, is defined as the ratio of kinematic 
viscosity of fluid 1 to fluid 2. The use of MRT technique 
provides better predictions when the viscosity ratio of 
the two phases is different than unity. The 
theoretically computed relation between the wall-
normal gradient of ∅  and the wetting angle agrees 
with the numerically computed angles. The dynamic 
motion of interfaces within capillary channels is also 
compared [30]. The details about contact angle tuning 
and dynamic validations can be found in Boylu [31]. 

3. Results

3.1. Motion of droplets on wettability gradient 
surfaces 

Small droplets for which the gravitational forces are 
negligible are considered and, in this section, their 
motion driven by surface energy gradients is studied. 
To be able to explain the source of this driving 
mechanism, first, the equilibrium contact angles of 
droplets on surfaces which do not provide motion are 
defined. The simplest of such cases is substrates with 
uniform surface energy around the contact line in 
equilibrium. This does not require the surface energy 
to be uniform everywhere if there is pinning at a 
physical roughness. For clean surfaces, the contact 
angle is defined by the Young value. The contact angles 
at the left and right of the center of mass of a droplet 
are defined as 

cos(𝜃𝑒
𝑙) =

𝛾𝑆𝑉
𝑙 −𝛾𝑆𝐿

𝑙

𝛾
, cos(𝜃𝑒

𝑟) =
𝛾𝑆𝑉

𝑟 −𝛾𝑆𝐿
𝑟

𝛾
, 

(8) 

where 𝛾𝑆𝑉 is the surface tension at the solid-vapor 
interface and 𝛾𝑆𝐿  is the surface tension at the solid-
liquid interface. 

The results presented are all in lattice units in this and 
following subsections. The domain length is set to 
𝑛𝑥 = 500  and height to 𝑛𝑦 = 50 . The motion is 

initialized by placing the droplet of radius 30 lattice 
units at 𝑥 = 50  as a semi-circle by using a linear 

wettability gradient reducing from 𝜃𝑒
𝑙𝑒𝑓𝑡

  to 𝜃𝑒
𝑟𝑖𝑔ℎ𝑡

.
When the surface energy of the surface at which the 
droplet contacts is non-uniform, the contact angles at 
the two triple junctions are different. If there were any 
equilibrium state, the angles would be equilibrium 
angles that can be called as 𝜃𝑒

𝑙  and 𝜃𝑒
𝑟  (as defined in

equation (8)). The wetting gradient and inequality of 
the contact angles initiate the motion of the droplet. 
Due to hysteresis, it is known that the dynamic angle 
would be less than the equilibrium angle if the contact 
line recedes; it would be more if the contact line 
advances. For a negative wetting gradient surface, the 
left contact line tries to attain a larger contact angle 
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compared to the right contact line. When the left 
contact line recedes, because the contact angle is 
smaller than the equilibrium angle, the following 
inequality holds: 

𝛾𝑆𝑉
𝑙 − 𝛾𝑆𝐿

𝑙 > 𝛾 cos(𝜃𝑒
𝑙). (9) 

When the right contact line advances, on the other 
hand, as the advancing contact angle is greater than 
the equilibrium one there, the corresponding 
inequality becomes 

𝛾𝑆𝑉
𝑟 − 𝛾𝑆𝐿

𝑟 > 𝛾 cos(𝜃𝑒
𝑟). (10) 

Summation of the surface tension forces at the two 
contact lines, then, requires 

𝛾𝑆𝑉
𝑟 − 𝛾𝑆𝐿

𝑟 − (𝛾𝑆𝑉
𝑙 − 𝛾𝑆𝐿

𝑙 ) > 𝛾 [cos(𝜃𝑒
𝑟) −

cos(𝜃𝑒
𝑙)] > 0  (11) 

for 𝜃𝑒
𝑙𝑒𝑓𝑡

> 𝜃𝑒
𝑟𝑖𝑔ℎ𝑡

, as is the case for negative wetting
gradient surface. This generates a net force in positive 
𝑥-direction which moves the droplet toward the right. 
One could also design a surface with a positive wetting 
gradient and this would drive the motion toward the 
left. In other words, the difference in the contact 
angles results in a Laplace pressure gradient along the 
interface, this pressure difference drives the motion.  

It is also possible to obtain a scaling law for the droplet 

speed. When the droplet reaches a terminal speed, 𝜗𝑑 , 
the driving force due to wetting gradient and the 
viscous forces computed at the base of the droplet are 
in balance. The spreading coefficient 𝑆 is defined as  

𝑆 = 𝛾𝑆𝑉 − 𝛾𝑆𝐿 − 𝛾. (12) 

When 𝑆 < 0, the fluid termed as partial wetting and 
equation (12) can also be defined in terms of the 
Young value as  

𝑆 = 𝛾(cos 𝜃𝑒 − 1). (13) 

For slender droplets, the speed of the droplet on small 
wetting gradients, with the use of (13), scales as  

𝜗𝑑  ~ 
ℎ𝑐

𝜂

𝑑𝑆

𝑑𝑥
=

ℎ𝑐𝛾

𝜂

𝑑 cos 𝜃𝑒

𝑑𝑥
≈

ℎ𝑐𝛾

𝜂
𝜃𝑒

𝑑𝜃𝑒

𝑑𝑥
(14) 

where ℎ𝑐  is the height and 𝜂 is the dynamic viscosity 
of the droplet, respectively. The driving force 
explained above is balanced by the viscous stress 
mostly near the moving contact lines. In the small 
slope regime, the viscous stress can be computed with 
lubrication theory with no-shear stress condition at 
the droplet interface and this balance determines the 
moving speed [32]. For a droplet moving with 

constant speed 𝜗𝑑 , it scales linearly with  
𝑑𝜃𝑒

𝑑𝑥
 for fixed 

ℎ0  corresponding to the equilibrium angle 𝜃𝑒(𝑥𝑐) 
measured at 𝑥𝑐(middle of droplet). 

In Figure 3, the droplet speed variation with wetting 
gradient is shown (measured in degrees per unit 
lattice length) for different wettability gradients 
obtained by varying the wetting angle at the left of the 

domain ( 𝜃𝑒
𝑙𝑒𝑓𝑡

), as 150 °, 135°, 120°, 90°, 60° , and

keeping the one at the right of the domain ( 𝜃𝑒
𝑟𝑖𝑔ℎ𝑡

)
fixed at 30° . The viscosity ratio used for validation 
shown in Figure 2 obtained by setting 𝜏1 = 3, 𝜏2 =
0.7.  This sets  λ  approximately to 12.4. In Figure 3, we 
set  𝜏1 = 3, and vary 𝜏2 to see the viscosity ratio effect. 

The droplet moves with a constant speed and it varies 
linearly with the wetting gradient for λ = 10 and for 
the wetting angles studied: 30° ≤ 𝜃𝑒 ≤ 150°. It should 
be noted that the equilibrium angle approaches 30° 
toward the end of the domain for all the cases and the 
theoretical prediction is valid for small angles and 
large viscosity ratios. 

Figure 3. Variation of droplet speed as a function of wetting 
gradient. Hollow diamonds (λ=10) are the terminal speeds 
for various wetting gradients, dashed line is shown to 
emphasize the linearity; filled diamonds (λ =1) and filled 
squares (λ=0.1) shows the effect of the viscosity ratio 

One would expect, however, the droplet to slow down 
if the viscosity of the outside fluid is increased. To 
show this effect, more cases with viscosity ratios of 
λ=0.1, 1 are studied. This variation is shown on the 
same plot with filled diamonds and filled squares with 
a clear observation of the slowing down of the droplet 
if it moves in a more viscous fluid. Furthermore, as λ 
decreases, the dependence of the droplet speed on the 
wetting gradient weakens. 

3.2 Merging of droplets 

Motivated by the simple idea of the previous 
subsection, it is possible to move droplets toward each 
other and merge. A proposition is made here as a 
possible use in self-cleaning, water harvesting or heat 
transfer enhancement applications. For example, one 
could merge small droplets which are able to resist 
gravity on car shields or windows, merge by the 
wetting gradient. This would increase the effective 
bond number (ratio of gravitational forces to surface 
tension forces) [33] of the merged droplet and for 
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sufficiently large volumes, it would move downwards 
with the aid of gravity. In another example, the merged 
droplets could be transported directionally depending 
on the gradients of the wetting patterns on the 
substrate. It is also shown that for the merging, the size 
of the droplet can be different. To this end, two 
droplets on the substrate are placed as shown in 
Figure 4. The gradients are set to be symmetric with 
respect to 𝑥 = 𝑥0 (mid of the domain) with a gradient 

of 2(𝜃𝑒
𝑙𝑒𝑓𝑡

− 𝜃𝑒
𝑟𝑖𝑔ℎ𝑡

)/𝑛𝑥. The number of lattices in x and
y directions, 𝑛𝑥  and 𝑛𝑦,  are set to 250  and 100 , 

respectively, with droplet radii of 30 in lattice units. 
The history of droplet motion is shown in panels (a) to 
(d) of Figure 4 for equal size droplets. In panels (e) to
(h) of the same figure, the merging of different size
droplets is shown. As can be seen from the velocity
vectors (only the asymmetric case is shown as it is
more intriguing), the outside fluid is squeezed by the
motion of the two droplets and leaves the gap at an
oblique path due to asymmetry. After the merge, the
free surface attains its equilibrium shape; again, at a
later time shown in panel (i), the deformation of the
interface toward a circular arc is observed; the
velocity is maximum at the location where the
interface is away from the equilibrium.

To check the influence of the viscosity ratio, λ is varied 
from 0.83/0.067 to 0.1 and 1. It is observed that the 
droplets slow down due to the increased shear stress 
on the interface. The droplets move in a more viscous 
fluid, but eventually, they merge and attain the same 
equilibrium shape.  

The change in the gradient of the wetting would 
change the speed and the time for the coalescence, as 
shown in the previous section; however, it would not 
affect the idea of merging droplets at a desired 
location to increase the effective bond number.  

This proposition of such wetting gradients used in the 
merging of droplets drives further motivation to stop 
the motion of a droplet at a desired location. It is, 
finally, postulated that the self-motion of a droplet 
stops at 𝑥0 , with the aid of symmetrically structured 
gradient walls with respect to the stopping location, 
𝑥0. For motion from left to right, while the upstream 
wetting gradient is 𝑑𝜃𝑒/d𝑥 from x=0 to 𝑥0, it should be 
−𝑑𝜃𝑒/d𝑥 downstream.

3.3. Confinement effect 

When the droplet considered here is confined from the 
top with a wall as well as the bottom, it wets both 
surfaces. For uniform surface energy surfaces, the 
droplets attain an equilibrium shape which can be 
called as a fluid column. Because the contact angles of 
the interfaces are the same at all triple junctions, the 
shape of the interface becomes a circular arc meeting 
the walls at the wetting angle. The shape of any contact 
angle is determined by the geometry. Because the 
curvature of radius of the interfaces are the same, the 

pressure jumps across the interfaces are the same and 
there is no pressure difference to drive the droplet in 
the confinement. However, generating a wettability 
gradient surface can trigger the motion. 

Figure 4. The evolution of the merging droplets on 
wettability gradient surface, (a)-(d) equal size droplets: 
t=5000, 15000, 20000, 50000; (e-h) different size droplets: 
t=5000, 15000, 30000, 50000; (i) velocity vectors before the 
different size droplets merge corresponding to (g) 

To show this, first equilibrium shapes of columns for 
several surface energies are given and it is shown that 
the motion is possible if the surfaces are designed with 
a surface energy gradient. The same effect is also 
possible for a wedge shape confinement, but this is a 
geometric modification for the motion as seen in the 
self-motion of droplets on conical surfaces and inside 
wedges (like the self-movement of droplets on cactus 
spines or liquid columns inside the duck weak). 

In Figure 5, the two equilibrium shapes obtained for 
𝜃𝑒 = 30°  and 𝜃𝑒 = 120°  are presented in panels (a) 
and (b), wetting and non-wetting columns, 
respectively. Because the surface energies are uniform 
along the walls; the fluid column cannot move without 
an external force. The wetting gradient is obtained by 

setting 𝑑𝜃𝑒/dx  to (𝜃𝑒
𝑙𝑒𝑓𝑡

− 𝜃𝑒
𝑟𝑖𝑔ℎ𝑡

)/𝑛𝑥  with 𝜃𝑒
𝑙𝑒𝑓𝑡

=

120° , 𝜃𝑒
𝑟𝑖𝑔ℎ𝑡

= 30  and 𝑛𝑥 = 250 . This gradient is
double the one shown in Figure 3 for 120°-30° case. As 
the viscosity ratio and surface tension between liquid 
and outside fluid are the same, one would then expect 



M. A. Boylu and U. Ceyhan/ Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study

470 

the speed of the column to be twice of the droplet 
without confinement. The existence of two liquid-solid 
interfaces doubles the driving force due to hysteresis; 
however, the viscous losses double as well. 
Henceforth, the same argument used in section 3.1 
applies. But this time, the pressure difference is not 
along a single interface: the radius of curvature of the 
leading interface (though uniform along it) is different 
than the radius of curvature of the trailing interface 
(again uniform) which can be seen in panels (c)-(e) of 
Figure 5, this difference generates the Laplace 
pressure difference from trailing interface to leading 
interface and this drives the liquid column. The driving 
mechanisms of a single droplet moving on a 
wettability gradient and the one confined look similar 
but they are different in terms of Laplace pressure. 

Figure 5. The interface profiles for a droplet confined 
between walls. (a) Equilibrium shape for 𝜃𝑒 = 30° , (b) 
Equilibrium shape for 𝜃𝑒 = 120° ; the motion of liquid 
column with surface energy gradient (c) t=50000, (d) 
t=100000, (e) t=150000 

3.4. Influence of channel aspect ratio on the 
motion of confined droplets 

For the motion of interfaces in which there is not much 
deformation, two-dimensional models could be useful 
to predict such motions as the aspect ratio of the 
channel increases. By extending the MRT lattice-
Boltzmann solver into three-dimensions with D3Q19 
model, the comparison of the three-dimensional liquid 
columns is shown in Figure 6.  

The wetting gradient is set defining 𝜃𝑒
𝑙𝑒𝑓𝑡

= 120° ,

𝜃𝑒
𝑟𝑖𝑔ℎ𝑡

= 30°. The aspect ratio is the ratio of the width
of the channel (in z-direction) to the height of the 
channel (in y-direction). To reduce the computational 
cost, channel length and height are set to 𝑛𝑥 = 150 
and 𝑛𝑦 = 10, respectively. The width of the channel in 

the third direction is varied by setting 𝑛𝑧 =
5, 10, 25, 45, 75 . As 𝑛𝑧  increases, the aspect ratio 
increases. The movement of fluid at the central plane 
approaches the two-dimensional model as the aspect 
ratio increases.  

Figure 6. Change of confined droplet profile with aspect 
ratio at t=50000; from top to bottom 𝑛𝑧=5, 10, 25, 45, 75. 
The dashed lines show the central plane with central 
location 𝑥𝑐 

In Figure 7, the time variation of the central locations, 
𝑥𝑐  (shown in Fig. 6), of the droplet for various aspect 
ratio channels are shown. For narrow channels (small 
aspect ratio), the interface motion is much slower than 
the one predicted with the two-dimensional model; 
the effects of side walls on the central plane are 
obvious. The two-dimensional model gives closer 
predictions compared with the three-dimensional 
predictions at the central plane (shown in Fig. 7 for 
𝑛𝑧=75) as the aspect ratio gets larger. This suggests 
that when the channel aspect ratio is large, the central 
plane model (two-dimensional) for problems with 
small deformation could provide useful results with 
reduced computational cost. 

Figure 7. Time variation of 𝑥𝑐  for different aspect ratio 
channels and comparison with two-dimensional prediction 

10 20 30 40 50 60 70 80 90 100

10

20

30

10 20 30 40 50 60 70 80 90 100

10

20

30

(a) (b)

50 100 150 200 250

10

20

30

(c)

d

50 100 150 200 250

10

20

30

(d)

50 100 150 200 250

10

20

30

(e)

z
x

y

x
c

1 2 3 4 5 6 7 8 9 10

10
4

50

60

70

80

90

100

110

120

n
z
=5

n
z
=10

n
z
=25

n
z
=45

n
z
=75

2D



M. A. Boylu and U. Ceyhan/ Self-Driving and Merging Droplets on Wettability Gradient Surfaces: A Lattice Boltzmann Study

471 

4. Discussion and Conclusion

By modeling the motion of two-phase flows with the 
MRT binary lattice Boltzmann method, the motion of 
self-driven droplets with the aid of surface energy 
gradient is studied. This type of motion is important 
both in nature and in microfluidic flow manipulation. 
It is shown how the gradient of such surfaces affects 
the deformation of the droplets by studying three 
main problems:  

(i) self-motion of single droplets on surfaces
(ii) merging of droplets of the same and

different size droplets
(iii) self-driven motion of droplets within

confinements

For the three main problems, the MRT lattice-
Boltzmann method is found to be useful in modeling 
the motion of such interfaces over wettability gradient 
surfaces. With the analyses for these three main 
problems, it is concluded that the motion of droplets 
can directionally be controlled by only varying the 
wettability of the surfaces. The viscosity ratio between 
the droplet and surrounding medium changes the time 
scale at which desired motion is completed. By 
working with different-sized droplets, motivated by 
the observation of different-sized droplet 
accumulation on window panes, car glass shields, and 
surfaces of photo-voltaic panels on rainy days, it is 
shown that the droplets can be merged at a desired 
location and gravity may assist in further motion. 
While it is impossible to provide self-movement of 
droplets confined within a parallel walled channel 
without a gradient in the confinement geometry, it is 
shown that the wetting gradient achieves this 
movement without altering the confinement 
geometry. Although the driving mechanisms of a 
single droplet moving on a wettability gradient and 
the one confined look similar, they are different in 
terms of Laplace pressure; the former is due to the 
pressure variation along the droplet interface, the 
latter is due to the pressure difference at the two 
interfaces. 

It should finally be noted that the problems analyzed 
in this study are limited to two-dimensional models 
(cylindrical droplets). For the confined droplet model, 
the plane models can be useful for the control of 
interfaces within large aspect ratio microchannels as 
shown in the comparison made with the three-
dimensional simulation. The results of this study are 
believed to be the first steps toward understanding 
such motions and to motivate further studies in three-
dimension. 
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Appendices 

Appendix A. Nomenclature 

Greek letters: 
γ surface tension 
𝜂 dynamic viscosity 
∅ order parameter 
λ kinematic viscosity ratio 
ρ fluid density 
φ bulk free energy density 
𝜏 relaxation parameter 
𝜃 contact angle 

Roman letters: 
a constant coefficient in Landau model 
c lattice velocity parameter 
e lattice direction 
f distribution function f 
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F external body force 
g distribution function g 
h height 
M transformation matrix 
n number of lattices 
p pressure 
P pressure tensor  
r radius of curvature 
r lattice position 
S spreading parameter 
S collision matrix 
t time 
x x-direction
y y-direction

Subscripts: 
d droplet 
SV solid-vapor 
SL solid-liquid 
c center 
e equilibrium 
o outside
x x-direction
y y-direction

Superscripts: 
l left contact line
r right contact line 
left  left of the computational domain 
right right of the computational domain 




