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Abstract

The necessary requirements for half-lightlike and coisotropic lightlike submanifolds to be a
Ricci soliton are obtained. Some examples of Ricci soliton half-lightlike and Ricci soliton
coisotropic lightlike submanifolds are given. The Ricci soliton equation is investigated on
totally geodesic, totally umbilical, and irrotational lightlike submanifolds.

1. Introduction

The concept of Ricci solitons has become a fascinating issue in the differential geometry and this concept has been studied on
various submanifolds of Riemannian manifolds. For some applications on Ricci solitons, we touch on [1–8], etc. A (semi-)
Riemannian manifold (M,g) is said to be a Ricci soliton if

Lζ g(X1,X2)+2Ric(X1,X2) = 2κg(X1,X2) (1.1)

is satisfied for each tangent vector fields X1 and X2. In (1.1), Lζ indicates the Lie derivative, Ric denotes the Ricci tensor, κ is a
scalar and ζ is called the potential vector field. If κ is a function then (M,g) is said to be an almost Ricci soliton. Considering
the description of Ricci solitons, every Einstein manifold is a Ricci soliton. This issue is known as shrinking when κ > 0,
steady when κ = 0 and expanding when κ < 0.

In addition to this, concircular vector fields are one of the most utilized vector field to characterize a smooth manifold.
Concircular vector fields were initially observed in the definition of torse-forming vector field which was introduced by K.
Yano [9]. There exist remarkable applications of concircular vector fields in the literature (cf. [10–15]). A vector field ζ is said
to be concircular if there is a differentiable function ϕ such that

∇X ζ = ϕX

is satisfied for each tangent vector field X . If ϕ = 1, ζ becomes concurrent.

In the degenerate geometry, Ricci soliton lightlike hypersurfaces were studied in [16]. As a continuation of this study, we
examine Ricci soliton half-lightlike submanifolds and Ricci soliton coisotropic lightlike submanifolds admitting concircular
and concurrent potential vector fields in this paper.
Email addresses and ORCID numbers: erol.kilic@inonu.edu.tr, 0000-0001-7536-0404 (E. Kılıç), mehmetgulbahar@harran.edu.tr, 0000-0001-
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Cite as: E. Kılıç, E. Kavuk, M. Gülbahar, E. Erkan Ricci Soliton Lightlike Submanifolds with Co-Dimension 2, Fundam. J. Math. Appl., 6(2)
(2023), 117-127.

https://orcid.org/0000-0001-7536-0404
https://orcid.org/0000-0001-6950-7633
https://orcid.org/0000-0001-6950-7633
https://orcid.org/0000-0002-8922-2691
https://orcid.org/0000-0003-0456-6418


118 Fundamental Journal of Mathematics and Applications

2. Half-Lightlike Submanifolds

Let (M̃, g̃) be a semi-Riemannian manifold equipped with a semi-Riemannian metric g̃. Presume that (M,g) to be a lightlike
submanifold (M̃, g̃) with the co-dimension 2. Then the radical distribution Rad(TpM) at p ∈M is determined by

Rad(TpM) =
{

ξ ∈ TpM : g̃(ξ ,X) = 0,∀X ∈ TpM
}
.

Denote a complementary non-degenerate vector bundle of Rad(T M) by S(T M). We note that a lightlike submanifold is usually
indicated by the triple (M,g,S(T M)) [17]. Here, the distribution S(T M) is said to be a screen distribution and we put

T M = Rad(T M)⊕S(T M)

where ⊕orth indicates the orthogonal direct sum. If the dimension of Rad(T M) is equal to 1, then (M,g,S(T M)) is said to be a
half-lightlike submanifold [18].

For each half-lightlike submanifold, there are a 1−dimensional non-degenerate subbundle D and a 1−dimensional degenerate
subbundle ltr(T M) such that D= Span{U}, ltr(T M) = Span{N} and

g̃(ξ ,U) = g̃(N,U) = 0, g̃(U,U) 6= 0,
g̃(ξ ,N) = 1, g̃(N,U) = 0

are satisfied.

Let ∇̃ denotes the Levi-Civita connection on (M̃, g̃) and P denotes the projection from Γ(T M) to Γ(S(T M)). The Gauss and
Weingarten type formulas are formulated by

∇̃X1X2 = ∇X1X2 +B(X1,X2)N +D(X1,X2)U, (2.1)

∇̃X1N = −ANX1 +ρ1(X1)N +ρ2(X1)U, (2.2)

∇̃X1U = −AU X1 +µ1(X1)N +µ2(X1)U, (2.3)

and

∇X1PX2 = ∇
∗
X1

PX2 +C(X1,X2)ξ , (2.4)
∇X1ξ = −A∗

ξ
X1−ρ1(X1)ξ , (2.5)

where ∇X1X2,ANX1,AU X1 ∈ Γ(T M), ∇∗X1
PX2,A∗ξ X1 ∈ Γ(S(T M)), AN and AU are the shape operators on Γ(T M), A∗

ξ
is the

shape operator on Γ(S(T M)), B(X1,X2) and D(X1,X2) are ingredients of the second fundamental form, ρ1,ρ2, µ1,µ2 are 1−
forms. From (2.1)-(2.5), it is known that the relations

B(X1,X2) = g(A∗
ξ

X1,X2),

C(X1,X2) = g(ANX1,X2),

D(X1,X2) = g(AU X1,X2)−µ1(X1)η(X2),

are satisfied. Here η(X2) = g̃(X2,N) [19].

We note that B and D are symmetric but C is not symmetric. Since the relation

(∇X3g)(X1,X2) = B(X3,X2)η(X1)+B(X3,X1)η(X2) (2.6)

is satisfied, ∇ is not a metric connection. The Lie derivative of g is formulated by

(LX3 g)(X1,X2) = X3g(X1,X2)− g̃([X3,X1],X2)− g̃([X3,X2],X1)

= X3g(X1,X2)−g(∇X3X1,X2)−g(∇X3X2,X1)+g(∇X1X3,X2)+g(∇X2X3,X1). (2.7)

From (2.6) and (2.7), we also have

(LX3g)(X1,X2) = B(X3,X2)η(X1)+B(X3,X1)η(X2)+g(∇X1X3,X2)+g(∇X2X3,X1) (2.8)

or we put

(LX3g)(X1,X2) = (∇X3g)(X1,X2)+g(∇X1X3,X2)+g(∇X2X3,X1).
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Indicate the Riemannian curvatures of (M,g,S(T M)) and its ambient manifold by R and R̃ respectively. Then the following
equality holds:

g̃(R̃(X1,X2)PX3,PX4) = g(R(X1,X2)PX3,PX4)+B(X1,PX3)C(X2,PX4)−B(X2,PX3)C(X1,PX4)

+D(X1,PX3)D(X2,PX4)−D(X2,PX3)D(X1,PX4). (2.9)

Let {Y1,Y2, . . . ,Yn} be a orthonormal frame field on Γ(S(T M)). Then the Ricci type tensor R(0,2) is determined by

R(0,2)(X1,X2) =
n

∑
j=1

g(R(Yj,X1)X2,Yj)+ g̃(R(ξ ,X1)X2,N). (2.10)

We note that R(0,2) is not symmetric. If S(T M) is integrable, then R(0,2) is symmetric [17].

A half-lightlike submanifold is called totally geodesic if B = D = 0 and it is said to be irrotational if B(X ,ξ ) = 0 for any
X ∈ Γ(T M) [20]. A half-lightlike submanifold is said to be totally umbilical if there exists a differentiable transversal vector
field H satisfying

B(X1,X2)N +D(X1,X2)U = g(X1,X2)H (2.11)

for any X1,X2 ∈ Γ(T M) [21]. In view of (2.11), it is clear that there exist two differentiable functions H1 and H2 satisfying

B(X1,X2) = H1g(X1,X2) and D(X1,X2) = H2g(X1,X2).

3. Ricci Soliton Half-Lightlike Submanifolds

Let (M,g,S(T M)) be a half-lighlike submanifold of (M̃, g̃) Assume that ζ ∈ Γ(T M̃). Hence one can put

ζ = ζ
>+ f1N + f2U

where ζ> ∈ Γ(T M), f1 and f2 are differentiable functions on Γ(T M̃). Thus, we get

f1 = g̃(ζ ,ξ ) and f2 = ε g̃(ζ ,U)

where ε = g̃(U,U) =∓1.

Proposition 3.1. If ζ is concircular, then the following equalities are satisfied for any X ∈ Γ(T M):

∇X ζ
> = ϕX + f1ANX + f2AU X , (3.1)

B(X ,ζ>) = −X [ f1]− f1ρ1(X)− f2µ1(X), (3.2)
D(X ,ζ>) = −X [ f2]− f1ρ2(X)− f2µ2(X). (3.3)

Proof. If ζ is concircular, then we put

∇̃X ζ = ϕX = ∇̃X ζ
>+ ∇̃X ( f1N)+ ∇̃X ( f2U).

Using (2.1), (2.2) and (2.3) in the last formula, we get

ϕX = ∇X ζ +B(X ,ζ>)N +D(X ,ζ )U +X [ f1]N− f1ANX + f1ρ1(X)N + f1ρ2(X)U +X [ f2]U

− f2AU X + f2µ1(X)N + f2µ2(X)U.

Considering the tangential parts ltr(T M) and D, the proofs of (3.1), (3.2) and (3.3) are straightforward.

Putting ϕ = 1 in Proposition 3.1, we find

Proposition 3.2. For any half-lightlike submanifold admitting a concurrent vector field ζ , we have

∇X ζ
> = X + f1ANX + f2AU X .

As a special case for ζ = ζ>, we find:

Proposition 3.3. For any half-lightlike submanifold admitting a concircular vector field ζ = ζ>,

B(X ,ζ>) = D(X ,ζ>) = 0 (3.4)

is satisfied.
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As a result of Proposition 3.3, we find the following theorem:

Theorem 3.4. Let (M,g,S(T M)) be a half-lightlike submanifold. If there exists at least one concircular or concurrent vector
field ζ = ζ> on Γ(T M), then ∇

ζ>g = 0.

Definition 3.5. A lightlike submanifold (M,g,S(T M)) with a integrable screen distribution is called a Ricci soliton if the
relation

(Lζ g)(X1,X2)+2R(0,2)(X1,X2) = 2κg(X1,X2) (3.5)

holds for any X1,X2 ∈ Γ(T M). Here, κ is a constant and ζ is called the potential vector field of (M,g,S(T M)).

Remark 3.6. It is known that the Ricci tensor for any lightlike submanifold is not symmetric in general. Hence (3.5) loses
its geometrical meaning since the induced degenerate metric g is symmetric. Thus we investigate Ricci soliton lightlike
submanifolds whose screen distribution is integrable throughout the study.

We shall compute the Lie derivative for half-lightlike submanifolds.

From (2.8) and (3.1), we obtain

(L
ζ>g)(X1,X2) = B(X1,ζ

>)η(X2)+B(X2,ζ
>)η(X1)+2ϕg(X1,X2)+2 f1g(ANX1,X2)+2 f2g(AU X1,X2). (3.6)

If ζ is concurrent, then we easily obtain

(L
ζ>g)(X1,X2) = B(X1,ζ

>)η(X2)+B(X2,ζ
>)η(X1)+2g(X1,X2)+2 f1g(ANX1,X2)+2 f2g(AU X1,X2). (3.7)

As a special case for ζ = ζ>, we obtain from (3.4) and (3.6) that

(L
ζ>g)(X1,X2) = 2ϕg(X1,X2).

If ζ is concurrent and ζ = ζ>, we obtain

(L
ζ>g)(X1,X2) = 2g(X1,X2).

By (3.5) and (3.6), we have:

Theorem 3.7. Let (M,g,S(T M)) be a half-lightlike submanifold admitting a concircular vector field ζ . Then, (M,g,S(T M))
is a Ricci soliton such that ζ> is the potential vector field if and only if the equation

R(0,2)(X1,X2) =−
1
2

B(X1,ζ
>)η(X2)−

1
2

B(ζ>,X2)η(X1)− f1g(ANX1,X2)− f2g(AU X1,X2)+(κ−ϕ)g(X1,X2)

holds for any X1,X2 ∈ Γ(T M).

In view of (3.5) and (3.7), we have:

Theorem 3.8. Let (M,g,S(T M)) be a half-lightlike submanifold admitting a concurrent vector field ζ . Then, (M,g,S(T M))
is a Ricci soliton such that ζ> is the potential vector field if and only if the equation

R(0,2)(X1,X2) =−
1
2

B(X1,ζ
>)η(X2)−

1
2

B(ζ>,X2)η(X1)− f1g(ANX1,X2)− f2g(AU X1,X2)+(κ−1)g(X1,X2)

holds for any X1,X2 ∈ Γ(T M).

Theorem 3.9. Let (M,g,S(T M)) be a half-lightlike submanifold admitting a concircular vector field ζ = ζ>. Then, the
submanifold is a Ricci soliton such that ζ> is the potential vector field if and only if the equation

R(0,2)(X1,X2) = (κ−ϕ)g(X1,X2) (3.8)

holds for any X1,X2 ∈ Γ(T M). It means that the submanifold is an Einstein manifold.

Theorem 3.10. Let (M,g,S(T M)) be a half-lightlike submanifold admitting a concurrent vector field ζ = ζ>. The submanifold
is a Ricci soliton if and only if the equation

R(0,2)(X1,X2) = (κ−1)g(X1,X2)

holds for any X1,X2 ∈ Γ(T M). In other words, the submanifold is an Einstein manifold. Furthermore if the soliton is steady,
then the Ricci curvature of (M,g,S(T M)) is negative defined.
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In view of Theorem 3.7 we find:

Corollary 3.11. Let (M,g,S(T M)) be a totally geodesic half-lightlike submanifold admitting a concircular vector field ζ . If
the submanifold is a Ricci soliton, then we find

R(0,2)(X1,X2) =− f1g(ANX1,X2)− f2g(AU X1,X2)+(κ−ϕ)g(X1,X2)

for any X1,X2 ∈ Γ(S(T M)).

In view of Theorem 3.8 we find:

Corollary 3.12. Let (M,g,S(T M)) be a totally geodesic half-lightlike submanifold admitting a concurrent vector field ζ . If
the submanifold is a Ricci soliton, then we find

R(0,2)(X1,X2) =− f1g(ANX1,X2)− f2g(AU X1,X2)+(κ−1)g(X1,X2)

for any X1,X2 ∈ Γ(S(T M)).

Corollary 3.13. Let (M,g,S(T M)) be an irrotational half-lightlike submanifold admitting a concircular vector field ζ = ξ . If
the submanifold is a Ricci soliton, then we find

R(0,2)(X1,X2) = (κ−ϕ)g(X1,X2)

for any X1,X2 ∈ Γ(S(T M)).

Corollary 3.14. Let (M,g,S(T M)) be an irrotational half-lightlike submanifold admitting a concurrent vector field ζ = ξ . If
the submanifold is a Ricci soliton, then we have

R(0,2)(X1,X2) = (κ−1)g(X1,X2)

for any X1,X2 ∈ Γ(S(T M)).

Example 3.15 ( [22]). Consider a submanifold in R5
2 with the signature (−,−,+,+,+) and local coordinate system

{z1,z2,z3,z4,z5} given by

z4 = (z2
1 + z2

2)
1
2 , z3 = (1− z2

5)
1
2 , z5,z1,z2 > 0.

Thus we find

Rad(T M) = Span{ξ = z1∂1 + z2∂2 + z4∂4} ,
S(T M) = Span{X1 = z4∂1 + z1∂4,X2 =−z5∂3 + z3∂5} ,

ltr(T M) = Span
{

N =
1

2z2
3
(z1∂1− z2∂2 + z4∂4)

}
,

and

D= Span{U = z3∂3 + z5∂5} .

Here {∂1,∂2,∂3,∂4,∂5} is the natural frame field on R5
2. By a straightforward computation, we obtain that (M,g,S(T M)) is a

half-lightlike submanifold and

∇̃X1ξ = X1, ∇̃X2ξ = 0, ∇̃ξ ξ = ξ

which show that

B(X1,ξ ) = B(X2,ξ ) = B(X1,X2) = B(X2,X2) = 0, B(X1,X1) = z2
2,

C(X1,ξ ) = C(X2,ξ ) =C(X1,X2) =C(X2,X2) = 0, C(X1,X1) =−
1
2
,

D(X1,ξ ) = D(X2,ξ ) = D(X1,X2) = D(X1,X1) = 0, D(X2,X2) = 1.

From (2.9), we find

R(0,2)(X1,X1) = R(0,2)(X2,X2) = R(0,2)(X1,X2) = 0.

If we consider ζ = ϕ(ξ +U), where ϕ is a differentiable function on M and ζ T = ϕξ , then we obtain ζ is concircular and
(M,g,S(T M)) is a shrinking Ricci soliton such that ζ> is the potential vector field and κ = 1.
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Theorem 3.16 (cf. Theorem 3.2 of [23]). Let M̃(c) be an indefinite space form with constant curvature c and (M,g,S(T M))
be a totally umbilical half-lightlike submanifold with the co-dimension 2. Then the following equality holds:

R(X1,X2)X3 = c{g(X2,X3)X1−g(X1,X3)X2}+H1 {g(X2,X3)ANX1−g(X1,X3)ANX2}
+H2 {g(X2,X3)AU X1−g(X1,X3)AU X2} . (3.9)

Theorem 3.17. Let (M,g,S(T M)) be a totally umbilical half-lightlike submanifold of M̃(c) admitting a concircular vector
field ζ = ζ>. The submanifold is a Ricci soliton such that ζ> is the potential vector field if and only if the equation

κ = c+ϕ +H1traceAN +H2traceAU (3.10)

is satisfied.

Proof. Let {Y1, . . . ,Yn} be an orthonormal frame field of Γ(S(T M)). In view of (2.10) and (3.9), it can be obtained

R(0,2)(Yi,Yi) = c+H1traceAN +H2traceAU (3.11)

for any i ∈ {1, . . . ,n}. In view of (3.8) and (3.11) we obtain (3.10). The converse part is straightforward.

As a result of Theorem 3.17, we obtain

Theorem 3.18. Let (M,g,S(T M)) be a totally umbilical half-lightlike submanifold of M̃(c) admitting a concurrent vector
field ζ = ζ>. The submanifold is a Ricci soliton such that ζ> is the potential vector field if and only if the equation

κ = c+1+H1traceAN +H2traceAU

is satisfied.

4. Coisotropic Lightlike Submanifolds

Let (M,g,S(T M)) be a lightlike submanifold of (M̃, g̃) with co-dimension 2. If the dimension of Rad(T M) is 2, then the
submanifold is called a coisotropic lightlike submanifold [24]. For any coisotropic lightlike submanifold, there exists the
following quasi-orthonormal basis on Γ(T M̃):

{Y1,Y2, . . . ,Yn,ξ1,ξ2,N1,N2}

where S(T M) = Span{Y1,Y2, . . . ,Yn}, Rad(T M) = Span{ξ1,ξ2} and ltr(T M) = Span{N1,N2}. It is known that the relations

g̃(Ni,ξ j) = δi j, g̃(Ni,N j) = 0

are satisfied for i, j ∈ {1,2}. The Gauss and Weingarten formulas are formulated by

∇̃X1X2 = ∇X1X2 +
2

∑
k=1

Dk(X1,X2)Nk, (4.1)

∇̃X1Nk = −ANk X1 +
2

∑
l=1

ρkl(X1)Nl , (4.2)

∇X1X2 = ∇
∗
X1

PX2 +
2

∑
k=1

Ck(X1,X2)ξk, (4.3)

∇X1ξk = −A∗
ξk

X1−
2

∑
l=1

ρkl ,(X1)ξl , (4.4)

where ∇X1X2, ANk X1 ∈Γ(T M), ∇∗X1
PX2, A∗

ξk
X1 ∈Γ(S(T M)), ANk are the shape operators on Γ(T M), A∗

ξk
are the shape operators

on Γ(S(T M)), Dk(X1,X2), Ck(X1,X2) are ingredients of the second fundamental forms, ρkl are 1−forms for k, l ∈ {1,2}. In
view of (4.1)-(4.4), we have

Dk(X1,X2) = g(A∗
ξ

X1,X2), Ck(X1,X2) = g(ANk X1,X2)

for any k ∈ {1,2}. We note that Dk are symmetric but Ck are not symmetric. Using the fact that ∇̃ is a metric connection and
from (4.1), we find

(∇X3g)(X1,X2) = D1(X3,X2)η1(X1)+D1(X3,X1)η1(X2)+D2(X3,X2)η2(X1)+D2(X3,X1)η2(X2)

which shows that ∇ is not a metric connection [24]. Here, η1(X1) = g(X1,ξ1) and η2(X1) = g(X1,ξ2).
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The Lie derivative is formulated by

(LX3g)(X1,X2) = D1(X3,X2)η(X1)+D1(X3,X1)η(X2)+D2(X3,X2)η(X1)+D2(X3,X1)η(X2)

+g(∇X1X3,X2)+g(∇X2X3,X1) (4.5)

or, equivalently, we have

(LX3g)(X1,X2) = (∇X3g)(X1,X2)+g(∇X1X3,X2)+g(∇X2X3,X1).

Furthermore, the following equality

g̃(R̃(X1,X2)PX3,PX4) = g(R(X1,X2)PX3,PX4)+
2

∑
k=1

Dk(X1,PX3)Ck(X2,PX4)−
2

∑
k=1

Dk(X2,PX3)Ck(X1,PX4)

holds for any X1,X2,X3,X4 ∈ Γ(T M). The induced Ricci type tensor R(0,2) of M is formulated by

R(0,2)(X1,X2) =
n

∑
j=1

g(R(Yj,X1)X2,Yj)+
2

∑
k=1

g̃(R(X1,ξk)X2,Nk). (4.6)

We note that R(0,2) is not symmetric. If S(T M) is integrable, then R(0,2) is symmetric.

A coisotropic lightlike submanifold with co-dimension 2 is said to be totally geodesic if D1 = D2 = 0 and it is said to be
irrotational [20] if Dk = 0 on Rad(T M) for any k ∈ {1,2}. A coisotropic lightlike submanifold is known as totally umbilical if
there is a differentiable transversal vector field H such that

D1(X1,X2)N1 +D2(X1,X2)N2 = g(X1,X2)H

holds for any X1,X2 ∈ Γ(T M) [22]. In this case, there exist two differentiable functions H1 and H2 satisfying

Di(X1,X2) = Hig(X1,X2)

for any i ∈ {1,2}.

5. Ricci Soliton Coisotropic Lightlike Submanifolds

Assume that ζ is a vector field lying on Γ(T M̃). Hence one can put

ζ = ζ
>+ f1N1 + f2N2

where ζ> ∈ Γ(T M) and f1, f2 are differentiable functions on Γ(T M̃). Thus we find

f1 = g(ζ ,ξ1) and f2 = g(ζ ,ξ2).

Proposition 5.1. Let (M,g,S(T M)) be a coisotropic lightlike submanifold of (M̃, g̃). If ζ is concircular, then the following
equalities are satisfied for any X ∈ Γ(T M):

∇X ζ
> = ϕX + f1AN1X + f2AN2X , (5.1)

D1(X ,ζ>) = −X [ f1]− f1ρ11(X)− f2ρ21(X),

D2(X ,ζ>) = −X [ f2]− f1ρ12(X)− f2ρ22(X).

Proof. If ζ is concircular, we find

∇̃X ζ = ϕX = ∇̃X ζ>+ ∇̃X ( f1N1)+ ∇̃X ( f2N2).

In view of (4.1) and (4.2), we get

ϕX = ∇X ζ
>+D1(X ,ζ>)N1 +D2(X ,ζ>)N2 +X [ f1]N1− f1AN1X + f1ρ11(X)N1 + f1ρ12(X)N2 +X [ f2]N2

− f2AN2X + f2ρ21(X)N1 + f2ρ22(X)N2.

In view of the last equation, we obtain (3.1), (3.2) and (3.3) immediately.

Putting ϕ = 1 in Proposition 5.1, we have:
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Proposition 5.2. For any coisotropic lightlike submanifold admitting a concurrent vector field, we have

∇X ζ
> = X + f1AN1X + f2AN2X .

As a special case for ζ = ζ>, we have:

Proposition 5.3. For any coisotropic lightlike submanifold admitting a concircular (or concurrent) vector field ζ = ζ>, we
have

D1(X ,ζ>) = D2(X ,ζ>) = 0.

Theorem 5.4. Let (M,g,S(T M)) be a coisotropic lightlike submanifold. If there exists at least one concircular or concurrent
vector field ζ = ζ> on Γ(T M), then ∇

ζ>g = 0.

Using (4.5) and (5.1), we arrive at

(L
ζ>g)(X1,X2) = D1(ζ

>,X2)η1(X1)+D1(ζ
>,X1)η1(X2)+D2(ζ

>,X2)η2(X1)+D2(ζ
>,X1)η2(X2)

+2g(ϕX1,X2)+2 f1g(AN1X1,X2)+2 f2g(AN2X1,X2) (5.2)

for any X1,X2 ∈ Γ(T M). If ζ is concurrent, then we obtain

(L
ζ>g)(X1,X2) = D1(ζ

>,X2)η1(X1)+D1(ζ
>,X1)η1(X2)+D2(ζ

>,X2)η2(X1)+D2(ζ
>,X1)η2(X2)

+2g(X1,X2)+2 f1g(AN1X1,X2)+2 f2g(AN2X1,X2). (5.3)

As a special case for ζ = ζ>, we obtain

(L
ζ>g)(X1,X2) = 2ϕg(X1,X2).

If ζ is concurrent and ζ = ζ>, we find

(L
ζ>g)(X1,X2) = 2g(X1,X2).

From (3.5) and (5.2), we have

Theorem 5.5. Let (M,g,S(T M)) be a coisotropic lightlike submanifold admitting a concircular vector field ζ . Then,
(M,g,S(T M)) is a Ricci soliton such that ζ> is the potential vector field if and only if the equation

R(0,2)(X1,X2) =
1
2

[
−D1(ζ

>,X2)η1(X1)−D1(ζ
>,X1)η1(X2)−D2(ζ

>,X2)η2(X1)

−D2(ζ
>,X1)η2(X2)−2 f1g(AN1X1,X2)−2 f2g(AN2X1,X2)

]
+(κ−ϕ)g(X1,X2)

holds for any X1,X2 ∈ Γ(T M).

From (3.5) and (5.3), we have:

Theorem 5.6. Let (M,g,S(T M)) be a coisotropic lightlike submanifold admitting a concurrent vector field ζ . Then,
(M,g,S(T M)) is a Ricci soliton such that ζ> is the potential vector field if and only if the equation

R(0,2)(X1,X2) =
1
2

[
−D1(ζ

>,X2)η1(X1)−D1(ζ
>,X1)η1(X2)−D2(ζ

>,X2)η2(X1)
−D2(ζ

>,X1)η2(X2)−2 f1g(AN1X1,X2)−2 f2g(AN2X1,X2)

]
+(κ−1)g(X1,X2)

is satisfied for any X1,X2 ∈ Γ(T M).

Theorem 5.7. Let (M,g,S(T M)) be a coisotropic lightlike submanifold admitting a concircular vector field ζ = ζ>. Then,
the submanifold is a Ricci soliton such that ζ> is the potential vector field if and only if the equation

R(0,2)(X1,X2) = (κ−ϕ)g(X1,X2) (5.4)

holds for any X1,X2 ∈ Γ(T M). It means that (M,g,S(T M)) is an Einstein manifold.

Theorem 5.8. Let (M,g,S(T M)) be a coisotropic lightlike submanifold admitting a concurrent vector field ζ = ζ>. Then, the
submanifold is a Ricci soliton with the potential vector field ζ> if and only if the equation

R(0,2)(X1,X2) = (κ−1)g(X1,X2)

is satisfied for any X1,X2 ∈ Γ(T M). It means that the submanifold is an Einstein manifold. Furthermore if the soliton is steady,
then the Ricci curvature of (M,g,S(T M)) is negative defined.
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In view of Theorem 5.5 we find:

Corollary 5.9. Let (M,g,S(T M)) be a totally geodesic coisotropic lightlike submanifold admitting a concircular vector field
ζ . If the submanifold is a Ricci soliton, then the equation

R(0,2)(X1,X2) = (κ−ϕ)g(X1,X2)− f1g(AN1X1,X2)− f2g(AN2X1,X2)

is satisfied.

As a result of Theorem 5.6 we find:

Corollary 5.10. Let (M,g,S(T M)) be a totally geodesic coisotropic lightlike submanifold admitting a concurrent vector field
ζ . If the submanifold is a Ricci soliton, then the equation

R(0,2)(X1,X2) = (κ−1)g(X1,X2)− f1g(AN1X1,X2)− f2g(AN2X1,X2)

is satisfied.

Example 5.11. Consider a submanifold in R6
3 given by

z4 = (z2
1 + z2

2)
1
2 , z3 = (z2

5 + z2
6)

1
2 , z1,z2,z3,z4 > 0.

Then we find

Rad(T M) = Span{ξ1 = z1∂1 + z2∂2 + z4∂4, ξ2 = z3∂3 + z5∂5 + z6∂6} ,
S(T M) = Span{X1 = z4∂1 + z1∂4,X2 = z3∂5 + z5∂3} ,

ltr(T M) = Span
{

N1 =
1

2z2
2
(z1∂1− z2∂2 + z3∂3), N2 =

1
2z2

5
(z3∂3− z5∂5 + z6∂6)

}
,

where {∂1,∂2,∂3,∂4,∂5,∂6} is the natural frame field on R6
3. Therefore (M,g,S(T M)) is a coisotropic lightlike submanifold.

By a straightforward computation, we obtain

∇̃X1 ξ1 = X1, ∇̃X1ξ2 = 0, ∇̃X2ξ1 = 0, ∇̃X2ξ2 = X2,

∇̃ξ1
ξ1 = ξ1, ∇̃ξ1

ξ2 = ∇̃ξ2
ξ1 = 0, ∇̃ξ2

ξ2 = ξ2, ∇̃ξ2
N2 = N2.

∇̃ξ1
N1 = N1, ∇̃ξ1

N2 = 0, ∇̃ξ2
N1 = 0,

In view of (4.1)-(4.4), we obtain

D1(ξ1,ξ1) = D2(ξ2,ξ2) = D1(ξ1,ξ2) = 0.

Therefore, we have R(0,2)(X1,X2) = 0. If we consider ζ = ϕ(ξ1 +ξ2), where ϕ is a differentiable function and ζ = ζ T , then we
find (M,g,S(T M)) is a Ricci soliton such that ζ> is the potential vector field and κ = 1. Thus, the submanifold is a shrinking
Ricci soliton.

Example 5.12. Consider a submanifold in R5
2 with the signature (−,−,+,+,+) given by

M =
{
(u2,u2w,u2 cosv,u2 sinv,u2w) : v ∈ [0,2π),u,w ∈ R

}
.

Then we have

Rad(T M) = Span{ξ1 = 2u(∂1 +w∂2 + cosv∂3 + sinv∂4 +w∂5), ξ2 = u2(∂2 +∂5)},
S(T M) = Span{X1 = u2(−sinv∂3 + cosv∂4)},

ltr(T M) = Span
{

N1 =
1

2u
(−∂1 +w∂2 + cosv∂3 + sinv∂4 +w∂5), N2 =

1
2u2 (−∂2 +∂5)

}
,

where {∂1,∂2,∂3,∂4,∂5} is the natural frame field on R5
2. Therefore, (M,g,S(T M)) is a coisotropic lightlike hypersurface of

R5
2. By a straightforward computation, we find

∇̃X1ξ1 =
2
u

X1, ∇̃ξ2
ξ1 =

2
u

ξ2, ∇̃ξ1
ξ1 =

2
u

ξ1,

which show that ξ1 is a concircular vector field on (M,g,S(T M)) and (Lξ1
g)(X1,X1) = 2u2. By a direct computation, we get

R(X1,ξ1)X1 = X1, R(X1,ξ2)X1 = 0

which shows that R(0,2)(X1,X1) = 0. This fact shows that (M,g,S(T M)) is almost Ricci soliton such that κ = 2
u2 .
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Theorem 5.13 (Theorem 3.1 in [24]). Let (M,g,S(T M)) be a totally umbilical lightlike submanifold of M̃(c). Then the
following equality holds

R(X1,X2)X3 = c{g(X2,X3)X1−g(X1,X3)X2}+
2

∑
i=1

[Hi {g(X2,X3)ANiX1−g(X1,X3)ANiX2}] , (5.5)

where the mean curvature vector field H = H1N +H2U.

Theorem 5.14. Let (M,g,S(T M)) be a totally umbilical lightlike submanifold of M̃(c) admitting a concircular vector field
ζ = ζ>. The submanifold is a Ricci soliton such that ζ> is the potential vector field if and only if the equation

κ = c+ϕ +
2

∑
i=1

HitraceANi

is satisfied.

Proof. Let {Y1, . . . ,Yn} be an orthonormal frame field on the screen distribution. From (4.6) and (5.5), we find

R(0,2)(Yj,Yj) = c+
2

∑
i=1

H1traceANi (5.6)

for any j ∈ {1, . . . ,n}. From (5.4) and (5.6), the proof is straightforward.

As a result of Theorem 5.14, we obtain:

Theorem 5.15. Let (M,g,S(T M)) be a totally umbilical lightlike submanifold of M̃(c) admitting a concurrent vector field
ζ = ζ>. The submanifold is a Ricci soliton with the potential vector field ζ> if and only if the equation

κ = c+1+
2

∑
i=1

HitraceANi

is satisfied.
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