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Abstract

In this study, some existing results dealing with the weak approximation property of Banach
spaces are considered for the p-weak approximation property. Also, an observation on the
bounded weak approximation and the p-bounded weak approximation properties is given.
Moreover, the proof of the solution of the duality problem for the p-weak approximation
property which exists in the literature is given in a shorter way as an alternative.

1. Introduction

The approximation property, which closely related to basis property of Banach spaces, appeared in Banach’s book in 1932
[1], and the variants of this property were systematically studied by Grothendieck, in 1955 [2]. A Banach space W has the
approximation property (AP) if for every ε > 0 and every compact set M in W , there is a finite-rank operator R : W →W
satisfying ‖Rw−w‖< ε , for every w ∈M [2]. Let 1≤ λ < ∞. A Banach space W has the λ -bounded approximation property
(λ -BAP) if for every ε > 0 and every compact set M in W , there exists a finite-rank operator R : W →W satisfying ‖R‖ ≤ λ

and ‖Rw−w‖ < ε , for every w ∈M (see [3]). W has the bounded approximation property (BAP) if W has the λ -BAP, for
some λ (see [3]). W has the metric approximation property (MAP) if W has the 1-BAP (see [3]). Clearly, a Banach space
with the BAP has the AP, but the converse is not generally true (see [3]). It is possible to find many studies on the AP and its
versions in the literature. For examples, we can mention from [4]-[9].
Grothendieck characterized the concept of compactness in Banach spaces as follows. Let W be a Banach space and let M ⊂W .
M is a relatively compact set if and only if there is a null sequence (wn)n in W satisfying M ⊂ {∑∞

n=1 anwn : (an)n ∈ Bl1} ([2]
and see [10, Proposition1.e.2]). Inspired by Grothendieck’s characterization, Sinha and Karn [11] introduced the concept of
p-compactness in Banach spaces. Let M be a subset of the Banach space W , and let 1≤ p≤ ∞. If there exists a p-summable
sequence (wn)n in W (‖wn‖ → 0 as p = ∞) such that M ⊂ {∑∞

n=1 anwn : (an)n ∈ Blq} (where 1
p +

1
q = 1), M is said to be

relatively p-compact [11]. We remember that the ∞-compact sets are exactly the compact sets, and p-compact sets are
r-compact if 1≤ p < r ≤ ∞ [11].
The concept of a p-compact set leaded to the concept of the p-approximation property (p-AP). Sinha and Karn [11] defined
the concept of the p-approximation property by replacing compact sets with p-compact sets in the definition of the AP. In
recent years, the plenty of studies which focused on p-compactness, the p-AP, and some versions of the p-AP appeared. Some
from these are [12]-[16]. Note that any Banach space has the 2-AP (and thus the p-AP for 1≤ p≤ 2) [11, Theorem 6.4].
Inspired from a result characterizing the AP given by Grothendieck, Choi and Kim [4] defined the weak approximation and
the bounded weak approximation properties as weaker versions of the AP. Let W be a Banach space. If for every compact
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operator R : W →W , every ε > 0, and every compact subset M of W , there exists a finite-rank operator R0 : W →W satisfying
‖Rw−R0w‖ < ε for all w ∈M, then W has the weak approximation property (WAP) [4]. Also, W has the bounded weak
approximation property (BWAP) if for every compact operator R : W →W , there exists a positive number λR such that for every
compact subset M of W , and every ε > 0, there is a finite-rank operator R0 : W →W satisfying ‖R0‖ ≤ λR and ‖R0w−Rw‖< ε

for all w ∈M [4]. It is clear that the BWAP implies the WAP. Also, it is showed in [4] that the AP implies the BWAP. In the
BWAP, if for every compact operator R : W →W with ‖R‖ ≤ 1, λR = 1, then W has the metric weak approximation property
(MWAP) [6].
As the weaker versions of the WAP and the BWAP, Li and Fang in [14] introduced the concepts of the p-weak approximation
property (p-WAP) and the p-bounded weak approximation property (p-BWAP), respectively. A Banach space W has the
p-weak approximation property (p-WAP) if for every compact operator R : W →W , every p-compact subset M of W and, every
ε > 0, there exists a finite-rank operator R0 : W →W satisfying ‖R0w−Rw‖< ε for all w ∈M [14]. W has the p-bounded
weak approximation property (p-BWAP) if for every compact operator R : W →W , there exists a positive number λR such that
for every p-compact subset M of W and every ε > 0, there is a finite-rank operator R0 : W →W satisfying ‖R0‖ ≤ λR and
‖R0w−Rw‖< ε for all w ∈M [14]. It is clear that the WAP implies the p-WAP and the BWAP implies the p-BWAP.
The aim of this study is to obtain for the p-WAP the some results which given on the WAP in [6]-[8], by using the proof
techniques in these results. Firstly, through a characterization given on the BWAP in [4, Lemma 3.7], it has been observed
that the concepts of the p-BWAP and the BWAP are equivalent to each other. After, as a modification for the p-WAP of
[6, Theorem 1.4 (a)], it is shown that the p-WAP of a Banach space W passes to its closed subspace N whenever N⊥ is a
complemented subspace of the dual space W ∗ and W ∗ has the v∗p density, and also shown that the metric weak* density property
in [6, Theorem 1.4 (b)] can be changed with the metric v∗p density property. The proof of the solution of the duality problem for
the p-WAP (respectively, p-BWAP) proved by Li and Fang [14] has been proved in a shorter way as an alternative. Moreover,
as modifications of [7, Theorem 3.5] and [8, Theorem 1.3], respectively, it has been observed that the direct sum of two Banach
spaces with the p-WAP and the p-AP has the p-WAP, and every ideal in a Banach space W has the p-WAP if and only if W has
the p-WAP.

2. Notation and preliminaries

The symbols W and Z will denote Banach spaces. Let K be a subset of W . The symbol IK represents the identity mapping on
K, and for any topology τ on W , Kτ denotes the τ-closure of K in W . If the τ is a norm topology, then we write K. The symbol
BW denotes the closed unit ball of W . For 1≤ p < ∞, the symbol lp(W ) (respectively, l∞(W )) denotes the Banach space of all
p-summable sequences (respectively, bounded sequences) in W , and c0(W ) denotes the Banach space of all null sequences
in W , respectively. L(W,Z) denotes the Banach space of all linear bounded operators from W to Z with usual operator norm
‖,‖. In this case F = C, we write W ∗ instead of L(W,C). A linear operator R from W to Z is called compact if R(BW ) is a
compact subset of Z. The symbols F(W,Z) and K(W,Z) denote subspaces of finite rank and compact operators of L(W,Z),
respectively. Let λ > 0. Kλ (W,W ) (respectively, Fλ (W,W )) denotes the collection of compact (respectively, finite rank)
operators R : W →W with ‖R‖ ≤ λ . Kλ

z∗(W
∗,W ∗) (respectively, Fλ

z∗ (W
∗,W ∗)) denotes the collection of compact (respectively,

finite rank) and weak∗-to-weak∗ continuous operators R : W ∗→W ∗ with ‖R‖ ≤ λ . For a set K ⊂W , the annihilator of K in
W ∗ will be denoted by K⊥. That is, K⊥ = {w∗ ∈W ∗ : w∗(w) = 0 for each w ∈ K}. The notations τ and τp will denote the
topologies on L(W,Z), which of uniform convergence on the compact sets and p-compact sets in W , respectively. Through the
paper, for p with 1 < p < ∞, the q satisfies 1

p +
1
q = 1.

3. Some results for the p-weak approximation property

In this section, we will give an observation on the p-BWAP, some results on the p-WAP, and an alternative proof of solution
of the duality problem for the p-WAP (respectively, p-BWAP). Firstly, we remember that the definitions of the vp and v∗p
topologies given in [15] as the modifications of the v and weak∗ topologies in [5, 6], respectively.

Definition 3.1. ([15], see [5, 6]) Let 1 < p < ∞. Let X1 be space of all linear functionals ϑ on L(W,W ) as in the form below

ϑ(S) =
∞

∑
k=1

∞

∑
i=1

λ
k
i (w

∗
k)(Swi)

in which (wi)
∞
i=1 ∈ lp(W ), (w∗k)

∞
k=1 ⊂W ∗ and zk = (λ k

i )
∞
i=1 ∈ lq for ∀k ∈ N with ∑

∞
k=1 ‖zk‖q‖w∗k‖< ∞.

Let X2 be space of all linear functionals φ on L(W ∗,W ∗) as in the form below

φ(R) =
∞

∑
k=1

∞

∑
i=1

β
k
i (Rw∗k)(wi)

in which (wi)
∞
i=1 ∈ lp(W ), (w∗k)

∞
k=1 ⊂W ∗ and tk = (β k

i )
∞
i=1 ∈ lq for ∀k ∈ N with ∑

∞
k=1 ‖tk‖q‖w∗k‖< ∞.
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Let vp be the topology induced by X1 on L(W,W ), and let v∗p be the topology induced by X2 on L(W ∗,W ∗). From elementary
facts, the vp and v∗p are locally convex topologies (see [5, 6, 17, 18]). Also, by using [13, Theorem 2.5], we get (L(W,W ),τp)

∗=
X1 = (L(W,W ),vp)

∗.
An operator S and a net (Sα)α in L(W,W ),

Sα

vp−→ S if and only if
∞

∑
k=1

∞

∑
i=1

λ
k
i (w

∗
k)(Sα wi)→

∞

∑
k=1

∞

∑
i=1

λ
k
i (w

∗
k)(Swi)

for every (wi)
∞
i=1 ∈ lp(W ), (w∗k)

∞
k=1 ⊂W ∗ and zk = (λ k

i )
∞
i=1 ∈ lq for ∀k ∈ N with ∑

∞
k=1 ‖zk‖q‖w∗k‖< ∞ ([15], see [5, 6]).

Similarly, for an operator R and a net (Rα)α in L(W ∗,W ∗),

Rα

v∗p−→ R if and only if
∞

∑
k=1

∞

∑
i=1

β
k
i (Rα w∗k)(wi)→

∞

∑
k=1

∞

∑
i=1

β
k
i (Rw∗k)(wi)

for every (wi)
∞
i=1 ∈ lp(W ), (w∗k)

∞
k=1 ⊂W ∗ and zk = (β k

i )
∞
i=1 ∈ lq for ∀k ∈ N with ∑

∞
k=1 ‖zk‖q‖w∗k‖< ∞ ([15], see [5, 6]).

Remark 3.2. ([15], see [5]) For any 1 < p < ∞, by [13, Theorem 2.5], we can easily see that the τp-topology on the space
L(W,W ) is stronger than the vp-topology. Also, the v∗p-topology on the space L(W ∗,W ∗) is weaker than the vp-topology. The
vp and v∗p topologies coincide if W is a reflexive Banach space. Also, we remember that for an operator S and a net (Sα)α in
L(W,W )

Sα

vp−→ S if and only if S∗α
v∗p−→ S∗.

Remark 3.3. ([15], see [5, 6]) We have the following for a Banach space W.

• Let 2 < p < ∞. W has the p-AP if and only if IW ∈ F(W,W )
vp .

• Let 1 < p < ∞. W has the λ -BAP if and only if IW ∈ Fλ (W,W )
vp

.
• Let 2 < p < ∞. W has the p-WAP if and only if K(W,W )⊂ F(W,W )

vp .

Now we recall that the properties v∗pD and Bv∗pD given in [15] for compact operators on the dual space W ∗.

Definition 3.4. ([15], see [5, 6]) Let W be a Banach space and let 1 < p < ∞.

(a) W ∗ is said to have the v∗p density (v∗pD) if K(W ∗,W ∗)⊂ Kz∗(W ∗,W ∗)
v∗p .

(b) W ∗ is said to have the bounded v∗p density (Bv∗pD) if K1(W ∗,W ∗)⊂ Kλ
z∗(W

∗,W ∗)
v∗p

for some λ > 0.

W ∗ is said to have the metric v∗p density (Mv∗pD) if the Bv∗pD is satisfied for λ = 1.

Lemma 3.5. ([15], see [10, Lemma 1.e.17], see [4, Lemma 3.11]) For a Banach space W and 1 < p < ∞, we have the
following.

(a) F(W ∗,W ∗)⊂ Fz∗(W ∗,W ∗)
τp ⊂ Fz∗(W ∗,W ∗)

v∗p .

(b) Fλ (W ∗,W ∗)⊂ Fλ
z∗ (W

∗,W ∗)
τp
⊂ Fλ

z∗ (W
∗,W ∗)

v∗p
for all λ > 0.

Lemma 3.6. ([6, Lemma 3.6]) Let W be a Banach space, let N be a closed subspace of W such that let N⊥ be a complemented
subspace in W ∗. Then, there exists a linear bounded map U : N∗→W ∗ satisfying (Un∗)(n) = n∗(n) for ∀ n∗ ∈ N∗ and n ∈ N.

3.1. Main results

Now, we give the main results of this paper.

Remark 3.7. For any 1 < p < ∞, Li and Fang in [14] defined the p-BWAP as weak version of the BWAP. On the other hand,
Choi and Kim in [4, Lemma 3.7] showed that compact sets can be replaced by finite sets in the BWAP. Since every finite set is
p-compact and every p-compact set is compact, the [4, Lemma 3.7] will also be correct when its part (a) is replaced with the
p-BWAP. So, p-compact sets can be replaced with finite sets in p-BWAP. Thus, the concepts of the p-BWAP and the BWAP are
equivalent.

Using Remark 3.7, the relation definitions and (see [18, Lemma 3.5]), the following characterizations are obtained.

Remark 3.8. (see [4, Lemma 3.7], and see [18, Lemma 3.5]) Let 1 < p < ∞. We get the followings.
(a) A Banach space W has the BWAP if and only if for every R ∈ K(W,W ), there is a λR > 0 such that R ∈ FλR(W,W )

vp
.

(b) A Banach space W has the MWAP if and only if K1(W,W )⊂ F1(W,W )
vp .

The part (a) of the following theorem is a modification of [6, Theorem 1.4 (a)] for the p-WAP, and the part (b) shows that a
similar result will be obtained when the metric weak* density (MW ∗D) property are replaced with the Mv∗pD in [6, Theorem
1.4 (b)].
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Theorem 3.9. (see [6, Theorem 1.4]) Let 2 < p < ∞. Let W be a Banach space, let N a closed subspace of W such that let
N⊥ be a complemented subspace in W ∗.

(a) N has the p-WAP if W has the p-WAP and W ∗ has the v∗pD.

(b) K1(N,N)⊂ Fµ(N,N)
τp for some µ > 0 if W has the MWAP and W ∗ has the Mv∗pD. In particular, N has the BWAP.

Proof. (a) By using that W has the p-WAP, Kz∗(W ∗,W ∗)⊂ Fz∗(W ∗,W ∗)
v∗p is obtained. If this inclusion is combined with the

property v∗pD of W ∗, then we get K(W ∗,W ∗)⊂ Fz∗(W ∗,W ∗)
v∗p . Now, let R ∈ K(N,N). We show that R ∈ F(N,N)

vp .
Let IN : N→W be the inclusion map, and let the operator U : N∗→W ∗ be such as in Lemma 3.6. Since UR∗I∗N ∈ K(W ∗,W ∗),

there exists a net (R∗α)α ⊂ Fz∗(W ∗,W ∗) such that R∗α
v∗p−→UR∗I∗N . That means,

∞

∑
k=1

∞

∑
i=1

λ
k
i (R

∗
α w∗k)(wi)

α−→
∞

∑
k=1

∞

∑
i=1

λ
k
i (UR∗I∗Nw∗k)(wi) (3.1)

for every (wi)
∞
i=1 ∈ lp(W ), (w∗k)

∞
k=1 ⊂W ∗ and zk = (λ k

i )
∞
i=1 ∈ lq for each k ∈ N satisfying ∑

∞
k=1 ‖zk‖q‖w∗k‖< ∞.

Now, we take the sequences (ni)
∞
i=1 ∈ lp(N), (n∗k)

∞
k=1 ⊂N∗ and, tk = (β k

i )
∞
i=1 ∈ lq for each k ∈N satisfying ∑

∞
k=1 ‖tk‖q‖n∗k‖< ∞.

Therefore, we get from (3.1)

∞

∑
k=1

∞

∑
i=1

β
k
i (R

∗
αU(n∗k))(INni)

α−→
∞

∑
k=1

∞

∑
i=1

β
k
i (UR∗I∗NU(n∗k))(INni) =

∞

∑
k=1

∞

∑
i=1

β
k
i (UR∗I∗NU(n∗k))(ni). (3.2)

Therefore, by (3.2), and the definition of the operator U , we get

∞

∑
k=1

∞

∑
i=1

β
k
i (I
∗
NR∗αUn∗k)(ni) =

∞

∑
k=1

∞

∑
i=1

β
k
i (R

∗
αU(n∗k))(INni)

α−→
∞

∑
k=1

∞

∑
i=1

β
k
i (UR∗I∗NU(n∗k))(ni)

=
∞

∑
k=1

∞

∑
i=1

β
k
i (R

∗I∗NU(n∗k))(ni)

=
∞

∑
k=1

∞

∑
i=1

β
k
i (Un∗k)(Rni)

=
∞

∑
k=1

∞

∑
i=1

β
k
i (n
∗
k)(Rni)

=
∞

∑
k=1

∞

∑
i=1

β
k
i (R

∗n∗k)(ni).

Thus, from the definition v∗p, we have I∗NR∗αU
v∗p−→R∗. It follows that R∗ ∈F(N∗,N∗)

v∗p . From Lemma 3.5 (a), R∗ ∈Fz∗(N∗,N∗)
v∗p ,

and by Remark 3.2, we get R ∈ F(N,N)
vp . This proves (a).

(b) Since W has the MWAP, K1(W,W ) ⊂ F1(W,W )
vp . Thus, as in the proof of (a), we get K1

z∗(W
∗,W ∗) ⊂ F1

z∗(W
∗,W ∗)

v∗p .
Now, let R be an operator in K1(N,N). Then UR∗I∗N ∈ K‖U‖(W ∗,W ∗). Using that W ∗ has the Mv∗pD, we get UR∗I∗N ∈

K‖U‖(W ∗,W ∗)⊂ F‖U‖z∗ (W ∗,W ∗)
v∗p

. By following similar steps in the proof of the part (a), if Lemma 3.5 (b) is applied, then it

is obtained R∗ ∈ F‖U‖
2

z∗ (N∗,N∗)
v∗p

. By Remark 3.2, R ∈ F‖U‖
2
(N,N)

vp
. Since (L(W,W ),τp)

∗ = (L(W,W ),vp)
∗, by (see [18,

Lemma 3.5]), R ∈ F‖U‖
2
(N,N)

τp
, where µ =: ‖U‖2. Thus, the proof is completed.

Remark 3.10. Let 2 < p < ∞. Li and Fang [14] proved that if the W ∗ has p-WAP (respectively, p-BWAP), then W has the
p-WAP (respectively, p-BWAP). The proof of this theorem can be shortened by using Remark 3.2 and Lemma 3.5. Actually,

suppose that W ∗ has the p-WAP, and let R ∈ K(W,W ). It follows from Lemma 3.5 (a) that R∗ ∈ Fz∗(W ∗,W ∗)
v∗p . Thus, there

exists a net (Rα)α in F(W,W ) such that R∗α
v∗p−→ R∗. By Remark 3.2, Rα

vp−→ T . Thus, R ∈ F(W,W )
vp .This shows that W has

the p-WAP. Using Lemma 3.5 (b), the shortened proof for the p-BWAP can be made as similar.

The following theorem is a modification for the p-WAP of [7, Theorem 3.5]. The proof of theorem is omitted since similar to
[7, Theorem 3.5].
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Theorem 3.11. (see [7, Theorem 3.5]) The Banach space W ⊕Z has the p-WAP if W has the p-WAP and Z has the p-AP.

Li and Fang in [14] proved that the complemented subspaces of a Banach space with the p-WAP have the p-WAP. Combining
this result with Theorem 3.11, we obtain the following result.

Corollary 3.12. Let 2 < p < ∞. Let a closed subspace N of a Banach space W be complemented in W. Then, we have the
following:
(a) The space N has the p-WAP if W has the p-WAP, [14].
(b) The space W/N has the p-WAP if W has the p-WAP.
(c) The space W has the p-WAP if N has the p-WAP and W/N has the p-AP.

Proof. (a) This part is proved by [14].
(b) Since N is a complemented subspace of W , it is well known that there is a closed subspace M of W such that M is
complementary of N and the spaces W/N and M are isomorphic (see [17]). From (a), since every complemented subspace of
W has the p-WAP, M has the p-WAP. Thus, W/N has the p-WAP.
(c) As in (b), there exists a closed subspace M of W such that the spaces W/N and M are isomorphic. Thus, from the hypothesis,
M has the p-AP. Since N has the p-WAP and M has the p-AP, from Theorem 3.11 and [17, p. 65], we get that W has the
p-WAP.

By a modification of [8, Theorem 1.3], we obtain the following theorem for the p-WAP of a Banach space W . The proof of this
theorem is omitted since similar to [8, Theorem 1.3]. (The locally complemented subspace and ideal concepts in the following
theorem can be found in [8].)

Theorem 3.13. (see [8, Theorem 1.3]) Let 2 < p < ∞. For a Banach space W the following are equivalent.
(a) W has the p-WAP.
(b) Every locally complemented subspace of W has the p-WAP.
(c) Every ideal in W has the p-WAP.
(d) For every closed and separable subspace Z of W, there is a closed and separable subspace Y ⊂W containing the subspace
Z such that Y has the p-WAP.

Remark 3.14. The above theorem also shows that without the property v∗pD on the space W ∗ in Theorem 3.9 (a), Theorem 3.9
(a) will still be true (see [19, 20]).

4. Conclusion

In the paper, it has been observed that the BWAP and the p-BWAP concepts are equivalent to each other. Some results on
the p-WAP of Banach spaces have been given. The proof of the solution of the duality problem for the p-WAP (respectively,
p-BWAP) which exists in the literature is given in a shorter way as an alternative.
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