

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.org.tr/en/pub/fujma ISSN: 2645-8845 doi: https://dx.doi.org/10.33401/fujma.1099840

Some Results on the *p*-Weak Approximation Property in Banach Spaces

Ayşegül Keten Çopur^{1*} and Adalet Satar²

¹Department of Mathematics and Computer Science, Faculty of Science, Necmettin Erbakan University, Konya, Türkiye ²Department of Mathematics, The Graduate School of Natural and Applied Science, Necmettin Erbakan University, Konya, Türkiye *Corresponding author

Article Info

Abstract

Keywords: Approximation property, Bounded weak approximation property, p-weak approximation property, Weak approximation property
2010 AMS: 46A32, 47A05
Received: 7 April 2022
Accepted: 3 October 2022
Available online: 26 October 2022

In this study, some existing results dealing with the weak approximation property of Banach spaces are considered for the p-weak approximation property. Also, an observation on the bounded weak approximation and the p-bounded weak approximation properties is given. Moreover, the proof of the solution of the duality problem for the p-weak approximation property which exists in the literature is given in a shorter way as an alternative.

1. Introduction

The approximation property, which closely related to basis property of Banach spaces, appeared in Banach's book in 1932 [1], and the variants of this property were systematically studied by Grothendieck, in 1955 [2]. A Banach space *W* has the approximation property (AP) if for every $\varepsilon > 0$ and every compact set *M* in *W*, there is a finite-rank operator $R : W \to W$ satisfying $||Rw - w|| < \varepsilon$, for every $w \in M$ [2]. Let $1 \le \lambda < \infty$. A Banach space *W* has the λ -bounded approximation property (λ -BAP) if for every $\varepsilon > 0$ and every compact set *M* in *W*, there exists a finite-rank operator $R : W \to W$ satisfying $||Rw - w|| < \varepsilon$, for every $w \in M$ [2]. Let $1 \le \lambda < \infty$. A Banach space *W* has the λ -bounded approximation property (λ -BAP) if for every $\varepsilon > 0$ and every compact set *M* in *W*, there exists a finite-rank operator $R : W \to W$ satisfying $||R|| \le \lambda$ and $||Rw - w|| < \varepsilon$, for every $w \in M$ (see [3]). *W* has the bounded approximation property (BAP) if *W* has the λ -BAP, for some λ (see [3]). *W* has the metric approximation property (MAP) if *W* has the 1-BAP (see [3]). Clearly, a Banach space with the BAP has the AP, but the converse is not generally true (see [3]). It is possible to find many studies on the AP and its versions in the literature. For examples, we can mention from [4]-[9].

Grothendieck characterized the concept of compactness in Banach spaces as follows. Let *W* be a Banach space and let $M \,\subset W$. *M* is a relatively compact set if and only if there is a null sequence $(w_n)_n$ in *W* satisfying $M \subset \{\sum_{n=1}^{\infty} a_n w_n : (a_n)_n \in B_{l_1}\}$ ([2] and see [10, Proposition1.e.2]). Inspired by Grothendieck's characterization, Sinha and Karn [11] introduced the concept of *p*-compactness in Banach spaces. Let *M* be a subset of the Banach space *W*, and let $1 \leq p \leq \infty$. If there exists a *p*-summable sequence $(w_n)_n$ in W ($||w_n|| \to 0$ as $p = \infty$) such that $M \subset \{\sum_{n=1}^{\infty} a_n w_n : (a_n)_n \in B_{l_q}\}$ (where $\frac{1}{p} + \frac{1}{q} = 1$), *M* is said to be relatively *p*-compact [11]. We remember that the ∞ -compact sets are exactly the compact sets, and *p*-compact sets are *r*-compact if $1 \leq p < r \leq \infty$ [11].

The concept of a *p*-compact set leaded to the concept of the *p*-approximation property (*p*-AP). Sinha and Karn [11] defined the concept of the *p*-approximation property by replacing compact sets with *p*-compact sets in the definition of the AP. In recent years, the plenty of studies which focused on *p*-compactness, the *p*-AP, and some versions of the *p*-AP appeared. Some from these are [12]-[16]. Note that any Banach space has the 2-AP (and thus the *p*-AP for $1 \le p \le 2$) [11, Theorem 6.4]. Inspired from a result characterizing the AP given by Grothendieck. Choi and Kim [4] defined the weak approximation and

Inspired from a result characterizing the AP given by Grothendieck, Choi and Kim [4] defined the weak approximation and the bounded weak approximation properties as weaker versions of the AP. Let W be a Banach space. If for every compact

operator $R: W \to W$, every $\varepsilon > 0$, and every compact subset M of W, there exists a finite-rank operator $R_0: W \to W$ satisfying $||Rw - R_0w|| < \varepsilon$ for all $w \in M$, then W has the weak approximation property (WAP) [4]. Also, W has the bounded weak approximation property (BWAP) if for every compact operator $R: W \to W$, there exists a positive number λ_R such that for every compact subset M of W, and every $\varepsilon > 0$, there is a finite-rank operator $R_0: W \to W$ satisfying $||R_0|| \le \lambda_R$ and $||R_0w - Rw|| < \varepsilon$ for all $w \in M$ [4]. It is clear that the BWAP implies the WAP. Also, it is showed in [4] that the AP implies the BWAP. In the BWAP, if for every compact operator $R: W \to W$ with $||R|| \le 1$, $\lambda_R = 1$, then W has the metric weak approximation property (MWAP) [6].

As the weaker versions of the WAP and the BWAP, Li and Fang in [14] introduced the concepts of the *p*-weak approximation property (*p*-WAP) and the *p*-bounded weak approximation property (*p*-BWAP), respectively. A Banach space *W* has the *p*-weak approximation property (*p*-WAP) if for every compact operator $R : W \to W$, every *p*-compact subset *M* of *W* and, every $\varepsilon > 0$, there exists a finite-rank operator $R_0 : W \to W$ satisfying $||R_0w - Rw|| < \varepsilon$ for all $w \in M$ [14]. *W* has the *p*-bounded weak approximation property (*p*-BWAP) if for every compact operator $R : W \to W$, there exists a positive number λ_R such that for every *p*-compact subset *M* of *W* and every $\varepsilon > 0$, there is a finite-rank operator $R_0 : W \to W$ satisfying $||R_0|| \le \lambda_R$ and $||R_0w - Rw|| < \varepsilon$ for all $w \in M$ [14]. It is clear that the WAP implies the *p*-WAP and the BWAP implies the *p*-BWAP.

The aim of this study is to obtain for the *p*-WAP the some results which given on the WAP in [6]-[8], by using the proof techniques in these results. Firstly, through a characterization given on the BWAP in [4, Lemma 3.7], it has been observed that the concepts of the *p*-BWAP and the BWAP are equivalent to each other. After, as a modification for the *p*-WAP of [6, Theorem 1.4 (a)], it is shown that the *p*-WAP of a Banach space *W* passes to its closed subspace *N* whenever N^{\perp} is a complemented subspace of the dual space W^* and W^* has the v_p^* density, and also shown that the metric weak* density property in [6, Theorem 1.4 (b)] can be changed with the metric v_p^* density property. The proof of the solution of the duality problem for the *p*-WAP (respectively, *p*-BWAP) proved by Li and Fang [14] has been proved in a shorter way as an alternative. Moreover, as modifications of [7, Theorem 3.5] and [8, Theorem 1.3], respectively, it has been observed that the direct sum of two Banach spaces with the *p*-WAP and the *p*-WAP, and every ideal in a Banach space *W* has the *p*-WAP if and only if *W* has the *p*-WAP.

2. Notation and preliminaries

The symbols W and Z will denote Banach spaces. Let K be a subset of W. The symbol I_K represents the identity mapping on K, and for any topology τ on W, \overline{K}^{τ} denotes the τ -closure of K in W. If the τ is a norm topology, then we write \overline{K} . The symbol B_W denotes the closed unit ball of W. For $1 \le p < \infty$, the symbol $l_p(W)$ (respectively, $l_{\infty}(W)$) denotes the Banach space of all p-summable sequences (respectively, bounded sequences) in W, and $c_0(W)$ denotes the Banach space of all null sequences in W, respectively. L(W,Z) denotes the Banach space of all linear bounded operators from W to Z with usual operator norm $\|,\|$. In this case $F = \mathbb{C}$, we write W^* instead of $L(W,\mathbb{C})$. A linear operator R from W to Z is called compact if $\overline{R}(B_W)$ is a compact subset of Z. The symbols F(W,Z) and K(W,Z) denotes subspaces of finite rank and compact operators of L(W,Z), respectively. Let $\lambda > 0$. $K^{\lambda}(W,W)$ (respectively, $F^{\lambda}(W,W)$) denotes the collection of compact (respectively, finite rank) operators $R : W \to W$ with $\|R\| \le \lambda$. $K^{\lambda}_{z^*}(W^*,W^*)$ (respectively, $F^{\lambda}_{z^*}(W^*,W^*)$) denotes the collection of compact (respectively, finite rank) operators $R : W^+ \to W^*$ with $\|R\| \le \lambda$. For a set $K \subset W$, the annihilator of K in W^* will be denoted by K^{\perp} . That is, $K^{\perp} = \{w^* \in W^* : w^*(w) = 0$ for each $w \in K\}$. The notations τ and τ_p will denote the topologies on L(W,Z), which of uniform convergence on the compact sets and p-compact sets in W, respectively. Through the paper, for p with 1 , the <math>q satisfies $\frac{1}{p} + \frac{1}{q} = 1$.

3. Some results for the *p*-weak approximation property

In this section, we will give an observation on the *p*-BWAP, some results on the *p*-WAP, and an alternative proof of solution of the duality problem for the *p*-WAP (respectively, *p*-BWAP). Firstly, we remember that the definitions of the v_p and v_p^* topologies given in [15] as the modifications of the *v* and *weak*^{*} topologies in [5, 6], respectively.

Definition 3.1. ([15], see [5, 6]) Let $1 . Let <math>X_1$ be space of all linear functionals ϑ on L(W, W) as in the form below

$$\vartheta(S) = \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \lambda_i^k(w_k^*)(Sw_i)$$

in which $(w_i)_{i=1}^{\infty} \in l_p(W)$, $(w_k^*)_{k=1}^{\infty} \subset W^*$ and $z_k = (\lambda_i^k)_{i=1}^{\infty} \in l_q$ for $\forall k \in \mathbb{N}$ with $\sum_{k=1}^{\infty} \|z_k\|_q \|w_k^*\| < \infty$.

Let X_2 be space of all linear functionals ϕ on $L(W^*, W^*)$ as in the form below

$$\phi(R) = \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (R w_k^*)(w_i)$$

in which $(w_i)_{i=1}^{\infty} \in l_p(W)$, $(w_k^*)_{k=1}^{\infty} \subset W^*$ and $t_k = (\beta_i^k)_{i=1}^{\infty} \in l_q$ for $\forall k \in \mathbb{N}$ with $\sum_{k=1}^{\infty} ||t_k||_q ||w_k^*|| < \infty$.

Let v_p be the topology induced by X_1 on L(W, W), and let v_p^* be the topology induced by X_2 on $L(W^*, W^*)$. From elementary facts, the v_p and v_p^* are locally convex topologies (see [5, 6, 17, 18]). Also, by using [13, Theorem 2.5], we get $(L(W, W), \tau_p)^* = X_1 = (L(W, W), v_p)^*$.

An operator *S* and a net $(S_{\alpha})_{\alpha}$ in L(W, W),

$$S_{\alpha} \xrightarrow{v_p} S$$
 if and only if $\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \lambda_i^k(w_k^*)(S_{\alpha}w_i) \to \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \lambda_i^k(w_k^*)(Sw_i)$

for every $(w_i)_{i=1}^{\infty} \in l_p(W)$, $(w_k^*)_{k=1}^{\infty} \subset W^*$ and $z_k = (\lambda_i^k)_{i=1}^{\infty} \in l_q$ for $\forall k \in \mathbb{N}$ with $\sum_{k=1}^{\infty} ||z_k||_q ||w_k^*|| < \infty$ ([15], see [5, 6]). Similarly, for an operator R and a net $(R_{\alpha})_{\alpha}$ in $L(W^*, W^*)$,

$$R_{\alpha} \xrightarrow{v_{p}^{*}} R \text{ if and only if } \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_{i}^{k} (R_{\alpha} w_{k}^{*})(w_{i}) \to \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_{i}^{k} (R w_{k}^{*})(w_{i})$$

for every $(w_i)_{i=1}^{\infty} \in l_p(W)$, $(w_k^*)_{k=1}^{\infty} \subset W^*$ and $z_k = (\beta_i^k)_{i=1}^{\infty} \in l_q$ for $\forall k \in \mathbb{N}$ with $\sum_{k=1}^{\infty} \|z_k\|_q \|w_k^*\| < \infty$ ([15], see [5, 6]).

Remark 3.2. ([15], see [5]) For any $1 , by [13, Theorem 2.5], we can easily see that the <math>\tau_p$ -topology on the space L(W,W) is stronger than the v_p -topology. Also, the v_p^* -topology on the space $L(W^*,W^*)$ is weaker than the v_p -topology. The v_p and v_p^* topologies coincide if W is a reflexive Banach space. Also, we remember that for an operator S and a net $(S_{\alpha})_{\alpha}$ in L(W,W)

$$S_{\alpha} \xrightarrow{v_p} S$$
 if and only if $S_{\alpha}^* \xrightarrow{v_p^*} S^*$.

Remark 3.3. ([15], see [5, 6]) We have the following for a Banach space W.

- Let $2 . W has the p-AP if and only if <math>I_W \in \overline{F(W,W)}^{v_p}$.
- Let $1 . W has the <math>\lambda$ -BAP if and only if $I_W \in \overline{F^{\lambda}(W,W)}^{v_p}$.
- Let $2 . W has the p-WAP if and only if <math>K(W,W) \subset \overline{F(W,W)}^{v_p}$.

Now we recall that the properties v_p^*D and Bv_p^*D given in [15] for compact operators on the dual space W^* .

Definition 3.4. ([15], see [5, 6]) Let W be a Banach space and let 1 . $(a) <math>W^*$ is said to have the v_p^* density (v_p^*D) if $K(W^*, W^*) \subset \overline{K_{z^*}(W^*, W^*)}^{v_p^*}$.

(b) W^* is said to have the bounded v_p^* density (Bv_p^*D) if $K^1(W^*, W^*) \subset \overline{K_{z^*}^{\lambda}(W^*, W^*)}^{v_p^*}$ for some $\lambda > 0$.

 W^* is said to have the metric v_p^* density (Mv_p^*D) if the Bv_p^*D is satisfied for $\lambda = 1$.

Lemma 3.5. ([15], see [10, Lemma 1.e.17], see [4, Lemma 3.11]) For a Banach space W and 1 , we have the following.

(a) $F(W^*, W^*) \subset \overline{F_{z^*}(W^*, W^*)}^{\tau_p} \subset \overline{F_{z^*}(W^*, W^*)}^{v_p^*}$. (b) $F^{\lambda}(W^*, W^*) \subset \overline{F_{z^*}^{\lambda}(W^*, W^*)}^{\tau_p} \subset \overline{F_{z^*}^{\lambda}(W^*, W^*)}^{v_p^*}$ for all $\lambda > 0$.

Lemma 3.6. ([6, Lemma 3.6]) Let W be a Banach space, let N be a closed subspace of W such that let N^{\perp} be a complemented subspace in W^{*}. Then, there exists a linear bounded map $U : N^* \to W^*$ satisfying $(Un^*)(n) = n^*(n)$ for $\forall n^* \in N^*$ and $n \in N$.

3.1. Main results

Now, we give the main results of this paper.

Remark 3.7. For any 1 , Li and Fang in [14] defined the p-BWAP as weak version of the BWAP. On the other hand, Choi and Kim in [4, Lemma 3.7] showed that compact sets can be replaced by finite sets in the BWAP. Since every finite set is p-compact and every p-compact set is compact, the [4, Lemma 3.7] will also be correct when its part (a) is replaced with the p-BWAP. So, p-compact sets can be replaced with finite sets in p-BWAP. Thus, the concepts of the p-BWAP and the BWAP are equivalent.

Using Remark 3.7, the relation definitions and (see [18, Lemma 3.5]), the following characterizations are obtained.

Remark 3.8. (see [4, Lemma 3.7], and see [18, Lemma 3.5]) Let 1 . We get the followings. $(a) A Banach space W has the BWAP if and only if for every <math>R \in K(W,W)$, there is a $\lambda_R > 0$ such that $R \in \overline{F^{\lambda_R}(W,W)}^{v_p}$. (b) A Banach space W has the MWAP if and only if $K^1(W,W) \subset \overline{F^1(W,W)}^{v_p}$.

The part (a) of the following theorem is a modification of [6, Theorem 1.4 (a)] for the *p*-WAP, and the part (b) shows that a similar result will be obtained when the metric weak* density (MW*D) property are replaced with the Mv_p^*D in [6, Theorem 1.4 (b)].

Theorem 3.9. (see [6, Theorem 1.4]) Let $2 . Let W be a Banach space, let N a closed subspace of W such that let <math>N^{\perp}$ be a complemented subspace in W^* .

(a) N has the p-WAP if W has the p-WAP and W^{*} has the v_p^*D . (b) $K^1(N,N) \subset \overline{F^{\mu}(N,N)}^{\tau_p}$ for some $\mu > 0$ if W has the MWAP and W^{*} has the Mv_p^*D . In particular, N has the BWAP.

Proof. (a) By using that W has the p-WAP, $K_{z^*}(W^*, W^*) \subset \overline{F_{z^*}(W^*, W^*)}^{v_p^*}$ is obtained. If this inclusion is combined with the property v_p^*D of W^* , then we get $K(W^*, W^*) \subset \overline{F_{z^*}(W^*, W^*)}^{v_p^*}$. Now, let $R \in K(N, N)$. We show that $R \in \overline{F(N, N)}^{v_p}$. Let $I_N : N \to W$ be the inclusion map, and let the operator $U : N^* \to W^*$ be such as in Lemma 3.6. Since $UR^*I_N^* \in K(W^*, W^*)$, there exists a net $(R^*_{\alpha})_{\alpha} \subset F_{z^*}(W^*, W^*)$ such that $R^*_{\alpha} \xrightarrow{v_p^*} UR^*I_N^*$. That means,

$$\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \lambda_i^k (R^*_{\alpha} w^*_k)(w_i) \xrightarrow{\alpha} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \lambda_i^k (UR^* I^*_N w^*_k)(w_i)$$
(3.1)

for every $(w_i)_{i=1}^{\infty} \in l_p(W)$, $(w_k^*)_{k=1}^{\infty} \subset W^*$ and $z_k = (\lambda_i^k)_{i=1}^{\infty} \in l_q$ for each $k \in \mathbb{N}$ satisfying $\sum_{k=1}^{\infty} \|z_k\|_q \|w_k^*\| < \infty$.

Now, we take the sequences $(n_i)_{i=1}^{\infty} \in l_p(N)$, $(n_k^*)_{k=1}^{\infty} \subset N^*$ and, $t_k = (\beta_i^k)_{i=1}^{\infty} \in l_q$ for each $k \in \mathbb{N}$ satisfying $\sum_{k=1}^{\infty} ||t_k||_q ||n_k^*|| < \infty$. Therefore, we get from (3.1)

$$\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (R^*_{\alpha} U(n^*_k)) (I_N n_i) \xrightarrow{\alpha} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (UR^* I^*_N U(n^*_k)) (I_N n_i) = \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (UR^* I^*_N U(n^*_k)) (n_i).$$
(3.2)

Therefore, by (3.2), and the definition of the operator U, we get

$$\begin{split} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (I_N^* R_{\alpha}^* U n_k^*)(n_i) &= \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (R_{\alpha}^* U(n_k^*))(I_N n_i) \\ & \stackrel{\rightarrow}{\rightarrow} \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (U R^* I_N^* U(n_k^*))(n_i) \\ &= \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (R^* I_N^* U(n_k^*))(n_i) \\ &= \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (U n_k^*)(R n_i) \\ &= \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (R^* n_k^*)(R n_i) \\ &= \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \beta_i^k (R^* n_k^*)(n_i). \end{split}$$

Thus, from the definition v_p^* , we have $I_N^* R_\alpha^* U \xrightarrow{v_p^*} R^*$. It follows that $R^* \in \overline{F(N^*, N^*)}^{v_p^*}$. From Lemma 3.5 (a), $R^* \in \overline{F_{z^*}(N^*, N^*)}^{v_p^*}$, and by Remark 3.2, we get $R \in \overline{F(N, N)}^{v_p}$. This proves (a).

(b) Since *W* has the MWAP, $K^1(W,W) \subset \overline{F^1(W,W)}^{v_p}$. Thus, as in the proof of (a), we get $K_{z^*}^1(W^*,W^*) \subset \overline{F_{z^*}^1(W^*,W^*)}^{v_p^*}$. Now, let *R* be an operator in $K^1(N,N)$. Then $UR^*I_N^* \in K^{||U||}(W^*,W^*)$. Using that W^* has the Mv_p^*D , we get $UR^*I_N^* \in K^{||U||}(W^*,W^*) \subset \overline{F_{z^*}^{||U||}(W^*,W^*)}^{v_p^*}$. By following similar steps in the proof of the part (a), if Lemma 3.5 (b) is applied, then it is obtained $R^* \in \overline{F_{z^*}^{||U||^2}(N^*,N^*)}^{v_p^*}$. By Remark 3.2, $R \in \overline{F^{||U||^2}(N,N)}^{v_p}$. Since $(L(W,W),\tau_p)^* = (L(W,W),v_p)^*$, by (see [18, Lemma 3.5]), $R \in \overline{F^{||U||^2}(N,N)}^{\tau_p}$, where $\mu =: ||U||^2$. Thus, the proof is completed.

Remark 3.10. Let $2 . Li and Fang [14] proved that if the W* has p-WAP (respectively, p-BWAP), then W has the p-WAP (respectively, p-BWAP). The proof of this theorem can be shortened by using Remark 3.2 and Lemma 3.5. Actually, suppose that W* has the p-WAP, and let <math>R \in K(W,W)$. It follows from Lemma 3.5 (a) that $R^* \in \overline{F_{z^*}(W^*,W^*)}^{v_p^*}$. Thus, there exists a net $(R_{\alpha})_{\alpha}$ in F(W,W) such that $R_{\alpha}^* \xrightarrow{v_p^*} R^*$. By Remark 3.2, $R_{\alpha} \xrightarrow{v_p} T$. Thus, $R \in \overline{F(W,W)}^{v_p}$. This shows that W has the p-WAP. Using Lemma 3.5 (b), the shortened proof for the p-BWAP can be made as similar.

The following theorem is a modification for the p-WAP of [7, Theorem 3.5]. The proof of theorem is omitted since similar to [7, Theorem 3.5].

Theorem 3.11. (see [7, Theorem 3.5]) The Banach space $W \oplus Z$ has the p-WAP if W has the p-WAP and Z has the p-AP.

Li and Fang in [14] proved that the complemented subspaces of a Banach space with the p-WAP have the p-WAP. Combining this result with Theorem 3.11, we obtain the following result.

Corollary 3.12. Let 2 . Let a closed subspace N of a Banach space W be complemented in W. Then, we have the following:

(a) The space N has the p-WAP if W has the p-WAP, [14].

(**b**) The space W/N has the p-WAP if W has the p-WAP.

(c) The space W has the p-WAP if N has the p-WAP and W/N has the p-AP.

Proof. (a) This part is proved by [14].

(b) Since N is a complemented subspace of W, it is well known that there is a closed subspace M of W such that M is complementary of N and the spaces W/N and M are isomorphic (see [17]). From (a), since every complemented subspace of W has the p-WAP, M has the p-WAP. Thus, W/N has the p-WAP.

(c) As in (b), there exists a closed subspace M of W such that the spaces W/N and M are isomorphic. Thus, from the hypothesis, M has the p-AP. Since N has the p-WAP and M has the p-AP, from Theorem 3.11 and [17, p. 65], we get that W has the p-WAP.

By a modification of [8, Theorem 1.3], we obtain the following theorem for the p-WAP of a Banach space W. The proof of this theorem is omitted since similar to [8, Theorem 1.3]. (The locally complemented subspace and ideal concepts in the following theorem can be found in [8].)

Theorem 3.13. (see [8, Theorem 1.3]) Let 2 . For a Banach space W the following are equivalent.

(a) W has the p-WAP.

(b) Every locally complemented subspace of W has the p-WAP.

(c) Every ideal in W has the p-WAP.

(d) For every closed and separable subspace Z of W, there is a closed and separable subspace $Y \subset W$ containing the subspace Z such that Y has the p-WAP.

Remark 3.14. The above theorem also shows that without the property v_p^*D on the space W^* in Theorem 3.9 (a), Theorem 3.9 (a) will still be true (see [19, 20]).

4. Conclusion

In the paper, it has been observed that the BWAP and the *p*-BWAP concepts are equivalent to each other. Some results on the *p*-WAP of Banach spaces have been given. The proof of the solution of the duality problem for the *p*-WAP (respectively, *p*-BWAP) which exists in the literature is given in a shorter way as an alternative.

Acknowledgements

The authors would like to express their sincere thanks to the editor and the anonymous reviewers for their helpful comments and suggestions.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] S. Banach, Théorie Des Opérations Linéaires, Monogr. Mat., Warsaw, 1932.
- A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16 (1955). (French) [3] P. G. Casazza, Approximation Properties, in: W. B. Johnson, J. Lindenstrauss (Eds.), Handbook of the Geometry of Banach Spaces, Elsevier, Amsterdam, 1 (2001), 271-316.
 [4] C. Choi, J. M. Kim, Weak and quasi approximation properties in Banach Spaces, J. Math. Anal. Appl., 316(2) (2006), 722-735.
- [5] C. Choi, J. M. Kim, On dual and three space problems for the compact approximation property, J. Math. Anal. Appl., 323(1) (2006), 78-87.
- [6] J. M. Kim, On relations between weak approximation properties and their inheritances to subspaces, J. Math. Anal. Appl., 324(1) (2006), 721-727.
- [7] C. Choi, J. M. Kim, K. Y. Lee, Right and left weak approximation properties in Banach spaces, Canad. Math. Bull., 52(1) (2009), 28-38.
- [8] J. M. Kim, K. Y. Lee, *Weak approximation properties of subspaces*, Banach J. Math. Anal., 9(2) (2015), 248-252.
 [9] J. M. Kim, K. Y. Lee, *A new characterization of the bounded approximation property*, Ann. Funct. Anal., 7(4) (2016), 672-677.
- [10] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I, Sequence Spaces, Springer, Berlin, 1977.
- [11] D. P. Sinha, A. K. Karn, Compact operators whose adjoints factor through subspaces of l_p , Studia Math., **150**(1) (2002), 17-33.
- [12] J. M. Delgado, E. Oja, C. Piñeiro, E. Serrano, The p-approximation property in terms of density of finite rank operators, J. Math. Anal. Appl., 354(1) (2009), 159-164.
- [13] Y. S. Choi, J. M. Kim, The dual space of $(L(X,Y), \tau_p)$ and the p-approximation property, J. Funct. Anal., 259(9) (2010), 2437-2454.
- [14] C. J. Li, X. C. Fang, p-weak approximation property in Banach spaces, Chinese Ann. Math. Ser. A, 36(3) (2015), 247-256. (Chinese)
- [15] A. Keten, On the duality problem for the p-compact approximation property and its inheritance to subspaces, Konuralp J. Math., 7(2) (2019), 399-404. [16] J. M. Kim, The ideal of weakly p-compact operators and its approximation property for Banach spaces, Ann. Acad. Sci. Fenn. Math., 45(2) (2020),
- [17] R. E. Megginson, An Introduction to Banach Space Theory, Springer, New York, 1998.
- [18] C. Choi, J. M. Kim, Locally convex vector topologies on B(X,Y), J. Korean Math. Soc., 45(6) (2008), 1677-1703. [19] N. J. Kalton, Locally complemented subspaces and L_p spaces for 0 , Math. Nachr., 115 (1984), 71–97.
- [20] A. Lima, The metric approximation property, norm-one projections and intersection properties of balls, Israel J. Math., 84(3) (1993), 451-475.