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Abstract

In [16], the authors established a new semigroup N as an extension of both the Rees
matrix and completely zero-simple semigroups. In this paper, by taking into account the
Zappa-Szép product obtained by special subsemigroups of N, we will expose some new
distinguishing theoretical results on this product.
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1. Introduction and preliminaries
It is known Zappa-Szép products have been studied widely ([2–4, 15, 17, 18, 20]) which

are also referred to as bilateral semidirect products ([6]), general products ([7]) or knit
products ([1, 11]). Unlikely semi-direct products, non of the factors are normal in the
Zappa product of any two groups. In other words, for a group G with subgroups A and B
that satisfy A ∩ B = {1G} and G = AB, we know that each element g ∈ G is expressible
(uniquely) as g = ab with a ∈ A and b ∈ B. Now to reserve certain products, let us
consider an element ba ∈ G. In fact there must be unique elements b′ ∈ B and a′ ∈ A such
that ba = a′b′. Define a′ = b.a and b′ = ba. Associativity in G implies that the actions
(a, b) 7→ b.a and (a, b) 7→ ba satisfy axioms first formulated by Zappa [20]. In fact there
are two cases in Zappa-Szép products under the names of internal and external which
are equivalent in groups. For a semigroup S (or a monoid M) cases, the above reminder
corresponds to the internal Zappa-Szép products. The detailed introductory material,
examples and different types of studies on this product can be found in [2–4,8, 9, 17,18].

Now, by considering any two semigroups A and B, let us recall the following material
as depicted in [4] which will be needed for the next section. Suppose that we are given
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two functions B × A → A, (b, a) 7→ b.a and B × A → B, (b, a) 7→ ba satisfy the following
Zappa axioms [20] for all a, a′ ∈ A and b, b′ ∈ B:

b.
(
aa′) = (b.a)(ba.a′) (1.1)

(ba)a′
= baa′ (1.2)

bb′.a = b.
(
b′.a

)
(1.3)(

bb′)a = bb′.ab′a . (1.4)

After that the set A × B defines the Zappa-Szép product of semigroups A and B with
the product (a, b)(a′, b′) =

(
a (b.a′) , ba′

b′
)
. In fact, hese above axioms define mutual left

semigroup actions of B on A and A on B.
The other key point of this paper is the semigroup N which was built as an extension of

Reesmatrix semigroups by completely zero-simple semigroups. (The detailed studies and
propertieson this semigroup see [16, 19]). Below, we will briefly recall only the definition
of N.

Suppose that the Rees matrix semigroup M0[S0; I, J ; P ] which is defined on the set
I × S0 × J and completely 0-simple semigroup M0[G0; I, J ; P

′ ] which is defined on the set
I × G0 × J are denoted by the notations MR and MC , respectively. According to their
original definitions, without causing any confusion, in these last statements and throughout
the rest of the paper the semigroup S andthe group G are actually assumed to be S0 and
G0, respectively (i.e. including zero). For arbitrary elements (a, b, c), (k, l, m) ∈ MR and
(d, e, f), (x, y, z) ∈ MC , let us consider the mapping γ : (MR × MC) ⊙ (MR × MC) −→
(MR × MC) such that the binary operation on γ is defined by

[(a, b, c), (d, e, f)] ⊙ [(k, l, m), (x, y, z)] =

=



((a, bpckl, m), 0) if pck ̸= 0 and p
′
fx = 0

(0, (d, ep
′
fxy, z)) if pck = 0 and p

′
fx ̸= 0

((a, bpckl, m), (d, ep
′
fxy, z)) if pck ̸= 0 and p

′
fx ̸= 0

(0R, 0C) if pck = 0 and p
′
fx = 0

. (1.5)

The first line in (1.5) corresponds to the Rees matrix semigroup while the second corre-
sponds to the completely 0-simple semigroup. On the other hand the third line defines
the general situation since the operation defined in (1.5) is a generalization for both semi-
groups MR and MC which implies it must also contains both of them. Therefore, by taking
into account the operation defined in (1.5) on the set MR × MC , we obtain a semigroup
M0[S, G; MR, MC ; P, P ′] which is denoted shortly by N. In fact N can be thought as the
form

[(I × S × J) , (I × G × J)] ,

where P and P ′ are the matrices entire by the elements of S and G, respectively, having
both dimensions are I × J .

The main target of this paper is to expose and classify some new results for the semi-
group obtained by the Zappa-Szép product of two subsemigroups of N.

2. Internal Zappa-Szép product for N

Kunze [6] showed that the Zappa-Szép product can be obtained by considering Rees
matrix semigroups (I × G × J), where I, J are index sets and G is any group. In [9,
Theorem 3.3], Lawson et al. proved that a left Rees monoid X∗ × G, where X∗ is the
submonoid generated by a transversal of the generators of the maximal proper principal
right ideals X, is actually the Zappa-Szép product of X∗.
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In particular, one may briefly summarize what Kunze in [6] obtained about Rees ma-
trix semigroups as follows. By extending the index sets of the Rees matrix semigroup
M0[G; I, ∧; P ] (and so the size of the matrix of it is also extended), it has been first con-
sidered a larger Rees matrix semigroup, say R′ = M0[G; I ′, ∧′; P ′], where I ′ = I ∪ {∗},
∧′ = ∧ ∪ {∗} and the elements of P ′ are defined by

p′
λi =

{
pλi ; if λ ∈ ∧, i ∈ I
1 ; otherwise .

Thus R′
1 = {(i, 1, ∗) : i ∈ I ′} and R′

2 = {(∗, a, λ) : a ∈ G, λ ∈ ∧′} are two Rees matrix
subsemigroups of R′ since p∗λ = 1. Now if I ′ is a left zero semigroup while ∧′ is a right
zero semigroup, then clearly R′

1
∼= I ′ and R′

2
∼= G × ∧′ since pλ∗ = 1. Furthermore every

element (i, a, λ) ∈ R′ \ {0} is uniquely represented as a product in R′
1.R′

2. Thus R′ is a
Zappa-Szép product of R′

1 and R′
2 with actions of R′

1 on R′
2 and R′

2 on R′
1 are defined by

(a, λ)i = (apλi, ∗) and (a, λ).i = ∗ ,

respectively. In this case the Zappa-Szép product of R′
1 and R′

2 is contained in R′.
In the light of this above approximation in a quite similar manner, in the following

section, we will define and investigate the (internal) Zappa-Szép product over N will defined
and classified. We recall that, by omitting zeros, the semigroup Ncan be symbolized by
[(I × S × J) , (I × G × J)] or shortly M [S, G; I, J ; P, P ′] (see Section 1 or [16]). In fact,
similarly as in [8] (or [9, Theorem 3.3]), to achieve some distinguishing theoretical results
on Zappa-Szép products one may assume some additional properties for the semigroup
S inside of N. Therefore unless stated otherwise S will denote a primitive right zero
semigroup in this paper.

Now, by extending the index sets as I ′ = I ∪{∗} and J ′ = J ∪{∗}, we can obtain a larger
semigroup N′ with the form [(I ′ × S × J ′) , (I ′ × G × J ′)], where G is a group and S is
primitive right zero semigroup. Then we also have two new matrices P and P

′ formed by
the elements of S and G, respectively, such that the dimensions of both of them are I ′ ×J ′.
We should note that the meaning of dimension I ′ × J ′ corresponds to (I + 1) × (J + 1).
So we may specify the elements of the matrices P and P

′ as

piλ =
{

piλ ; if i ∈ I, λ ∈ J
e ; otherwise and p′

iλ =
{

p′
iλ ; if i ∈ I, λ ∈ J

1 ; otherwise , (2.1)

where e is the primitive idempotent of S. Now let us choose any two subsets
N′

1 =
{
[(i1, e, ∗) , (i2, 1, ∗)] : i1, i2 ∈ I ′, e is the primitive idempotent of S

}
⊆ N′ (2.2)

and
N′

2 =
{
[(∗, s, j1) , (∗, g, j2)] : j1, j2 ∈ J ′, s ∈ S, g ∈ G

}
⊆ N′ (2.3)

Lemma 2.1. Subsets N′
1 and N′

2 given in (2.2) and (2.3), respectively, are actually sub-
semigroups of N′.

Proof. To achieve the truthfulness of the lemma, it is enough to see that p∗λ = e and
p′

∗λ = 1 in the matrices defined in (2.1). Since ∗ /∈ I, by the second part of the first matrix
in (2.1), we get p∗λ = e. Similarly, since ∗ /∈ I, by the second part of the second matrix in
(2.1), we reach p′

∗λ = 1, as required. �
Lemma 2.2. If I ′ is a left zero semigroup and J ′ is a right zero semigroup, then N′

1
∼=

I ′ × I ′ and N′
2

∼= [(S × J ′) , (G × J ′)].

Proof. We will apply a similar proof as in Lemma 2.1. So to reach the result, it is enough
to see that pi∗ = e and p′

i∗ = 1 in the matrices presented in (2.1). These two hold since
∗ /∈ J and so by the second part of the first matrix in (2.1), we get pi∗ = e and by the
second part of the second matrix in (2.1), we obtain p′

i∗ = 1. �
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Proposition 2.3. For all i1, i2 ∈ I ′, j1, j2 ∈ J ′, s ∈ S and g ∈ G, every element
[(i1, s, j1) , (i2, g, j2)] ∈ N′ \ {0} is uniquely representable as an element in N′

1 ⊙N′
2, where

⊙ is the operation given in (1.5).

Proof. For arbitrary elements [(i1, e, ∗) , (i2, 1, ∗)] and [(∗, s, j1) , (∗, g, j2)] from the semi-
groups N′

1 and N′
2 , respectively, if we apply the operation (1.5), then we obtain

[(i1, e, ∗) , (i2, 1, ∗)] ⊙ [(∗, s, j1) , (∗, g, j2)] =
[
(i1, ep∗∗s, j1) ,

(
i2, 1p′

∗∗g, j2
)]

= [(i1, ees, j1) , (i2, 1g, j2)]
since p∗∗ = e and p′

∗∗ = 1 by the
matrices in (2.1)

= [(i1, es, j1) , (i2, g, j2)]
since ees = es by the meaning of e

= [(i1, s, j1) , (i2, g, j2)]
since S is a right zero semigroup,
and so es = s .

Hence the result. �

By the proof of Proposition 2.3, it can be clearly seen the reasons why we assumed S
as a right zero semigroup and e as a primitive idempotent in S. We note that if e was not
chosen as a primitive, then we would have to deal with different idempotents.

Keeping in our minds of Lemmas 2.1, 2.2 and also the operation given in (1.5), let us
define two actions N′

1 × N′
2 → N′

1 and N′
1 × N′

2 → N′
2 as

((i1, i2), [(e, j1), (g, j2)]) 7→ [(e, j1), (g, j2)] .(i1, i2) = (∗, ∗) and (2.4)

((i1, i2), [(e, j1), (g, j2)]) 7→ [(e, j1), (g, j2)](i1,i2) =
[(

spj1i1e, ∗
)

,
(
gp′

j2i2 , ∗
)]

, (2.5)

respectively, where i1, i2 ∈ I ′, j1, j2 ∈ J ′, s ∈ S and g ∈ G. Note that since S is a
right zero semigroup, in action (2.5), we actually have spj1i1e = e and so the element[(

spj1i1e, ∗
)

,
(
gp′

j2i2 , ∗
)]

can be thought as
[
(e, ∗) ,

(
gp′

j2i2 , ∗
)]

.

Proposition 2.4. Actions defined in (2.4) and (2.5) satisfy the Zappa axioms.

Proof. In the proof, we will only apply the elements in (2.4) and (2.5) into the axioms
(1.1), (1.2), (1.3) and (1.4). To do that, the elements a, b, a′ and b′ in these four axioms will
be represented by (i1, i2), [(e, j1), (g, j2)], (∗, ∗) and

[
(spj1i1e, ∗), (gp′

j2i2 , ∗)
]
, respectively.

• Axiom (1.1) holds: The LHS is

[(e, j1), (g, j2)] .(i1∗, i2∗) = [(e, j1), (g, j2)] .(i1, i2)
since I ′ is a left zero semigroup by Lemma 2.2

= (∗, ∗)

whereas the RHS is written as

([(e, j1), (g, j2)] .(i1, i2))
(
[(e, j1), (g, j2)](i1,i2) .(∗, ∗)

)
and this is equal to

(∗, ∗)
[(

(spj1i1e, ∗), (gp′
j2i2 , ∗)

)
.(∗, ∗)

]
= (∗, ∗)(∗, ∗) = (∗∗, ∗∗) = (∗, ∗) .
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• Axiom (1.2) holds: The LHS of (1.2) is

[(e, j1), (g, j2)](i1,i2)(∗,∗) = [(e, j1), (g, j2)](i1∗,i2∗) = [(e, j1), (g, j2)](i1,i2)

since I ′ is a left zero semigroup by Lemma 2.2
=

[(
(spj1i1e, ∗), (gp′

j2i2 , ∗)
)]

=
[(

(e, ∗), (gp′
j2i2 , ∗)

)]
since S is a right zero semigroup

and also RHS of it is(
[(e, j1), (g, j2)](i1,i2)

)(∗,∗)
=

[
(spj1i1e, ∗), (gp′

j2i2 , ∗)
](∗,∗)

=

=
[
(e, ∗), (gp′

j2i2 , ∗)
](∗,∗)

=
[
(sp∗∗e, ∗), (gp′

j2i2p′
∗∗, ∗)

]
=

[
(e, ∗), (gp′

j2i2 , ∗)
]

since p′
∗∗ = 1 and S is a right zero semigroup, as required.

• Axiom (1.3) holds: Similarly as above, by considering the action 2.4, LHS of (1.3)
is (

[(e, j1), (g, j2)]
[
(spj1i1e, ∗), (gp′

j2i2 , ∗)
])

.(i1, i2)

=
[
(espj1i1e, j1∗), (ggp′

j2i2 , j2∗)
]

.(i1, i2) = (∗, ∗)
(2.6)

and RHS is
[(e, j1), (g, j2)] .

([
(spj1i1e, ∗), (gp′

j2i2 , ∗)
]

.(i1, i2)
)

= [(e, j1), (g, j2)] .(∗, ∗) = (∗, ∗) .

Therefore both parts are equal to each other.

• Axiom (1.4) holds: As in the above three processes, the LHS of (1.4) is obtained
by considering(

[(e, j1), (g, j2)]
[
(spj1i1e, ∗), (gp′

j2i2 , ∗)
])(i1,i2)

=
[
(espj1i1e, j1∗), (ggp′

j2i2 , j2∗)
](i1,i2)

=
[
(e, ∗), (ggp′

j2i2 , ∗)
](i1,i2)

since S and J ′ are right zero
semigroups by Lemma2.2

=
[
(sp∗i1e, ∗), (ggp′

j2i2p′
∗i2 , ∗)

]
=

[
(e, ∗), (ggp′

j2i2 , ∗)
]

since p∗i1 = e and p′
∗i2 = 1 .

Furthermore, by taking into account that S and J ′ are right zero semigroups, the RHS is
obtained by

[(e, j1), (g, j2)]
[
(spj1i1 e,∗),(gp′

j2i2
,∗)

]
.(i1,i2)

[
(spj1i1e, ∗), (gp′

j2i2 , ∗)
](i1,i2)

=

= [(e, j1), (g, j2)](∗,∗)
[
(spj1i1e, ∗), (gp′

j2i2 , ∗)
](i1,i2)

=
[
(spj1∗e, ∗), (gp′

j2∗, ∗)
] [

(sp∗,i1e, ∗), (gp′
j2i2p′

∗i2 , ∗)
]

=
[
(ee, ∗∗), (gp′

j2∗gp′
j2i2p′

∗i2 , ∗∗)
]

=
[
(e, ∗), (ggp′

j2i2 , ∗)
]

since pj2∗ = 1 and p′
∗i2 = 1 .

Hence the result. �
After all, by considering Lemmas 2.1, 2.2 and Propositions 2.3, 2.4, we obtain the

following main result of this section.
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Theorem 2.5. We have a Zappa-Szép product N′
1 ◃▹ N′

2 based on Rees matrix semigroups,
where N′

1 and N′
2 are defined by Eq. (2.2) and Eq. (2.3) respectively. Morever N′

1 ◃▹ N′
2

is contained in the semigroup N and so are contained in N′.
Remark 2.6. Theorem 2.5 is a generalization of the result presented by Kunze [6]. Al-
thought it was only considered Rees matrix semigroups of the form (I × G × J), where
I, J are index sets and G is any group in [6], in this paper it is considered the form
[(I × S × J) , (I × G × J)], where I, J are index sets, G is a group and S is a (right zero)
semigroup (see Theorem 2.5).

Remark 2.7. By considering the product (a, b)(a′, b′) =
[
a (b.a′) , ba′

b′
]

(which was re-
minded in the motivationpart), it would be easy to see that the elements of Zappa-Szép
product obtained in Theorem 2.5 are the form of

[(i1, e, ∗) , (i2, g, ∗)]
where e is the primitive idempotent element of S and g is an element of the group G.

3. Some theoretical results on Zappa-Szép products via N

Throughout this section same notations and assumptions will be used as in Section 2.
Therefore S will denote a primitive right zero semigroup, the elements of N1, N2 and
their Zappa-Szép product are the form given in (2.2), (2.3) and Remark 2.7, respectively.
Finally, as depicted in Lemma 2.2, I ′ and J ′ will denote the extended index sets which
are actually left and right zero semigroups, respectively.

3.1. Part I
In previous studies, for instance [4, 5, 17], authors mostly presented some results about

the topics Green’s relation on the Zappa-Szép product, regularity of Zappa-Szép products
obtained by regular semigroups or algebraic properties over Zappa-Szép products obtained
by a semigroup and a band.

In a different manner from these above topics, in this section, we will state and prove
some theoretical results on the Zappa-Szép product of two semigroups, namely to be a
groupbound, to be disjoint union of groups and to be a semilattice of groups. In fact our
results can be thought of as a basement to obtain a generalization of [10][Theorem 2.1].

A semigroup S is said to have periodic condition on principal left (and right) ideals,
notated by PL (and PR), if for each x ∈ S there exists a positive integer n such that
Sxn = Sxn+t (and xnS = xn+tS) for all t ∈ N. Furthermore, a semigroup S is said to be
left separative if x2 = xy and y2 = yx imply x = y for all x, y ∈ S. Right separativity is
defined dually and so S is called separative if both left and right separativity hold. We
note that all details and properties of these definitions can be found in [10].

The following lemmas will be needed in our results.
Lemma 3.1 ([10], Theorem 1.1). A semigroup S satisfies both PL and PR at the same
time if and only if S is groupbound.
Lemma 3.2 ([10], Theorem 1.2). A left separative semigroup satisfying PR is a disjoint
union of groups.
Lemma 3.3 ([10], Corollary 1.3). If S is a separative semigroup satisfying PR, then S is
a semilattice of groups.
Lemma 3.4 ([10], Theorem 1.4). A semigroup is periodic if and only if all its subsemi-
groups satisfy PL.

Now we can state and prove the following proposition which is the first result of this
section.
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Proposition 3.5. N′
1 ◃▹ N′

2 satisfies the condition PL if and only if I ′ contains a single
element.

Proof. The necessity part: By the definition of PL, we have (N′
1 ◃▹ N′

2) xn = (N′
1 ◃▹ N′

2) xn+t

for each x ∈ N′
1 ◃▹ N′

2. By Remark 2.7, take an element x = [(i1, e, ∗) , (i2, g, ∗)] from the
semigroup N′

1 ◃▹ N′
2. Let us consider the case t = 1. Then

[(
I ′, e, ∗

)
,
(
I ′, G, ∗

)]
[(i1, e, ∗) , (i2, g, ∗)]n

=
[(

I ′, e, ∗
)

,
(
I ′, G, ∗

)] [(
i1, ep∗i1ep∗i1e . . . e, ∗

)
,
(
i2, gp′

∗i2gp′
∗i2g . . . g, ∗

)]
,

where each p∗i1 = e and p′
∗i2 = 1. So we obtain

=
[(

I ′, e, ∗
)

,
(
I ′, G, ∗

)]
[(i1, e, ∗) , (i2, gn, ∗)]

=
[(

I ′, ep∗i1e, ∗
)

,
(
I ′, Gp′

∗i2gn, ∗
)]

=
[(

I ′, e, ∗
)

,
(
I ′, Ggn, ∗

)]
(3.1)

since p∗i1 = e and p′
∗i2 = 1 .

On the other hand [(
I ′, e, ∗

)
,
(
I ′, G, ∗

)]
[(i1, e, ∗) , (i2, g, ∗)]n+1 (3.2)

=
[(

I ′, e, ∗
)

,
(
I ′, G, ∗

)] [
(i1, e, ∗) ,

(
i2, gn+1, ∗

)]
=

[(
I ′, ep∗i1e, ∗

)
,
(
I ′, Gp′

∗i2gn+1, ∗
)]

=
[(

I ′, e, ∗
)

,
(
I ′, Ggn+1, ∗

)]
(3.3)

Let us assume that I ′ contains a single element. Hence a simple calculation implies
that Equations (3.1) and (3.3) are equal to each other. Until now we proceeded with the
case t=1 for the equality (N′

1 ◃▹ N′
2) xn = (N′

1 ◃▹ N′
2) xn+t. However the inductive proceses

gives truth to this equality for all t ∈ N.
The sufficiency part: Similarly as in the end of necessity part, by assuming I ′ contains

a single element, we see that N′
1 ◃▹ N′

2 satisfies the condition PL.
Hence the result. �

Proposition 3.6. Every elements of N′
1 ◃▹ N′

2 satisfy the condition PR.

Proof. Our aim is to show that xn (N′
1 ◃▹ N′

2) = xn+t (N′
1 ◃▹ N′

2) for all x ∈ N′
1 ◃▹ N′

2.
As in the proof of Proposition 3.5, let us take an element x = [(i1, e, ∗) , (i2, g, ∗)]

from the semigroup N′
1 ◃▹ N′

2 and consider the case t = 1. Therefore, the LHS is equal to
[(i1, e, ∗) , (i2, g, ∗)]n

[(
I ′, e, ∗

)
,
(
I ′, G, ∗

)]
=

[(
i1, ep∗i1e, ∗

)
,
(
i2, gnp′

∗i2G, ∗
)]

= [(i1, e, ∗) , (i2, gnG, ∗)]
since p∗i1 = e and p′

∗i2 = 1 . Furthermore, the RHS is

[(i1, e, ∗) , (i2, g, ∗)]n+1 [(
I ′, e, ∗

)
,
(
I ′, G, ∗

)]
=

[
(i1, e, ∗) ,

(
i2, gn+1G, ∗

)]
.

In addition, for any group G, since gnG = gn+1G =⇒ gnG = gngG =⇒ G = gG,
we clearly achieve

[(i1, e, ∗) , (i2, gnG, ∗)] =
[
(i1, e, ∗) ,

(
i2, gn+1G, ∗

)]
,

as required.
�

Thus the proof of the following main result of this section is clear by Lemma 3.1,
Proposition 3.5 and Proposition 3.6.

Theorem 3.7. N′
1 ◃▹ N′

2 is groupbound if and only if I ′ contains a single element.
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In the following, we will focus our attention on the separativity property for the semi-
group N′

1 ◃▹ N′
2. To reach it, let us first prove some lemmas.

Lemma 3.8. N′
1 ◃▹ N′

2 is left separative if and only if I ′ contains a single element.

Proof. Assume that N′
1 ◃▹ N′

2 is left separative. Thus, for any two elements x =
[(i1, e, ∗) , (i2, g, ∗)], y = [(a, e, ∗) , (b, g1, ∗)] ∈ N′

1 ◃▹ N′
2, we certainly have x = y while

x2 = xy and y2 = yx. In other words,
x2 = xy =⇒ [(i1, e, ∗) , (i2, g, ∗)]2 = [(i1, e, ∗) , (i2, g, ∗)] [(a, e, ∗) , (b, g1, ∗)]

=⇒
[(

i1, ep∗i1e, ∗
)

,
(
i2, gp′

∗i2g, ∗
)]

=
[
(i1, ep∗ae, ∗) ,

(
i2, gp′

∗bg1, ∗
)]

=⇒
[
(i1, e, ∗) ,

(
i2, g2, ∗

)]
= [(i1, e, ∗) , (i2, gg1, ∗)]

since p∗i1 = e = p∗a and p′
∗i2 = 1 = p′

∗b .

So, we get gg = gg1 from the last equation.
On the other hand,

y2 = yx =⇒ [(a, e, ∗) , (b, g1, ∗)]2 = [(a, e, ∗) , (b, g1, ∗)] [(i1, e, ∗) , (i2, g, ∗)]
=⇒

[
(a, ep∗ae, ∗) ,

(
b, g1p′

∗bg1, ∗
)]

=
[(

a, ep∗i1e, ∗
)

,
(
b, g1p′

∗i2g, ∗
)]

=⇒ [(a, e, ∗) , (b, g1g1, ∗)] = [(a, e, ∗) , (b, g1g1, ∗)]
since p∗a = e = p∗i1 and p′

∗b = 1 = p′
∗i2

which implies g1g1 = g1g. Since gg = gg1 and g1g1 = g1g, we have g = g1. Therefore, by
the assumption N′

1 ◃▹ N′
2 is left separative, we must have i1 = a, i2 = b and g = g1. So

the index set I ′ must contains a single element.
Now, for the sufficiency part, if we assumeI ′ contains a single element, then it must be

i1 = a and i2 = b must be held in the above calculations. Then, by applying a similar
approach, the truthfulness of the other way can be seen clearly. �
Lemma 3.9. Every elements of N′

1 ◃▹ N′
2 are right separative.

Proof. We will follow quite similar path as in the proof of Lemma 3.8. Therefore we
have to show that if x2 = yx and y2 = xy, then x = y holds for any two elements
x = [(i1, e, ∗) , (i2, g, ∗)], y = [(a, e, ∗) , (b, g1, ∗)] ∈ N′

1 ◃▹ N′
2. So, let us first assume

x2 = yx. Replacing the elements x and y, we obtain
[(i1, e, ∗) , (i2, gg, ∗)] = [(a, e, ∗) , (b, g1g, ∗)]

which implies i1 = a, i2 = b and gg = g1g. On the other hand, by assuming y2 = xy and
then by replacing x and y as above, we get

[(a, e, ∗) , (b, g1g, ∗)] = [(i1, e, ∗) , (i2, gg1, ∗)]
which implies a = i1, b = i2 and g1g1 = gg1. In fact these two equalities give i1 = a, i2 = b
and g = g1 and so x = y, as required. �

Therefore other main results of this section are the following.

Theorem 3.10. N′
1 ◃▹ N′

2 is disjoint union of groups if and only if I ′ contains a single
element.

Proof. The proof of the theorem is clear by Lemmas 3.2, 3.8 and Proposition 3.6. �
Theorem 3.11. N′

1 ◃▹ N′
2 is a semilattice of groups if and only if I ′ contains a single

element.

Proof. The proof follows by Lemmas 3.3, 3.8, 3.9 and Proposition 3.6. �

By considering Lemma 3.4 and Proposition 3.5, we finally obtain the next theorem.
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Theorem 3.12. N′
1 ◃▹ N′

2 is periodic if and only if I ′ contains a single element.

Proof. We will follow a similar way as in [10, Theorem 1.4]. It is known that a semigroup
is said to be periodic if and only if all its subsemigroups satisfy the condition PL. According
to this definition, if the index set I ′ has a single element then the sufficiency part is clear.

Conversely, let us take an element a ∈ N′
1 ◃▹ N′

2. Then any subsemigroup, say T , that
is generated by a satisfies the condition PL by the assumption of necessity part. Hence
there exists a natural number n ∈ N such that anT = an+1T . Thus there must exists
t ∈ N such that an+1 = an+t. Consequently, N′

1 ◃▹ N′
2 is periodic. Since T satisfies PL, by

Proposition 3.5, we know that I ′ contains just one element. �

Until now, by taking into account Propositions 3.5, 3.6 and Lemmas 3.8, 3.9, we have
proved four theorems, namely Theorems 3.7, 3.10, 3.11 and 3.12 in above. In fact, since
these theorems are exposing a generalization of [10, Theorem 2.1], the main parts of this
paper are built up on them. As a consequence, one may summarize the statements of
these results as in the following corollary.

Corollary 3.13. Let the index set I ′ contains a single element. Then the following are
equaivalent.

i) N′
1 ◃▹ N′

2 is groupbound.
ii) N′

1 ◃▹ N′
2 is disjoint union of groups.

iii) N′
1 ◃▹ N′

2 is semilattice of groups.

3.2. Part II
Remember that, in Section 2, we obtained a Zappa-Szép product N′

1 ◃▹ N′
2 which is

based on Rees matrix semigroups and is contained in both N and N′. Also we mentioned
that N′

1 ◃▹ N′
2 contains an a semigroup and a group at the same time, and so this fact

implies the main difference between some results in [6, 8] and the results in Section 2.
Thus we indicated that our results pointed out an extended version of these previous
studies. After that, in Section 3.1, we exposed some theoretical results as a generalization
of [10, Theorem 2.1] on Zappa-Szép products which those had not been obtained until
now.

In this final section, we continuing our investigation on N′
1 ◃▹ N′

2, we will obtain some
recent results which have not been touched in previous studies (see, for instance, [6, 8,
9, 16, 17]). In detail, we will obtain some new results on N′

1 ◃▹ N′
2 in terms of different

Greens relations. We remind that to satisfy the periodicity of N′
1 ◃▹ N′

2, the index set I ′

must contain a single element (see Theorem 3.11). Hence, unless stated otherwise, it will
be assumed that the index I ′ contains a single element in the following results.

In [14], Sedlock defined some different Green’s relations for periodic semigroups. Here,
we will follow this reference to build up these relationships. For each element x of a
periodic semigroup S, there exist some power of x which is an idempotent, which leads to
defining an equivalence relation K on S as follows.

Definition 3.14 ([14]). For a, b ∈ S and m, n ∈ N, we have

aKb ⇔ there exists an idempotent e such that an = bm = e .

The K-classes of S will be denoted by Ke for each idempotent e.

For each K-class in Ke, the notions of maximal subgroup Ge and maximal semigroups
contained in Ke were first studied by Schwarz (see [12, 13]). As a consequence of these
works, the following facts on an arbitrary S are obtained.

Lemma 3.15 ([14]). Let S be a semigroup. Then the following hold.
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(i) For each idempotent e, it always true ex = xe where x ∈ Ke. Moreover
eKe = Kee = Ge = {x ∈ Ke : ex = xe = x}

is the maximal subgroup of S containing e.
(ii) S is a union of groups

• if and only if each element of S has index one,
• if and only if Ke = Ge for each idempotent e.

The first result of this section is the following.

Proposition 3.16. Every element of N′
1 is an idempotent for the semigroup N′

1 ◃▹ N′
2.

Proof. To do that we will only apply the definition of an idempotent element. For a
sample element x = [(a, e, ∗) , (b, g, ∗)] in N′

1 ◃▹ N′
2, if we have

[(a, e, ∗) , (b, g, ∗)]2 = [(a, e, ∗) , (b, g, ∗)] , (3.4)
then it leads the equality[

(a, ep∗ae, ∗) ,
(
b, gp′

∗bg, ∗
)]

= [(a, e, ∗) , (b, gg, ∗)]
since p∗a = e and p′

∗b = 1 . According to (3.4), we must have
[(a, e, ∗) , (b, gg, ∗)] = [(a, e, ∗) , (b, g, ∗)]

which implies g2 = g ⇒ g = 1. Therefore the idempotent element of N′
1 ◃▹ N′

2 must be
the form of [(a, e, ∗) , (b, 1, ∗)] which is actually the same form of elements in N′

1.
Hence the result. �

Next, we will find out the form of elements of N′
1 ◃▹ N′

2 in Ke classes. First of all, by
Definition 3.14, it is known that the property

xKy ⇔ there exists an idempotent e such that xn = ym = e

must be satisfied for x, y ∈ S and m, n ∈ N. Therefore, for choosen elements
x = [(a1, e, ∗) , (a2, g1, ∗)] and y = [(b1, e, ∗) , (b2, g2, ∗)] ,

where a1, a2, b1, b2 ∈ I ′, g1, g2 ∈ G and e is the primitive idempotent, we have
xn = [(a1, e, ∗) , (a2, g1, ∗)]n = [(a1, e, ∗) , (a2, 1, ∗)] ⇒

⇒ [(a1, e, ∗) , (a2, g1, ∗)] = [(a1, e, ∗) , (a2, 1, ∗)]
which leads gn

1 must be equal to 1 for the element x. Similarly, we will get gm
2 = 1 for the

element y. However, the equality xn = ym gives gn
1 = gm

2 = 1 that means G = ⟨g1⟩ = ⟨g2⟩.
This above process implies the following lemma.

Lemma 3.17. The elements of Ke classes are the form of [(I ′, e, ∗) , (I ′, G, ∗)] whenever
G is an unique finite cyclic (sub)group.

On the other hand, the form of elements of the maximal subgroup Ge in N′
1 ◃▹ N′

2 can
be obtained as in the following. By Lemma 3.18-(i), it is known that the elements of a
general Ge are the form of

eKe = Kee = Ge = {x ∈ Ke : ex = xe = x}
for an idempotent e. Furthermore Lemma 3.17 states how the form of elements of Ke

classes need to be. Now, by considering an idempotent element e = [(a1, e, ∗) , (a2, 1, ∗)]
from the semigroup N′

1 ◃▹ N′
2 and by Equation (1.5), we clearly get

eKe = [(a1, e, ∗) , (a2, 1, ∗)] [(b1, e, ∗) , (b2, g, ∗)]
= [(a1, e, ∗) , (a2, g, ∗)]
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as well as

Kee = [(b1, e, ∗) , (b2, g, ∗)] [(a1, e, ∗) , (a2, 1, ∗)]
= [(b1, e, ∗) , (b2, g, ∗)] ,

where a1, a2, b1, b2 ∈ I ′, g is an element of the cyclic sub(group G (by Lemma 3.17) and e
is the primitive idempotent. Therefore to equality eKe = Kee be hold, we must have

a1 = b1 and a2 = b2 .

Regarding the above processes, we obtain the following lemma.

Lemma 3.18. The elements of Ge are the form of [(I ′, e, ∗) , (I ′, G, ∗)] whenever G is an
unique finite cyclic (sub)group and I ′ contains at most two elements.

Remark 3.19. The case I ′ contains a single element can be thought as a special case of
Lemma 3.18 since the equality eKe = Kee always holds for any I ′ = {a}.

By Definition 3.14, Lemmas 3.15, 3.17, 3.18-(i),(ii) and Proposition 3.16, we obtain the
following final result of this paper.

Theorem 3.20. Suppoe that G is a unique finite cyclic (sub)group and I ′ contains at
most two elements. Then the following are equivalent.

(i) N′
1 ◃▹ N′

2 is a union of groups.
(ii) Each element of N′

1 ◃▹ N′
2 has index one.

(iii) Ke = Ge for each idempotent element e.

4. Some future problems
The scope of this paper is to expose some new results on a new type of semigroup,

namely the Zappa-Szép product N′
1 ◃▹ N′

2. However there would still be some problems
that could be studied in the near future. We may summarize some of them as follows:

We assumed the semigroup S as a primitive right zero in Section 3.2. The first possible
problem would be considering the situation for a general semigroup S and checking whether
the results still hold. Additionally, omitting the method presented in [6] and thus without
using the subsemigroups N′

1 and N′
2, one may define a new Zappa-Szép product regarding

the semigroup N, and thus check related similar results on this product. We truly believe
that most of the theories would be invalid without special assumptions on N as we have
done in the theorems of this paper.

Instead of the studies presented in Section 3, by defining a presentation for the semigroup
N′

1 ◃▹ N′
2, one may study Gröbner-Shirshov bases and the solvability of the word problem.
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