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Abstract: In recent years, fuzzy inference systems have been used as an effective method for 

forecasting problems instead of classical time series methods. Fuzzy inference systems are based 

on fuzzy sets and use membership values as well as the original data. The fuzzy regression 

functions approach, which is one of the popular fuzzy inference systems, has different importance 

from many fuzzy inference systems with its features that it does not have a rule base and is easier 

to apply, unlike many fuzzy inference systems in the literature. In this study, both the monthly 

average wind speed forecasting of Giresun Province is performed for the first time in the literature 

and the fuzzy regression functions approach method is used for the first time in the literature for 

wind speed forecasting. To evaluate the performance of the fuzzy regression functions approach 

used to forecast monthly average wind speed in Giresun Province, the results obtained from many 

methods suggested in the literature for forecasting problems are compared. As a result of the 

evaluations, it is concluded that the forecasts obtained by the fuzzy regression functions approach 

are superior to some other methods in the literature. 

 

Keywords: Fuzzy inference systems, fuzzy regression functions approach, forecasting, Giresun 

province, wind speed. 
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Öz: Son yıllarda öngörü problemleri için klasik zaman serisi yöntemleri yerine bulanık çıkarım 

sistemleri etkin bir yöntem olarak kullanılmaya başlanmıştır. Bulanık çıkarım sistemleri, bulanık 

kümelere dayalıdır ve orijinal verilerin yanı sıra üyelik değerlerini de kullanır. Popüler bulanık 

çıkarım sistemlerinden biri olan bulanık regresyon fonksiyonları yaklaşımı, literatürdeki birçok 

bulanık çıkarım sisteminden farklı olarak kural tabanına sahip olmaması ve uygulanmasının daha 

kolay olması özellikleriyle birçok bulanık çıkarım sisteminden farklı bir öneme sahiptir. Bu 

çalışmada hem literatürde ilk kez Giresun ilinin aylık ortalama rüzgâr hızı tahmini yapılmakta 

hem de rüzgâr hızı tahmini için literatürde ilk kez bulanık regresyon fonksiyonları yaklaşımı 

yöntemi kullanılmaktadır. Giresun ili aylık ortalama rüzgar hızını tahmin etmek için kullanılan 

bulanık regresyon fonksiyonları yaklaşımının performansını değerlendirmek için, öngörü 

problemleri için literatürde önerilen birçok yöntemden elde edilen sonuçlar karşılaştırılmıştır. 

Yapılan değerlendirmeler sonucunda, bulanık regresyon fonksiyonları yaklaşımı ile elde edilen 

tahminlerin literatürdeki diğer birçok yöntemden daha üstün olduğu sonucuna varılmıştır. 

 

Anahtar kelimeler: Bulanık çıkarım sistemleri, bulanık regresyon fonksiyonları yaklaşımı, 

öngörü, Giresun İli, rüzgâr hızı. 
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INTRODUCTION 

 

The movement of air mass moving horizontally is 

called wind. For the wind to occur, there must be a pressure 

difference in two separate centers. Air currents are always 

from high pressure to low pressure. If the air temperature 

rises in one of the two adjacent regions on the earth, the air 

mass expands and rises. In this case, a low-pressure area is 

formed. In the region with less temperature, the air is cooled 

and compressed and collapses downwards by condensing. In 

this case, a high-pressure area is formed. This air, which is 

compressed in the high-pressure region, starts to flow 

towards the low-pressure region, and wind is formed.  

Wind speed is the speed of movement of air, wind, 

and gases in the atmosphere. Factors affecting wind speed; 

pressure gradient, Rossby waves, jet steam, and local 

weather conditions. Wind speed is very important for 

monitoring and forecasting weather patterns and global 

climate. 

Fuzzy inference systems are known as rule-based 

systems based on fuzzy sets and fuzzy logic. Fuzzy inference 

systems are based on fuzzy sets and use membership values 

alongside the original data, so a data augmentation 

mechanism is used in fuzzy inference systems. 

Although the adaptive neuro-fuzzy inference 

system (ANFIS) proposed by Jang (1993) is the most well-

known and frequently used fuzzy inference system in the 

literature, the fuzzy inference systems proposed by Takagi 

& Sugeno (1985) and Mamdani & Assilian (1975) are also 

important in the literature on fuzzy inference systems. The 

fact that these fuzzy inference systems have a rule base is a 

problem in the literature. 

Turksen (2008) proposed the fuzzy regression 

functions approach (FRFA) to overcome such a problem. 

Unlike other fuzzy inference systems, FRFA does not 

depend on the rule base structure but uses fuzzy functions 

instead of rule base logic. FRFA, which is not based on a 

certain rule base, is an important fuzzy inference system 

method used in time series forecasting in recent years with 

this feature. 

In FRFA, membership values and their nonlinear 

transformations are used together with the original input 

variables to improve the forecasting performance. More 

information is added to the system by using both the 

membership values and the non-linear transformations of the 

membership values and the original inputs in a single input 

set.  

Although the FRFA has been used in many 

forecasting problems in the literature, it has not yet been used 

for wind speed forecasting. In this study, the monthly 

average wind speed of Giresun Province is firstly forecasted 

with fuzzy regression functions approach. The analysis 

results obtained with the fuzzy regression functions 

approach were compared with the forecasting methods based 

on both classical and artificial intelligence methods, and 

superior forecasting results were obtained. The rest of the 

paper is as follows. The literature review of the paper is 

given in Section 2. The fuzzy c means method and fuzzy 

regression functions approach are given in Sections 3 and 4 

respectively. The application results of the paper are given 

in Section 5. The final section is for conclusion and 

discussion. 

Literature Review: When the studies on time series 

forecasting in the literature are examined, it is known that 

these studies were carried out with classical time series, 

fuzzy inference systems, shallow and deep artificial neural 

networks, and many hybrid methods such as the studies of 

Zhang (2003), Chen & Hsu (2008), Chen & Wang (2010), 

Khashei & Bijari (2012), Chen et al. (2013), Rezaeianzadeh 

et al. (2014), Chen & Phuong (2016), Chen & Jian (2017), 

Jaramillo et al. (2017), Egrioglu et al. (2019), Bisht & Kumar 

(2019), Gupta & Kumar (2019), Qian et al. (2019) and Pant 

& Kumar (2021). 

The studies in the literature on wind speed 

forecasting were examined, it is seen that many studies focus 

on the development of wind speed forecasting models. In 

this context, the methods used for wind speed forecasting in 

the literature can be divided into several categories. 

These methods are traditional statistical forecasting models 

using models such as autoregressive model (AR), 

autoregressive moving average (ARMA) and autoregressive 

integrated moving average (ARIMA), artificial intelligence 

forecasting models using artificial neural networks, 

recurrent neural networks and long short-term memory, 

statistical machine learning models using models such as 

support vector machine (SVM) and fuzzy logic-based 

models using models such as ANFIS, and hybrid models 

using these models together.  

If we refer to the studies made with traditional 

statistical forecasting models; Ewing et al. (2007) used the 

vector autoregression model to forecast the wind speed. 

Cadenas & Rivera (2007) compared ARIMA and artificial 

neural network (ANN) methods for wind speed forecasting 

on the South Coast of the Mexican state of Oaxaca. Erdem 

& Shi (2011) used four different methods based on the 

ARMA model for wind speed forecasting for the United 

States. Cadenas et al. (2016) forecasted the wind speed using 

multivariate nonlinear external input autoregressive network 

(NARX) and univariate ARIMA model.  

If we refer to the studies made with artificial 

intelligence forecasting models; Alexiadis et al. (1998) used 

ANN for short-time wind speed forecasting. Sfetsos (2002) 

proposed an ANN method for forecasting average hourly 

wind speed data. Akıncı (2011) used ANN for short-time 
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wind speed forecasting of Batman Province. Selcuk Nogay 

et al. (2012) used ANN for short-time wind speed 

forecasting of Mardin Province. Ren et al. (2014) proposed 

a method in which the parameter selection of the artificial 

neural network with backpropagation learning algorithm is 

made by particle swarm optimization (PSO), and the 

performance of the proposed method was compared to the 

daily average wind speed data of Jiuquan and the 6-hour 

wind speed data of Yumen in Gansu, China. Saberivahidaval 

& Hajjam (2015) evaluated the performance of different 

artificial neural network models for wind speed forecasting 

of Payam airport in Iran. Fazelpour et al. (2016) used four 

different artificial intelligence methods to forecast short-

term wind speed for Tehran. Zucatelli et al. (2019) used 

ANN for short-term wind speed forecasting for Uruguay.  

If we refer to the studies made with fuzzy logic-

based models; Monfared et al. (2009) proposed a new 

strategy for wind speed forecasting based on fuzzy logic and 

artificial neural networks. Minaz (2011) used the ANFIS 

method for the wind speed estimation of Bilecik Province. 

Khosravi et al. (2018) forecasted the wind speed with 

feedforward neural networks, radial basis function, support 

vector machines, and ANFIS methods optimized with PSO. 

If we refer to the studies made with hybrid models; Cadenas 

& Rivera (2010) developed hybrid models consisting of 

ARIMA and ANN models for wind speed forecasting in 

three different regions in Mexico. Guo et al. (2011) proposed 

a hybrid method for wind speed forecasting in which the 

ANN model based on the backpropagation learning 

algorithm and the seasonal exponential smoothing method 

are used together. Shi et al. (2012) proposed hybrid methods 

using ARIMA, ANN, and SVM for wind speed forecasting. 

Wang et al. (2014) used a hybrid method in which empirical 

mode decomposition and Elman artificial neural network are 

used together for wind speed forecasting. Jiang et al. (2016) 

forecasted wind speed for China with a hybrid forecasting 

model based on a simulated annealing algorithm. Jiang et al. 

(2017) forecasted the wind speed with a hybrid approach in 

which the cuckoo search algorithm and SVM were used 

together. 

 

MATERIAL AND METHOD 

 

Fuzzy c Means Method:   The fuzzy c-means 

method proposed by Bezdek (1981) performs clustering 

based on the minimization of the objective function and 

constraints given in the Equations (1-2). To apply the fuzzy 

c-means method, first of all, the number of clusters and the 

membership degrees of individuals to the cluster should be 

known. These values can be found randomly or by some 

developed techniques. The fuzzy c means method works 

based on iterative minimization of the following objective 

function and constraints. The objective function and 

restrictions used for the fuzzy c means method are given in 

Equations (1-2). 
 

𝐽(𝑋, 𝜇, 𝑉) = ∑ ∑ 𝑢𝑖𝑡
𝑓
𝑑2(𝑥𝑘 , 𝑣𝑖)

𝑛
𝑘=1

𝑐
𝑖=1                       (1) 

 

0 ≤ μik ≤ 1                                                                                                                 

∑ μik
c
i=1 = 1                                                                        (2) 

0 < ∑ μik
n
k=1 ≤ n     

 

While 𝑓  is the fuzziness index, 𝑑(𝑥𝑡 , 𝑣𝑖)  is a 

measure of similarity between the data and the cluster center. 

𝑐 , 𝑣𝑖   (𝑖 = 1, 2, … , 𝑐)  and 𝜇𝑖𝑘  ( 𝑖 = 1, 2, … , 𝑐 ;  𝑘 =

1, 2, … , 𝑛)  show the fuzzy cluster number, cluster centers 

and membership values, respectively. At each iteration, 𝑣𝑖  

(𝑖 = 1, 2, … , 𝑐)  and 𝜇𝑖𝑘  (𝑖 = 1, 2, … , 𝑐 ;  𝑘 = 1, 2, … , 𝑛 ) are 

updated with Equations (3-4) 
 

𝑣𝑖 =
∑ (𝜇𝑖𝑘)𝑓𝑥𝑘

𝑛
𝑘=1

∑ (𝜇𝑖𝑘)𝑓𝑛
𝑘=1

  ,   𝑖 = 1, 2, … , 𝑐                             (3) 

𝜇𝑖𝑘 = [∑ (
𝑑(𝑥𝑘,𝑣𝑖)

𝑑(𝑥𝑘,𝑣𝑗)
)

2

𝑓−1𝑐
𝑗=1 ]

−1

, 𝑖 = 1, 2, … , 𝑐 ;  𝑘 = 1, 2, … , 𝑛                            (4) 

 

Fuzzy Regression Functions Approach:  The 

fuzzy regression functions approach proposed by Turksen 

(2008) has a system in which membership values obtained 

from the fuzzy c means method and observation values are 

used together. Celikyılmaz & Turksen (2009) used 

mathematical transformations of membership values and 

showed that exponential and various logarithmic 

transformations of membership values can increase the 

performance of the model. Thus, some transformations of 

membership values were added to the input set with the 

study of Celikyılmaz & Turksen (2009). Besides, there are 

some papers to contribute to the fuzzy regression functions 

approach. Tak et al. (2018) proposed a recurrent type fuzzy 

regression function. Tak (2018) proposed the meta fuzzy 

functions method. The algorithm for the fuzzy regression 

functions approach is given below step by step. Bas et al. 

(2019) proposed a fuzzy regression function based on ridge 

regression for forecasting. Tak (2020) proposed a novel 

forecasting method that combines the type-1 fuzzy functions 

with the autoregressive moving average model based on a 

grey wolf optimizer. Tak (2021) proposed a forecast 

combination with meta-possibilistic fuzzy functions for time 

series forecasting.  

Step 1. First, a matrix of lagged time variables is 

created for the training set. 

Step 2. Membership values are obtained by using 

the fuzzy c-means method. 

Step 3. Create fuzzy regression functions. 

The fuzzy regression functions for each fuzzy set can be 

expressed as given in Equation (5). 

 

𝑌(𝑖) = 𝑋(𝑖)𝛽(𝑖) + 𝜀(𝑖)  ;  𝑖 =  1, 2, … 𝑐             (5) 

 

The inputs and outputs of the system are given in Equations 

(6-7), respectively. 
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𝑿(𝑖) =

[
 
 
 
 
 𝜇𝑖1 𝜇𝑖1

2 𝑒𝑥𝑝 (𝜇𝑖1)

𝜇𝑖2 𝜇𝑖2
2 𝑒𝑥𝑝 (𝜇𝑖2)

. . .

    
𝑙𝑛((1 − 𝜇𝑖1)/𝜇𝑖1) 𝑥11 .

𝑙𝑛((1 − 𝜇𝑖2)/𝜇𝑖2) 𝑥12 .
. . .

    
. . 𝑥𝑝1

. . 𝑥𝑝2

. . .
. . .
. . .

𝜇𝑖𝑛 𝜇𝑖𝑛
2 𝑒𝑥𝑝 (𝜇𝑖𝑛)

    

. . .

. . .
𝑙𝑛((1 − 𝜇𝑖𝑛)/𝜇𝑖𝑛) 𝑥1𝑛 .

    

. . .

. . .

. . 𝑥𝑝𝑚]
 
 
 
 
 

    (6) 

𝒀(𝑖) =

[
 
 
 
 
 
𝑦1

𝑦2

.

.

.
𝑦𝑛]

 
 
 
 
 

                                           (7) 

 

Step 4. Estimate fuzzy regression functions. 

The fuzzy regression functions for each fuzzy set are 

estimated by Equations (8-9). 

 

𝛽̂(𝑖) = (𝑿(𝑖)′𝑿(𝑖))−1𝑿(𝑖)′𝒀(𝑖)                                                               (8) 

𝒀̂(𝒊) = 𝑿(𝑖)𝛽̂(𝑖) ;  𝑖 =  1, 2,… 𝑐                                                                                    (9) 

 

Step 5. Outputs of the system for the training set are 

obtained 

The outputs of the system are obtained using Equation (10) 

with the help of membership values. 

 

𝑦̂𝑘 =
∑ 𝑦̂𝑖𝑘𝜇𝑖𝑘

𝑐
𝑖=1

∑ 𝜇𝑖𝑘
𝑐
𝑖=1

 , 𝑖 = 1,2,… , 𝑐, 𝑘 = 1,2, . . . , 𝑛              (10) 

 

Step 6. To obtain the outputs for the test set, the 𝑋(𝑖) 

and 𝑌(𝑖) matrices are updated with the test set in mind, and 

Steps 2-5 are repeated to obtain the outputs for the test set. 
 

 

RESULTS  

 

In this study, the performance of the fuzzy 

regression functions approach proposed by Turksen (2008) 

was evaluated by analyzing the monthly average wind speed 

time series of Giresun province between 2011 and 2018, 

which was obtained from the Giresun Meteorology 

Directorate. The graph of the time series consisting of all 

relevant years of the monthly average wind speed time series 

of Giresun province (GMAWS) between 2011-2018 is given 

in Figure 1. 

 

 
Figure 1. Giresun province monthly average wind speed time 

series between 2011-2018. 

 

GMAWS time series data was analyzed with the 

ANFIS method proposed by Jang (1993), Pi-Sigma artificial 

neural networks based on artificial bee colony (PS-ANN-

ABC), feed-forward artificial neural networks based on PSO 

(FF-ANN-PSO), linear and nonlinear ANN (L&NL-ANN) 

proposed by Yolcu et al. (2013), Naive method, Median-Pi 

ANN (MP-ANN) proposed by Egrioglu et al. (2019) and 

Chen (1996) methods apart from fuzzy regression functions 

approach (FRF). In the analysis of the GMAWS time series, 

the number of inputs of the model was changed between 1 

and 12 and the number of fuzzy clusters between 2 and 5. 

The number of iterations was taken as 100 in all methods. 

In the comparison of the related methods, the Root 

Mean Square Error (RMSE) criteria given by Equation (11) 

and the mean absolute percent error (MAPE) criteria given 

by Equation (12) were used. The analysis results obtained 

are given in Table 1. 
 

𝑅𝑀𝑆𝐸 = 
1

𝑛
 ∑ |

𝑥𝑡−𝑥𝑡

𝑥𝑡
|𝑛

𝑡=1            (11) 

𝑀𝐴𝑃𝐸 = √
∑ (𝑋𝑡−𝑋̂𝑡)2

𝑛
𝑡=1

𝑛
            (12) 

 

Table 1. Analysis results of GMAWS test data. 
Method RMSE MAPE 

Chen (1996) 0.2521 0.1744 

Naive Method 0.1819 0.1128 
ANFIS 0.1788 0.2579 

PS-ANN-ABC 0.1719 0.1087 

L&NL-ANN 0.1711 0.1064 
FF-ANN-PSO 0.1670 0.1006 

MP-ANN 0.1641 0.1052 

FRF 0.1595 0.1046 

 

From Table 1, it is seen that the FRF method has the 

lowest MAPE among all methods and when compared with 

other methods, FRF estimates the relevant time series with 

an error of 10.46%. The graph of the forecasts obtained by 

the FRF method and the GMAWS test set is given in Figure 

2. 
 

 
Figure 2. Graph of GMAWS time-series test set with predictions 

obtained by FRF method. 
 

It is observed from Figure 2 that the predictions 

obtained by the FRF method and many months of the 

GMAWS test set are quite compatible with each other. It is 

seen that the predictions obtained by the FRF method are 

quite compatible with the test data of February, April, May, 

June, and July. 
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DISCUSSION AND CONCLUSION 

 

In this study, the monthly average wind speed 

forecasting of Giresun Province was performed for the first 

time in the literature, and the fuzzy regression functions 

approach was used for the first time in wind speed 

forecasting. The forecasting performance of the fuzzy 

regression functions approach used in this study was 

compared with many well-known forecasting methods in 

the literature, and it was concluded that the fuzzy 

regression functions approach produced better prediction 

results than other methods. 

In future studies, the fuzzy regression functions 

approach can be used to forecast wind speed in different 

provinces and different forecasting methods can be used 

for forecasting monthly average wind speed in Giresun 

Province. 
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