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Abstract: Regions of interest (ROI) representative of the visual texture of images of mirror carp Cyprinus carpio carpio and scaled carp Cyprinus carpio 
were taken. Red, green, blue and grayscale (R, G, B, GS) histograms of these ROI were calculated. The following methods of visual texture calculations 
were performed on the ROIs: 1) image energy based on histograms, 2) image entropy based on histograms, 3) image energy based on co-occurrence 
matrices, 4) image entropy based on co-occurrence matrices, 5) texture based on fractal dimensions, 6) texture based on texture primitives method. 
Calculations were performed for color and grayscale images. The identification of the smoothest and roughest ROIs depended on the method used. The 
largest range between the minimum and maximum values was found in the co-occurrence matrix-based entropy calculation. A close second was the texture 
change index (TCI) method. 
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Öz: Aynalı sazan (Cyprinus carpio carpio) ve pullu sazan (Cyprinus carpio) görüntülerinin görsel tekstürü temsil eden ilgili bölgeleri (ROI) değerlendirilmiştir. 
Bu ROI'lerin kırmızı, yeşil, mavi ve gri (R, G, B, GS) histogramları hesaplanmıştır. ROI'lere aşağıdaki görsel doku hesaplama yöntemleri uygulanmıştır: 1) 
Histogramlara dayalı görüntü enerjisi, 2) Histogramlara dayalı görüntü entropisi, 3) Eşdizimlilik matrislerine dayalı görüntü enerjisi, 4) Eşdizimlilik matrislerine 
dayalı görüntü entropisi, 5) Fraktal boyutlara dayalı tekstür, 6) Tekstür pirimitif yöntemine dayalı tekstür’dür. Hesaplamalar renkli ve gri tonlamalı resimler 
için yapılmıştır. En düz ve en kaba ROI’lerin tanımlanmasının kullanılan yönteme bağlı olduğu bulunmuştur. Minimum ve maksimum değerler arasındaki en 
büyük aralık, entropi hesaplamasına bağlı eşdizimlilik matrisinde tespit edilirken ikinci büyük aralık tekstür değişim indeksi (TCI) yöntemiyle bulunmuştur. 

Anahtar kelimeler: Cyprinus carpio, görsel doku, histogramlar, eşdizimlilik matrisleri, fraktallar 

INTRODUCTION 

In most agricultural materials, colors are distributed non-
uniformly over the surface of the material (Balaban, 2008). 
Regarding the surface of most fruits (apple, mango, 
watermelon, ripe banana, etc.), fish, meat, grains, the colors 
are not uniformly distributed. In the case of e.g., meat, this 
stems from the difference in color between the muscle fiber 
and fat and their distribution. In the case of fish, it is the 
differences in the scales and the colorings that are genetic in 
nature. In the case of most fruits, it is the distribution of the 
individual components (carotenoids, anthocyanins, etc). 
Therefore, the amount / level of colors as well as their 
distribution is important. 

Color, size, shape and visual texture are among the 
properties that can be obtained by image analysis of foods 
(Sharma et al., 2001; Zheng et al., 2006). Visual texture is 
different from the touch / squeeze-based texture; it refers to 
visual non-uniformity, and uneven patterns of the surface.  

An image is composed of pixels containing color or 
intensity information. A pixel in a color image, generally has 
red (R), green (G), and blue (B) components. The R, G, and B 

values change from 0 to 255. Bits per pixels of a grayscale 
image are different than those of a color image. For a 
grayscale image, the pixels have values changing from 0 to 
255; 0 being black and 255 being white. 

Tamura et al. (1978) started the research on the lexicon 
of visual texture. The images that they describe are 
grayscale, and not related with food. There are a very limited 
number of studies on the visual texture of foods. 
Watermarking in salmon is a good example of visual texture 
(Oliveira et al, 2006). Balaban et al. (2014) quantified the 
change in the redness value in the skin of gurnard, as well as 
its distribution. However, they did not quantify the visual 
texture. Bharati et al. (2004) used visual texture methods to 
classify rolled steel sheets into various quality grades. Gray 
level (Partio et al., 2002) or color analysis (Hendrawan et al., 
2019) can be used to develop texture properties of surfaces. 
Parameters can be developed based on histograms or based 
on co-occurrence matrices. Histograms are very easy to 
develop for an image, since they represent the counts of 
individual R, or G, or B, or grayscale values of every pixel in 
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the image. Co-occurrence matrices are slightly more 
complicated, since they require a direction and a step size for 
the definition of matrix elements. However, they are also easy 
to develop.  

The objective of this study was to apply image analysis 
based visual texture calculation methods to regions of interest 
of carp pictures. The visual texture parameters were 
measured by 6 different methods, and the sensitivity of the 
methods were compared. 

MATERIALS AND METHODS 

Fish samples and image acquisition  

Images of common carp (mirror and scaled) raised in 
concrete tanks of Republic of Turkey Ministry of Agriculture 
and Forestry, Mediterranean Fisheries Research Production 
and Training Institute, Kepez, Antalya, Turkey were used.  

Pictures were taken using a modified light box (120-cm 
high, 60-cm wide, and 60-cm deep) designed by Luzuriaga et 
al. (1997) under a Nikon D610 DSLR camera (Nikon Corp., 
Tokyo, Japan) with a 24-300 mm zoom Nikon lens with a 
circular polarizing filter that camera settings are given in Table 
1. The details of light box and color reference were given in 
the study carried out by Gümüş et al. (2021).  

Table 1. The Nikon D610 camera control settings for front-lighting 
and back-lighting images. 

Camera settings Front-lighting Back-lighting 

Exposure mode manual manual 

Shutter speed 1/2.5 sec 1/4 sec 

Aperture f/9 f/9 

Exposure compensation 0 EV 0 EV 

ISO sensitivity 200 200 

White balance Preset 1 Preset 1 

Image small size (pixels) 3008*2008 3008*2008 

Pictures were taken with two-image method described by 
Alçiçek and Balaban (2012). Then, the images using the 
silhouette (back-lighted) picture were segmented with using 
the LensEye-NET software (Engineering and Cyber Solutions, 
Gainesville, FL, USA). 

Image analysis 

Corel PhotoPaint (Corel Corp., Ottawa, Ontario, Canada) 
was used to clear the images taken by camera to isolate the 
color reference. All visual texture analyses (energies and 
entropies based on histograms and co-occurrence matrices, 
fractal dimensions), and texture primitive analyses were 
performed by using the software LensEye-NET. Two mirror 
carp images, and two scaled carp images were chosen at 
random.  

In Figure 1, Rectangular Regions of Interest (ROIs) are 
shown. The size and location of the ROIs were selected to 
show representative regions of the fish. ROI 1 was selected to 
show a lighter area of the mirror carp 1, closer to the head 
without the interference of the pectoral fin or gills. ROI 2 was 
selected to show the mid-section area close to the tail, again 
without interference from the anal fin. ROI 3 shows a similar 
area in mirror carp 2, similar to mirror carp 1. Since mirror 
carp 2 has more width, ROI 3 area is larger than ROI 1 area. 
ROI 4 was selected in mirror carp 2, in an area similar to ROI 
2 in mirror carp 1. Again, this area is larger than that of ROI 2. 
Once the 4 ROIs were selected in mirror carp, they were 
replicated as areas in scaled carp. The only difference is that 
they were placed close to the midline of the fish to represent 
the scales without other interference. 

For the mirror carp, the surface looks smooth, with little 
visual texture roughness. For the scaled carp, the scales 
constitute a fairly ordered visual texture. The ROIs close to 
the head have more distance between the scales compared 
to the ROI close to the tail. 

 

 

Figure 1. Regions of interest for mirror carp (above), and scaled carp (below) 
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Calculation of the energy, entropy, fractals, and 
texture change index (tci)  

Histogram-based energies and entropies: A histogram is 
the distribution of colors and counts the number of 
occurrences of R, G and B values for each pixel of the object. 

A grayscale (GS) (Figure 2) histogram can also be 
constructed, and its counts gives the number of pixels of the 
image. The conversion of a pixel with (R, G, B) colors to 
grayscale is (Padmavathi and Thangadurai, 2016): 

Grayscale Value = 0.3 * R + 0.59 * G + 0.11 * B (Eqn. 1) 

 

Figure 2. Grayscale images and regions of interest in mirror carp (left), and scaled carp (right) images 

 

Once a histogram is obtained (R, G, B or GS), the energy 
of an image can be calculated as: 

 

𝐸 = ∑ (𝑝𝑘)2
𝑀−1

𝑘=0
                                           (𝐸𝑞𝑛. 2) 

 

where M = 256, and E is the energy of the image, based 
on R, G, B, or GS histograms.  

The entropy of an image is given by the equation (Larkin, 
2016): 

 

𝐻 = − ∑ 𝑝𝑘

𝑀−1

𝑘=0
𝑙𝑜𝑔2(𝑝𝑘)                           (𝐸𝑞𝑛. 3) 

 

Where M = 256, and H is the entropy of the image, based 
on the R, G, B, and GS histograms.  

Co-occurrence matrix-based energies and entropies: The 
co-occurrence matrix is a symmetric square matrix, with 256 
rows (from 0 to 255), and 256 columns (0 to 255).  This matrix 
can be considered as an accumulator, counting the number of 
times neighboring pixels have certain defined characteristics. 
In the generation of the matrix requires a direction as 0, 45, 
90 and 135 degrees and a step size d measured in pixels 
(Zucker and Terzopoulos, 1980). The co-occurrence matrix is 
used as a “statistical” method in the traditional analysis of 

visual texture (Pathak and Barooah, 2013). The energy 
equation according to Tuceryan (1998) becomes:  

 

𝐸 = ∑ ∑ 𝑃2
𝑑

𝑗𝑖

(𝑖, 𝑗)                                   (𝐸𝑞𝑛. 4) 

 

The entropy equation becomes: 

𝐻 = − ∑ ∑ 𝑃𝑑

𝑗𝑖

(𝑖, 𝑗) log 𝑃𝑑(i, j)            (𝐸𝑞𝑛. 5) 

Fractal Analysis: Calculation the fractal dimension of an 
image is used the box counting method. At a given point p (X, 
Y), the sum of all R, G, B, and grayscale intensities (0-255) 
are added, at increasingly larger neighborhoods (Varma and 
Garg, 2007). Then the log of these sums vs log(d) is plotted. 
This plot is expected to be a straight line, with a slope and an 
intercept given in Eqn.5.  

The sum of the intensities at a given point p, for a given d 
is used to calculate the local fractal dimension D(p): 

𝑙𝑜𝑔 [∑ 𝐼(𝑝, 𝑑)] = 𝐷(𝑝) log(𝑑) + 𝐿(𝑝)                              (𝐸𝑞𝑛. 6) 

  

where the slope D(p) is the local fractal dimension (also 
called the Holder exponent), L(p) is the local intercept local 
log fractal length, p is a given point, and d is the 
neighborhood size. 
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Texture Primitives and Texture Change Index: Another 
method to quantify the distribution of colors is the “primitives” 
method (Zheng et al., 2007; Balaban, 2008). The intensity 
difference in case of a texture primitive is: 

 

∆𝐼𝑡 = √(𝑅𝑖 − 𝑅𝑗)2 + (𝐺𝑖 − 𝐺𝑗)2 + (𝐵𝑖 − 𝐵𝑗)2   (𝐸𝑞𝑛. 7) 

 

For a given threshold, the image may display many 
texture primitives. Intuition tells us that the more primitives, 
the more textured the image. Texture Change Index (TCI) 
described by Balaban (2008) was used to calculate texture 
primitives:  

TCI =  
(Sum of primitive intensity differences)(Number of primitives)

(Sum of distances between primitives)(Object area)
       (𝐸𝑞𝑛. 8) 

The intensity threshold was arbitrarily set to 5. The TCI values 
of color images and grayscale images (Figure 2) were 
calculated. 

RESULTS AND DISCUSSION 

Figures 3, 4, 5 and 6 represent the R, G, B, and GS 

histograms of the ROIs for mirror carp and scaled carp 

images. It is evident that except for the 3rd ROI of mirror carp 

which is darker, the R histograms are relatively comparable. 

The same can be said for the G histogram (Figure 4): the 3rd 

ROI is darker, therefore it has relatively lower G values. For 

the B histogram, the 2nd, 3rd and 4th ROIs of mirror carp stand 

separate from the rest. In the grayscale histogram (Figure 6) 

the 3rd ROI for mirror carp again stands out, since this ROI is 

darker, it has relatively lower grayscale values. 

Table 2 presents the results of histogram-based energy 

calculations for R, G, B, and GS histograms. Because the 

histograms are different, there are differences in R, G, B, and 

GS energies. The individual energy values are very small, in 

the 10-2 range. This may be disadvantageous if fine 

separation of visual texture using histogram-based energy is 

required. 

 

 

Figure 3. R histograms of mirror and scaled carp image objects 

 

Figure 4. G histograms of mirror and scaled carp image objects 
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Figure 5. B histograms of mirror and scaled carp image objects 

 

 

Figure 6. Grayscale histograms of mirror and scaled carp image objects 

Table 2. Histogram based energies of carp image objects 

Object 
Mirror carp Scaled Carp 

1 2 3 4 1 2 3 4 

R energy 0.011 0.010 0.010 0.011 0.010 0.012 0.009 0.010 

G energy  0.011 0.010 0.010 0.013 0.010 0.012 0.009 0.010 

B energy 0.013 0.012 0.018 0.033 0.012 0.014 0.012 0.012 

Avg. RGB 0.012 0.011 0.012 0.019 0.011 0.013 0.010 0.010 

Std RGB 0.001 0.001 0.005 0.012 0.001 0.002 0.002 0.001 

GS energy  0.011 0.010 0.010 0.014 0.010 0.012 0.010 0.010 

 

It can be observed that the 3rd ROI for mirror carp stands 
different than the rest. There is also not much difference 
between the color-based values and the grayscale-based 
values of the energies: the average energy values of R, G, 
and B are within one standard deviation of the GS energy 
value. The minimum energy value in the table is 0.009 for 
scaled carp, ROI 3, R-based histogram.  

The maximum value is 0.033 for mirror carp, ROI 4, B 
histogram. Most publications first convert a color image to 
grayscale (and cause loss of information), but deal with one 
value (grayscale) instead of 3 (R, G, B) (Basset et al.2000; 
Perez-Nieto et al., 2010). Based on this, the smallest 
grayscale value for energy is 0.009, for scaled carp, ROI 3. 
This means that the 3rd ROI has the most textured surface. 
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The largest energy value for grayscale in Table 2 is 0.013 for 
mirror carp, ROI 4. This ROI is the “smoothest” based on this 
calculation. 

Table 3 shows the histogram-based entropies of R, G, B 
and GS histograms. Again, the values are different for the R, 
G, B and GS. The entropy values are in the order of 10, they 

are bigger than the energy values, and can possibly perform 
better in the fine separation of visual texture. The largest GS 
entropy value is 6.854 for scaled carp, ROI 3. This is the 
same ROI that has the lowest energy. Also, the smallest GS 
entropy value is 6.376 for mirror carp, ROI 4. This is the same 
ROI that has the largest energy. Therefore, it is confirmed that 
energy and entropy work in reverse of each other.   

Table 3. Histogram based entropies of carp image objects 

Object 

Mirror carp Scaled Carp 

1 2 3 4 1 2 3 4 

R entropy 6.721 6.587 6.951 6.692 6.810 6.601 6.948 6.839 

G entropy  6.695 6.451 6.905 6.426 6.783 6.568 6.892 6.825 

B entropy 6.453 5.367 6.002 5.254 6.543 6.280 6.514 6.571 

GS entropy  6.678 6.382 6.830 6.376 6.753 6.532 6.854 6.789 

 

Table 4 displays the results of co-occurrence matrix-
based calculation of energy values (Equation 4) for 0 degrees 
and step size = 1. Notice that the energy values of scaled 
carp (more visual texture) are almost an order of magnitude 
smaller than those of the mirror carp (less visual texture). 
Therefore, in this method of calculation, the separation of 
visual texture is better. The maximum GS energy value in  

Table 4 is 2.782 for mirror carp, ROI 3, as in the case of 
histogram-based energy calculations (Table 2). Also, the 
minimum energy value for GS is 0.226 for scaled carp, ROI 1. 
This is different than the case of Table 2 (ROI 3). Looking at 
Figure 1, it can be argued that scaled carp ROI 1 has the 
most visual texture, but this assertion is not based on sensory 
evaluation. 

Table 4. Co-occurrence matrix-based energies of carp image objects 

Object 

Mirror carp Scaled Carp 

1 2 3 4 1 2 3 4 

R energy 0.704 0.881 2.611 1.001 0.218 0.257 0.499 0.275 

G energy  0.726 1.008 2.538 1.246 0.227 0.261 0.516 0.277 

B energy 0.759 2.270 3.877 2.949 0.269 0.323 0.664 0.328 

GS energy  0.734 1.067 2.782 1.272 0.226 0.264 0.533 0.283 

 

Table 5 presents the results of co-occurrence matrix-
based calculation of entropy values (Equation 5) for 0 
degrees, step size = 1. The magnitudes of the entropy values 
compared to Table 3 are much larger, in the range of 102, 
which may be advantageous if fine separation of the visual 
texture is required. The largest grayscale entropy is 221.897 

for scaled carp, ROI 3, as before. The smallest entropy is 
99.887 for mirror carp, ROI 2. This is different than Table 3 
where the minimum entropy was for mirror carp, ROI 4. This 
emphasizes the possibility of different results of evaluating 
visual texture based on different methods of entropy 
calculation.  

Table 5. Co-occurrence matrix-based entropies of carp image objects 

Object 

Mirror carp Scaled Carp 

1 2 3 4 1 2 3 4 

R entropy 105.201 103.687 162.404 125.166 131.720 133.344 224.804 163.436 

G entropy  104.508 101.095 161.833 119.467 130.994 133.220 223.407 163.178 

B entropy 102.489 82.928 136.63 93.886 127.342 127.907 211.441 158.238 

GS entropy  104.078 99.887 158.651 118.272 130.981 132.614 221.897 162.346 
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Table 6 shows the average slopes for R, G, B, and GS 
based fractal calculations. The average R2 values are high 
(above 0.99). Again, concentrating on the GS values, for 
mirror carp the GS slope averages are all close to 1.6 for the 
four ROIs. The standard deviations are in the range of 0.1. 
This shows that all the GS slope averages are within 1 
standard deviation of each other.  

Therefore, there is no statistical difference between the 

grayscale slopes for any ROI. The same is true for the scaled 

carp GS slope averages: they are all close to 1.65. The 

standard deviations are all in the range 0.11. Again, the 

average GS slopes are within one standard deviation from 

each other. Furthermore, the GS average slopes of mirror 

carp and scaled carp are within one standard deviation of 

each other. Therefore, although there is significant visual 

texture difference between the mirror carp and the scaled 

carp, the fractals method used here cannot differentiate this 

difference in visual texture. 

Table 6. Fractal dimensions of carp image objects   

Object Mirror carp Scaled carp 

1 2 3 4 1 2 3 4 

R slope, avg 1.651 1.654 1.690 1.672 1.654 1.654 1.689 1.669 

St dev 0.124 0.119 0.118 0.101 0.137 0.124 0.124 0.115 

R2 avg 0.998 0.998 0.998 0.998 0.997 0.997 0.997 0.997 

G slope, avg 1.651 1.655 1.691 1.673          1.656         1.654         1.690        1.670 

St dev 0.127 0.120 0.123 0.098 0.144 0.127 0.128 0.117 

R2 avg 0.998 0.998 0.998 0.998 0.997 0.997 0.997 0.997 

B slope, avg 1.655 1.654 1.691 1.669 1.660 1.657 1.691 1.673 

St dev 0.143 0.132 0.141 0.135 0.161 0.131 0.136 0.116 

R2 avg 0.997 0.997 0.997 0.997 0.996 0.997 0.997 0.997 

GS slope, avg 1.651 1.654 1.691 1.672 1.655 1.654 1.690 1.670 

St dev 0.126 0.119 0.121 0.099 0.142 0.126 0.127 0.116 

R2 avg 0.998 0.998 0.998 0.998 0.997 0.997 0.997 0.997 

 

Table 7 presents both the color and grayscale-based TCI 
values of mirror carp and scaled carp ROIs calculated based 
on the texture primitives with an intensity threshold of 5. The 
smallest TCI values (the smoothest visual texture) are that of 
mirror carp, ROI 3. The largest TCI values are that of scaled 
carp, ROI 4. Also, there is enough range between the 
minimum (11) and maximum (101) values for fine separation 
between visual textures.  

Another tool of the texture primitives method is the texture 

circles, shown in Figures 7 and 8. In the case of mirror carp 

(Figure 7), the visual texture is relatively smooth. This results 

in large circles, but few in number. However, in the case of 

scaled carp (Figure 8), with much visual texture, the circles 

are small and there are many of them. This gives another 

indication of the relative visual texture between samples. 

Table 7. Texture Change Index values of carp image objects 

Object Mirror carp Scaled carp 

1 2 3 4 1 2 3 4 

Color TCI 24.371 19.834 12.478 20.173 105.452 80.939 95.657 113.169 

GS TCI 23.107 15.318 11.077 12.511 96.477 73.261 78.649 101.128 
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Figure 7. Texture primitives and texture circles for mirror carp 

 

Figure 8. Texture primitives and texture circles for scaled carp 

 

CONCLUSION   

Table 8 summarizes the findings of this study. It is 
apparent that different image analysis-based methods to 
calculate visual texture may result in different conclusions. In 
Table 8 the minimum and maximum energy and entropy 
values differ depending on which method is used. Also, the 
identification of the smoothest and most textured images is 
different for different methods. An obvious solution to the 
selection of method is to correlate the results with that of a 

sensory study. However, sensory studies that correlate 
machine calculations to sensory panel results are difficult to 
find in the literature. This is mainly due to the difficulties in 
finding existing and established methods to quantify sensory 
panel evaluations of visual texture. 

Another important criterion in the selection of method is 
the range between the minimum and maximum values. If the 
range is small, e.g., histogram-based energy, then the fine 
resolution of images with similar visual texture will be difficult.  

Table 8. Summary of minimum and maximum values of parameters for different methods 

Object Min value Max value Min ROI Max ROI Range 

Histogram energy 0.009 0.013 Scaled 3 Mirror 4 0.004 

Histogram entropy 6.375 6.854 Mirror 4 Scaled 3 0.478 

Co-occurrence energy 0.226 2.781 Scaled 1 Mirror 3 2.555 

Co-occurrence entropy 99.887 221.897 Mirror 2 Scaled 3 122.011 

Texture Change Index 11.077 101.128 Mirror 3 Scaled 4 90.051 
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This study suggests that the co-occurrence matrix-based 
analysis of entropy resulted in the largest range for our 
samples. The TCI method was a close second. However, the 
identification of the smoothest and roughest samples in these 
two methods is different. Therefore, it is clear that the 
correlation and merging of quantitative visual information, 
especially for foods, with sensory analysis must be done to 
bring meaning to the computer-based parameters. 
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