Research Article
BibTex RIS Cite

Tarım makineleri tehlikelerinden korunmak için bir elektronik cihazın geliştirilmesi

Year 2023, Volume: 60 Issue: 3 - Journal of Agriculture Faculty of Ege University Volume: 60 Issue: 3, 405 - 416, 13.10.2023
https://doi.org/10.20289/zfdergi.1311436

Abstract

Amaç: Bu çalışma, operatörleri mekanik tehlikelerden korumak için tarım makinelerine bağlanabilen bir elektronik cihaz geliştirmeyi amaçlamaktadır.
Materyal ve Yöntem: Elektronik cihaz, alarm vermek ve otomatik olarak kapatmak için iki elektronik devre içermektedir. Cihaz, cihaz hassasiyetini artırmak için gün ışığı direncine sahip bir çift pasif kızılötesi sensörle donatılmıştır. Alarm devresi rotorlar, bıçaklar, açıktaki dişliler vb. gibi tehlikeli nesnelere yaklaştığında operatörü uyaran bir siren çalıştırır. Otomatik bağlantı kesme devresi, operatör alarma dikkat etmediğinde traktörün motorunu kapatır. 0.25, 0.5, 0.75 ve 1.00 m'lik dört algılama mesafesi, 150 ve 200 mm'lik sensörler arasındaki boşluk mesafeleri için iki seviyede 30, 60 ve 90 s'lik üç gecikme periyoduyla test edildi.
Araştırma Bulguları: Cihaz, sensör yanıtının etkinliğini ve zaman gecikmesinin etkinliğini test etmek için insan elini simüle ederek test edildi. Pasif kızılötesi sensöre gün ışığı direncinin eklenmesi, tepki veriminde %90,67'den %95,83'e bir artışa yol açtı.
Sonuç: Geliştirilen elektronik cihaz, operatörleri işletme risklerinden korumak için tarım ekipmanlarına takılabilir.

Supporting Institution

Agricultural Engineering Research Institute (AEnRI), Agricultural Research Center (ARC), Egypt.

Project Number

None

Thanks

This work was supported by the Agricultural Engineering Research Institute (AEnRI), Agricultural Research Center (ARC), Egypt.

References

  • Aby, G. R. & S. F. Issa, 2023. Safety of automated agricultural machineries: a systematic literature review. Safety, 9(1), 13. https://doi.org/10.3390/safety9010013
  • Ai, X., R.W. Nock, N. Dahnoun, J. Rarity, A. Consoli, I. Esquivias & G. Ehret, 2014. Pseudo-random single photon counting for space-borne atmospheric sensing applications. IEEE, Aerospace Conference, (pp. 1-10). https://doi.org/10.1109/aero.2014.6836513
  • Benos, L., A. Bechar & D. Bochtis, 2020. Safety and ergonomics in human-robot interactive agricultural operations. Biosystems Engineering, 200: 55-72. https://doi.org/10.1016/j.biosystemseng.2020.09.009
  • Colantoni, A., D. Monarca, V. Laurendi, M. Villarini, F. Gambella & M. Cecchini, 2018. Smart machines, remote sensing, precision farming, processes, mechatronic, materials and policies for safety and health aspects. Agriculture, 8 (4): 47.‏ https://doi.org/10.3390/agriculture8040047
  • Erdal, Ö. Z. & M. Jakob, 2004. Ergonomic evaluation of simulated apple hand harvesting by using 3D motion analysis. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (2): 249-256. https://doi: 10.20289/zfdergi.650787
  • Evangelakaki, G., C. Karelakis & K. Galanopoulos, 2020. Farmers’ health and social insurance perceptions–A case study from a remote rural region in Greece. Journal of Rural Studies, 80: 337-349.‏ https://doi.org/10.1016/j.jrurstud.2020.10.009
  • Fargnoli, M., M. Lombardi, N. Haber & D. Puri, 2018. The impact of human error in the use of agricultural tractors: A case study research in vineyard cultivation in Italy. Agriculture, 8 (6): 82. https://doi.org/10.3390/agriculture8060082
  • Furgale, P., J. Rehder & R. Siegwart, 2013. Unified temporal and spatial calibration for multi-sensor systems. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1280-1286). https://doi.org/10.1109/iros.2013.6696514
  • Ivascu, L. & L.I. Cioca, 2019. Occupational accidents assessment by field of activity and investigation model for prevention and control. Safety, 5 (1): 12. https://doi.org/10.3390/safety5010012
  • Ivascu, L., M. Sarfraz, M. Mohsin, S. Naseem & I. Ozturk, 2021. The causes of occupational accidents and injuries in Romanian firms: an application of the Johansen cointegration and Granger causality test. International journal of environmental research and public health, 18 (14): 7634. ‏https://doi.org/10.3390/ijerph18147634
  • Khorsandi, F., G. De Moura Araujo & F. Fathallah, 2022. A systematic review of youth and all-terrain vehicles safety in agriculture. Journal of Agromedicine, 1-23.‏ https://doi.org/10.1080/1059924x.2022.2155747
  • López-Toro A.A., M.C. Pardo-Ferreira, M. Martínez-Rojas, J.A. Carrillo-Castrillo & J.C. Rubio-Romero, 2021. Analysis of occupational accidents during the chainsaws use in Andalucía. Safety science, 143, 105436. https://doi.org/10.1016/j.ssci.2021.105436
  • Mirmahdi, E.& O.G. Shirazi, 2021. Installation of suitable sensors for object detection and height control on combine harvester. SSRG Int. J. Mech. Eng., 8 (5): 12-19. https://doi.org/10.14445/23488360/ijme-v8i5p103
  • Mucci, N., V. Traversini, L.G. Lulli, A. Baldassarre, R.P. Galea & G. Arcangeli, 2020. Upper limb’s injuries in agriculture: a systematic review. International journal of environmental research and public health, 17 (12): 4501. https://doi.org/10.3390/ijerph17124501
  • Narayana, S., R.V. Prasad, V.S. Rao, T.V. Prabhakar, S.S. Kowshik & M.S. Iyer, 2015. PIR sensors: Characterization and novel localization technique. In Proceedings of the 14th international conference on information processing in sensor networks (pp. 142-153). https://doi.org/10.1145/2737095.2742561
  • Ngajilo, D. & M.F. Jeebhay, 2019. Occupational injuries and diseases in aquaculture–a review of literature. Aquaculture, 507: 40-55.‏ https://doi.org/10.1016/j.aquaculture.2019.03.053
  • Noman, M., N. Mujahid & A. Fatima, 2021. The assessment of occupational injuries of workers in Pakistan. Safety and health at work, 12 (4): 452-461.‏ https://doi.org/10.1016/j.shaw.2021.06.001
  • Prankl, H., M. Nadlinger, F. Demmelmayr, M. Schrödl, T. Colle & G. Kalteis, 2011. Multi-functional pto generator for mobile electric power supply of agricultural machinery. VDI-Berichte, (2124), 1.
  • Shutske, J. M., K. J. Sandner & Z. Jamieson, 2022. Risk assessment methods for automated agricultural machines: current practice and future needs. In 2022 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.1080/1059924X.2022.2147625
  • Teng, Z., N. Noguchi, Y. Liangliang, K. Ishii & C. Jun, 2016. Development of uncut crop edge detection system based on laser rangefinder for combine harvesters. International Journal of Agricultural and Biological Engineering, 9 (2): 21-28.‏ https://doi.org/10.3965/j.ijabe.20160902.1959
  • Vigoroso, L., F. Caffaro, M. Micheletti Cremasco & E. Cavallo, 2021. Innovating occupational safety training: a scoping review on digital games and possible applications in agriculture. International Journal of Environmental Research and Public Health, 18 (4): 1868.‏ https://doi.org/10.3390/ijerph18041868
  • Yang, D., Z. Guo & H. Chen, 2017. A Technology for Measuring the Fender Motion Based on the Sensor JY901. In The 27th International Ocean and Polar Engineering Conference. OnePetro. https://onepetro.org
  • Yue, W., S. Changhong & Y. Wei 2010. Study of acquisition streetlights background signal by multi-sensor array. IEEE. In ICCAS 2010 (pp. 1000-1003). https://doi.org/10.1109/iccas.2010.5669658
  • Zappi, P., E. Farella & L. Benini, 2010. Tracking motion direction and distance with pyroelectric IR sensors. IEEE Sensors Journal, 10 (9): 1486-1494. https://doi.org/10.1109/jsen.2009.2039792

Development of an electronic device for protection from agricultural machinery hazards

Year 2023, Volume: 60 Issue: 3 - Journal of Agriculture Faculty of Ege University Volume: 60 Issue: 3, 405 - 416, 13.10.2023
https://doi.org/10.20289/zfdergi.1311436

Abstract

Objective: The objective of this study was to develop an electronic device capable of being connected to agricultural machinery to protect operators from mechanical hazards.
Material and Methods: The electronic device contains two electronic circuits for alarming and automatically shutting off. The device is equipped with a pair of passive infrared sensors with a daylight resistance to increase the devise sensitivity. The alarm circuit operates a siren that warns the operator when approaching dangerous objects such as rotors, knives, exposed gears, etc. The automatic disconnect circuit turns off the tractor's engine when the operator does not pay attention to the alarm. Four sensing distances of 0.25, 0.5, 0.75, and 1.00 m were tested with three delay periods of 30, 60, and 90 s at two levels for the interstitial distances between the sensors of 150 and 200 mm.
Results: The device was tested by simulating human hands to test the efficiency of the sensor response and the efficiency of the time delay. The addition of the day light resistance to the passive infrared sensor led to an increase in its response efficiency, from 90.67% to 95.83%.
Conclusion: The developed electronic device can be attached to agricultural equipment to protect operators from operating risks.

Supporting Institution

Agricultural Engineering Research Institute (AENRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt

Project Number

None

Thanks

Many thanks

References

  • Aby, G. R. & S. F. Issa, 2023. Safety of automated agricultural machineries: a systematic literature review. Safety, 9(1), 13. https://doi.org/10.3390/safety9010013
  • Ai, X., R.W. Nock, N. Dahnoun, J. Rarity, A. Consoli, I. Esquivias & G. Ehret, 2014. Pseudo-random single photon counting for space-borne atmospheric sensing applications. IEEE, Aerospace Conference, (pp. 1-10). https://doi.org/10.1109/aero.2014.6836513
  • Benos, L., A. Bechar & D. Bochtis, 2020. Safety and ergonomics in human-robot interactive agricultural operations. Biosystems Engineering, 200: 55-72. https://doi.org/10.1016/j.biosystemseng.2020.09.009
  • Colantoni, A., D. Monarca, V. Laurendi, M. Villarini, F. Gambella & M. Cecchini, 2018. Smart machines, remote sensing, precision farming, processes, mechatronic, materials and policies for safety and health aspects. Agriculture, 8 (4): 47.‏ https://doi.org/10.3390/agriculture8040047
  • Erdal, Ö. Z. & M. Jakob, 2004. Ergonomic evaluation of simulated apple hand harvesting by using 3D motion analysis. Ege Üniversitesi Ziraat Fakültesi Dergisi, 57 (2): 249-256. https://doi: 10.20289/zfdergi.650787
  • Evangelakaki, G., C. Karelakis & K. Galanopoulos, 2020. Farmers’ health and social insurance perceptions–A case study from a remote rural region in Greece. Journal of Rural Studies, 80: 337-349.‏ https://doi.org/10.1016/j.jrurstud.2020.10.009
  • Fargnoli, M., M. Lombardi, N. Haber & D. Puri, 2018. The impact of human error in the use of agricultural tractors: A case study research in vineyard cultivation in Italy. Agriculture, 8 (6): 82. https://doi.org/10.3390/agriculture8060082
  • Furgale, P., J. Rehder & R. Siegwart, 2013. Unified temporal and spatial calibration for multi-sensor systems. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 1280-1286). https://doi.org/10.1109/iros.2013.6696514
  • Ivascu, L. & L.I. Cioca, 2019. Occupational accidents assessment by field of activity and investigation model for prevention and control. Safety, 5 (1): 12. https://doi.org/10.3390/safety5010012
  • Ivascu, L., M. Sarfraz, M. Mohsin, S. Naseem & I. Ozturk, 2021. The causes of occupational accidents and injuries in Romanian firms: an application of the Johansen cointegration and Granger causality test. International journal of environmental research and public health, 18 (14): 7634. ‏https://doi.org/10.3390/ijerph18147634
  • Khorsandi, F., G. De Moura Araujo & F. Fathallah, 2022. A systematic review of youth and all-terrain vehicles safety in agriculture. Journal of Agromedicine, 1-23.‏ https://doi.org/10.1080/1059924x.2022.2155747
  • López-Toro A.A., M.C. Pardo-Ferreira, M. Martínez-Rojas, J.A. Carrillo-Castrillo & J.C. Rubio-Romero, 2021. Analysis of occupational accidents during the chainsaws use in Andalucía. Safety science, 143, 105436. https://doi.org/10.1016/j.ssci.2021.105436
  • Mirmahdi, E.& O.G. Shirazi, 2021. Installation of suitable sensors for object detection and height control on combine harvester. SSRG Int. J. Mech. Eng., 8 (5): 12-19. https://doi.org/10.14445/23488360/ijme-v8i5p103
  • Mucci, N., V. Traversini, L.G. Lulli, A. Baldassarre, R.P. Galea & G. Arcangeli, 2020. Upper limb’s injuries in agriculture: a systematic review. International journal of environmental research and public health, 17 (12): 4501. https://doi.org/10.3390/ijerph17124501
  • Narayana, S., R.V. Prasad, V.S. Rao, T.V. Prabhakar, S.S. Kowshik & M.S. Iyer, 2015. PIR sensors: Characterization and novel localization technique. In Proceedings of the 14th international conference on information processing in sensor networks (pp. 142-153). https://doi.org/10.1145/2737095.2742561
  • Ngajilo, D. & M.F. Jeebhay, 2019. Occupational injuries and diseases in aquaculture–a review of literature. Aquaculture, 507: 40-55.‏ https://doi.org/10.1016/j.aquaculture.2019.03.053
  • Noman, M., N. Mujahid & A. Fatima, 2021. The assessment of occupational injuries of workers in Pakistan. Safety and health at work, 12 (4): 452-461.‏ https://doi.org/10.1016/j.shaw.2021.06.001
  • Prankl, H., M. Nadlinger, F. Demmelmayr, M. Schrödl, T. Colle & G. Kalteis, 2011. Multi-functional pto generator for mobile electric power supply of agricultural machinery. VDI-Berichte, (2124), 1.
  • Shutske, J. M., K. J. Sandner & Z. Jamieson, 2022. Risk assessment methods for automated agricultural machines: current practice and future needs. In 2022 ASABE Annual International Meeting (p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.1080/1059924X.2022.2147625
  • Teng, Z., N. Noguchi, Y. Liangliang, K. Ishii & C. Jun, 2016. Development of uncut crop edge detection system based on laser rangefinder for combine harvesters. International Journal of Agricultural and Biological Engineering, 9 (2): 21-28.‏ https://doi.org/10.3965/j.ijabe.20160902.1959
  • Vigoroso, L., F. Caffaro, M. Micheletti Cremasco & E. Cavallo, 2021. Innovating occupational safety training: a scoping review on digital games and possible applications in agriculture. International Journal of Environmental Research and Public Health, 18 (4): 1868.‏ https://doi.org/10.3390/ijerph18041868
  • Yang, D., Z. Guo & H. Chen, 2017. A Technology for Measuring the Fender Motion Based on the Sensor JY901. In The 27th International Ocean and Polar Engineering Conference. OnePetro. https://onepetro.org
  • Yue, W., S. Changhong & Y. Wei 2010. Study of acquisition streetlights background signal by multi-sensor array. IEEE. In ICCAS 2010 (pp. 1000-1003). https://doi.org/10.1109/iccas.2010.5669658
  • Zappi, P., E. Farella & L. Benini, 2010. Tracking motion direction and distance with pyroelectric IR sensors. IEEE Sensors Journal, 10 (9): 1486-1494. https://doi.org/10.1109/jsen.2009.2039792
There are 24 citations in total.

Details

Primary Language English
Subjects Agricultural Machine Systems
Journal Section Articles
Authors

Ahmed Shawky El-sayed 0000-0002-5825-2425

Safwat El-hassanein Elkhawaga This is me 0009-0008-8147-6495

Project Number None
Early Pub Date October 12, 2023
Publication Date October 13, 2023
Submission Date June 8, 2023
Acceptance Date September 16, 2023
Published in Issue Year 2023 Volume: 60 Issue: 3 - Journal of Agriculture Faculty of Ege University Volume: 60 Issue: 3

Cite

APA Shawky El-sayed, A., & El-hassanein Elkhawaga, S. (2023). Development of an electronic device for protection from agricultural machinery hazards. Ege Üniversitesi Ziraat Fakültesi Dergisi, 60(3), 405-416. https://doi.org/10.20289/zfdergi.1311436

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.