Research Article
BibTex RIS Cite
Year 2021, Volume: 3 Issue: 2, 18 - 32, 31.12.2021

Abstract

References

  • [1] Balık İ, Tunca E (2015) A Review of Sediment Contamination Assessment Methods. Journal of Maritime and Marine Sciences, 1, 32-42.
  • [2] Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A (2016) Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phyto. ,18, 25-32.
  • [3] Zhou Y, Wang X, Zhang M, Jin Q, Gao B, Ma T (2014) Removal of Pb(II) and malachite green from aqueous solution by modified cellulose. Cellulose, 21, 2797-2809.
  • [4] Pietrini F, Bianconi D, Massacci A, Iannelli MA (2016) Combined effects of elevated CO2 and Cd-contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L. J. Hazard. Mater., 309, 77-86.
  • [5] Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus Brassica. International Journal of Molecular Sciences, 16, 17975-17998.
  • [6] Ucuncu E, Tunca E, Fikirdesici S, Ozkan AD, Altindag A (2013) Phytoremediation of Cu, Cr and Pb Mixtures by Lemna minor. Bull Environ Contam Toxicol, 91, 600-604.
  • [7] Varga M, Horvatić J, Čelić A (2013) Short term exposure of Lemna minor and Lemna gibba to mercury, cadmium and chromium. Cent Eur J Biol., 8, 1083-1093.
  • [8] Demim S, Drouiche N, Aouabed A, Benayad T, Dendene-Badache O, Semsari S (2013) Cadmium and nickel: Assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba. Ecol Eng, 61, 426-435.
  • [9] Wang F, Lu X, Li XY (2016) Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. J. Hazard. Mater., 308, 75-83
  • [10] Tiecher TL, Ceretta CA, Tiecher T, Ferreira PAA, Nicoloso FT, Soriani HH, Rossato LV, Mimmo T, Cesco S, Lourenzi CR, Giachini AJ, Brunetto G (2016) Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Ecotoxicol Environ Saf ,129, 109-119.
  • [11] Jo HJ, Choi JW, Lee SH, Hong SW (2012) Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: The importance of their dissolved fraction varying with preparation methods. J. Hazard. Mater., 301-308.
  • [12] Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ. Sci. Pollut. Res., 1-21.
  • [13] Wali M, Fourati E, Hmaeid N, Ghabriche R, Poschenrieder C, Abdelly C, Ghnaya T (2015) NaCl alleviates Cd toxicity by changing its chemical forms of accumulation in the halophyte Sesuvium portulacastrum. Environ Sci Pollut Res Int., 22, 10769-77.
  • [14] Yang J, Liu D, Dahms HU, Wang L (2015) Cadmium inhibits the vitellogenesis of freshwater crab Sinopotamon henanense. Environ Toxicol Chem., 34, 1609-1616.
  • [15] Tunca E, Üçüncü E, Kurtuluş B, Ozkan AD, Atasagun S (2013) Accumulation trends of metals and a metalloid in the freshwater crayfish Astacus leptodactylus from Lake Yeniçaǧa (Turkey). Chem Ecol, 29, 754-769.
  • [16] Shahid A, Ahmad N, Anis M, Alatar AA, Faisal M (2016) Morphogenic responses of Rauvolfia tetraphylla L. cultures to Cu, Zn and Cd ions. Rendiconti Lincei, 27, 369-374.
  • [17] Upadhyay AK, Singh NK, Singh R, Rai UN (2016) Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol Environ Saf ,124, 68-73.
  • [18] Tellis MS, Lauer MM, Nadella S, Bianchini A, Wood CM (2014) Sublethal mechanisms of Pb and Zn toxicity to the purple sea urchin (Strongylocentrotus purpuratus) during early development. Aquatic Toxicology ,146, 220-229.
  • [19] Rofkar JR, Dwyer DF, Bobak DM (2014) Uptake And Toxicity Of Arsenic, Copper, And Silicon In Azolla Caroliniana And Lemna Minor. International Journal of Phytoremediation, 16, 155-166.
  • [20] Üçüncü E, Tunca E, Fikirdeşici Ş, Altındağ A (2013) Decrease and Increase Profile of Cu, Cr and Pb during Stable Phase of Removal by Duckweed (Lemna Minorl.). International Journal of Phytoremediation ,15, 376-384.
  • [21] Van de Perre D, Roessink I, Janssen CR, Smolders E, Van Regenmortel T, Van Wichelen J, Vyverman W, Van den Brink PJ, De Schamphelaere KAC (2016) The effects of zinc on the structure and functioning of a freshwater community: A microcosm experiment. Environ Toxicol Chem., 35, 2698-2712.
  • [22] Song U, Lee S (2016) Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses. Environ. Sci. Pollut. Res., 1-7.
  • [23] Kalčíková G, Zupančič M, Jemec A, Žgajnar Gotvajn A (2016) The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor. Chemosphere ,147, 311-317.
  • [24] Török A, Buta E, Indolean C, Tonk S, Silaghi-Dumitrescu L, Majdik C (2015) Biological removal of triphenylmethane dyes from aqueous solution by Lemna minor. Acta Chimica Slovenica ,62, 452-461.
  • [25] OECD (2002) Organization for Economic Co-operation and Development Guidelines for the testing of chemicals Lemna sp. Growth inhibition test draft guideline ,OECD, 221.
  • [26] Üçüncü E, Özkan AD, Kurşungöz C, Ülger ZE, Ölmez TT, Tekinay T, Ortaç B, Tunca E (2014) Effects of laser ablated silver nanoparticles on Lemna minor. Chemosphere, 108, 251-257.
  • [27] Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O'Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol, 105, 328-36.
  • [28] Dirilgen N (2011) Mercury and lead: Assessing the toxic effects on growth and metal accumulation by Lemna minor. Ecotoxicol Environ Saf ,74, 48-54.
  • [29] Üçüncü Tunca E, Ölmez TT, Özkan AD, Altındağ A, Tunca E, Tekinay T (2016) Correlations in metal release profiles following sorption by Lemna minor. International Journal of Phytoremediation, 18, 785-793.

Yüksek dozlarda Cd ve Cu'nun Lemna minor üzerindeki kombine toksik etkilerinin modellenmesi

Year 2021, Volume: 3 Issue: 2, 18 - 32, 31.12.2021

Abstract

Yapılan bu çalışmada; kadmiyum (Cd) ve bakırın (Cu), sucul bir makrofit olan Lemna minor üzerinde göstermiş olduğu toksik etkiler belirlenmeye çalışılmıştır. Büyüme inhibisyon değerleri tespit edilerek, bu iki kontaminant varlığındaki inhibisyon modellemelerinin oluşturulması amaçlanmıştır. Test grupları sadece Cd, sadece Cu ve Cd+Cu içerecek şekilde oluşturulmuş olup, bu metallerin test organizması üzerinde kombine toksik etkileri de belirlenmeye çalışılmıştır. 7 gün sürdürülen deney, Cd ve Cu'nun 4 farklı konsantrasyonu (0.2, 0.8, 1.6 ve 3.2 mg L-1) ile yürütülmüştür. Modellemeler için regresyon tahmin analizi kullanılmış olup; lineer, kübik ve kuadratik olmak üzere üç farklı denklem kullanılmıştır. Tüm test gruplarının modelleri incelendiğinde, genel bir inhibisyon trendinden bahsetmek (Cd' nin 0.2 ve 1.6 mg L'lik konsantrasyonları hariç) mümkündür. Oluşturulan modellerin R2 değerleri incelendiğinde; kübik modellerin, lineer ve kuadratik modellere göre daha iyi sonuçlar verdiği ve genel olarak gerçek inhibisyon değerlerine en yakın modelleri oluşturduğu belirlenmiştir.

References

  • [1] Balık İ, Tunca E (2015) A Review of Sediment Contamination Assessment Methods. Journal of Maritime and Marine Sciences, 1, 32-42.
  • [2] Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A (2016) Phytoremediation potential of Lemna minor L. for heavy metals. Int. J. Phyto. ,18, 25-32.
  • [3] Zhou Y, Wang X, Zhang M, Jin Q, Gao B, Ma T (2014) Removal of Pb(II) and malachite green from aqueous solution by modified cellulose. Cellulose, 21, 2797-2809.
  • [4] Pietrini F, Bianconi D, Massacci A, Iannelli MA (2016) Combined effects of elevated CO2 and Cd-contaminated water on growth, photosynthetic response, Cd accumulation and thiolic components status in Lemna minor L. J. Hazard. Mater., 309, 77-86.
  • [5] Mourato MP, Moreira IN, Leitão I, Pinto FR, Sales JR, Martins LL (2015) Effect of heavy metals in plants of the genus Brassica. International Journal of Molecular Sciences, 16, 17975-17998.
  • [6] Ucuncu E, Tunca E, Fikirdesici S, Ozkan AD, Altindag A (2013) Phytoremediation of Cu, Cr and Pb Mixtures by Lemna minor. Bull Environ Contam Toxicol, 91, 600-604.
  • [7] Varga M, Horvatić J, Čelić A (2013) Short term exposure of Lemna minor and Lemna gibba to mercury, cadmium and chromium. Cent Eur J Biol., 8, 1083-1093.
  • [8] Demim S, Drouiche N, Aouabed A, Benayad T, Dendene-Badache O, Semsari S (2013) Cadmium and nickel: Assessment of the physiological effects and heavy metal removal using a response surface approach by L. gibba. Ecol Eng, 61, 426-435.
  • [9] Wang F, Lu X, Li XY (2016) Selective removals of heavy metals (Pb2+, Cu2+, and Cd2+) from wastewater by gelation with alginate for effective metal recovery. J. Hazard. Mater., 308, 75-83
  • [10] Tiecher TL, Ceretta CA, Tiecher T, Ferreira PAA, Nicoloso FT, Soriani HH, Rossato LV, Mimmo T, Cesco S, Lourenzi CR, Giachini AJ, Brunetto G (2016) Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Ecotoxicol Environ Saf ,129, 109-119.
  • [11] Jo HJ, Choi JW, Lee SH, Hong SW (2012) Acute toxicity of Ag and CuO nanoparticle suspensions against Daphnia magna: The importance of their dissolved fraction varying with preparation methods. J. Hazard. Mater., 301-308.
  • [12] Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ. Sci. Pollut. Res., 1-21.
  • [13] Wali M, Fourati E, Hmaeid N, Ghabriche R, Poschenrieder C, Abdelly C, Ghnaya T (2015) NaCl alleviates Cd toxicity by changing its chemical forms of accumulation in the halophyte Sesuvium portulacastrum. Environ Sci Pollut Res Int., 22, 10769-77.
  • [14] Yang J, Liu D, Dahms HU, Wang L (2015) Cadmium inhibits the vitellogenesis of freshwater crab Sinopotamon henanense. Environ Toxicol Chem., 34, 1609-1616.
  • [15] Tunca E, Üçüncü E, Kurtuluş B, Ozkan AD, Atasagun S (2013) Accumulation trends of metals and a metalloid in the freshwater crayfish Astacus leptodactylus from Lake Yeniçaǧa (Turkey). Chem Ecol, 29, 754-769.
  • [16] Shahid A, Ahmad N, Anis M, Alatar AA, Faisal M (2016) Morphogenic responses of Rauvolfia tetraphylla L. cultures to Cu, Zn and Cd ions. Rendiconti Lincei, 27, 369-374.
  • [17] Upadhyay AK, Singh NK, Singh R, Rai UN (2016) Amelioration of arsenic toxicity in rice: Comparative effect of inoculation of Chlorella vulgaris and Nannochloropsis sp. on growth, biochemical changes and arsenic uptake. Ecotoxicol Environ Saf ,124, 68-73.
  • [18] Tellis MS, Lauer MM, Nadella S, Bianchini A, Wood CM (2014) Sublethal mechanisms of Pb and Zn toxicity to the purple sea urchin (Strongylocentrotus purpuratus) during early development. Aquatic Toxicology ,146, 220-229.
  • [19] Rofkar JR, Dwyer DF, Bobak DM (2014) Uptake And Toxicity Of Arsenic, Copper, And Silicon In Azolla Caroliniana And Lemna Minor. International Journal of Phytoremediation, 16, 155-166.
  • [20] Üçüncü E, Tunca E, Fikirdeşici Ş, Altındağ A (2013) Decrease and Increase Profile of Cu, Cr and Pb during Stable Phase of Removal by Duckweed (Lemna Minorl.). International Journal of Phytoremediation ,15, 376-384.
  • [21] Van de Perre D, Roessink I, Janssen CR, Smolders E, Van Regenmortel T, Van Wichelen J, Vyverman W, Van den Brink PJ, De Schamphelaere KAC (2016) The effects of zinc on the structure and functioning of a freshwater community: A microcosm experiment. Environ Toxicol Chem., 35, 2698-2712.
  • [22] Song U, Lee S (2016) Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses. Environ. Sci. Pollut. Res., 1-7.
  • [23] Kalčíková G, Zupančič M, Jemec A, Žgajnar Gotvajn A (2016) The impact of humic acid on chromium phytoextraction by aquatic macrophyte Lemna minor. Chemosphere ,147, 311-317.
  • [24] Török A, Buta E, Indolean C, Tonk S, Silaghi-Dumitrescu L, Majdik C (2015) Biological removal of triphenylmethane dyes from aqueous solution by Lemna minor. Acta Chimica Slovenica ,62, 452-461.
  • [25] OECD (2002) Organization for Economic Co-operation and Development Guidelines for the testing of chemicals Lemna sp. Growth inhibition test draft guideline ,OECD, 221.
  • [26] Üçüncü E, Özkan AD, Kurşungöz C, Ülger ZE, Ölmez TT, Tekinay T, Ortaç B, Tunca E (2014) Effects of laser ablated silver nanoparticles on Lemna minor. Chemosphere, 108, 251-257.
  • [27] Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O'Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol, 105, 328-36.
  • [28] Dirilgen N (2011) Mercury and lead: Assessing the toxic effects on growth and metal accumulation by Lemna minor. Ecotoxicol Environ Saf ,74, 48-54.
  • [29] Üçüncü Tunca E, Ölmez TT, Özkan AD, Altındağ A, Tunca E, Tekinay T (2016) Correlations in metal release profiles following sorption by Lemna minor. International Journal of Phytoremediation, 18, 785-793.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Maritime Engineering (Other)
Journal Section Articles
Authors

Dilek Ustaoğlu

Kader Terzioğlu This is me

Esra Ucuncu

Hasan Türe

Ebru Yılmaz

Evren Tunca

Publication Date December 31, 2021
Submission Date April 13, 2021
Published in Issue Year 2021 Volume: 3 Issue: 2

Cite

APA Ustaoğlu, D., Terzioğlu, K., Ucuncu, E., Türe, H., et al. (2021). Yüksek dozlarda Cd ve Cu’nun Lemna minor üzerindeki kombine toksik etkilerinin modellenmesi. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi, 3(2), 18-32.
AMA Ustaoğlu D, Terzioğlu K, Ucuncu E, Türe H, Yılmaz E, Tunca E. Yüksek dozlarda Cd ve Cu’nun Lemna minor üzerindeki kombine toksik etkilerinin modellenmesi. UMÜFED. December 2021;3(2):18-32.
Chicago Ustaoğlu, Dilek, Kader Terzioğlu, Esra Ucuncu, Hasan Türe, Ebru Yılmaz, and Evren Tunca. “Yüksek Dozlarda Cd Ve Cu’nun Lemna Minor üzerindeki Kombine Toksik Etkilerinin Modellenmesi”. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi 3, no. 2 (December 2021): 18-32.
EndNote Ustaoğlu D, Terzioğlu K, Ucuncu E, Türe H, Yılmaz E, Tunca E (December 1, 2021) Yüksek dozlarda Cd ve Cu’nun Lemna minor üzerindeki kombine toksik etkilerinin modellenmesi. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 3 2 18–32.
IEEE D. Ustaoğlu, K. Terzioğlu, E. Ucuncu, H. Türe, E. Yılmaz, and E. Tunca, “Yüksek dozlarda Cd ve Cu’nun Lemna minor üzerindeki kombine toksik etkilerinin modellenmesi”, UMÜFED, vol. 3, no. 2, pp. 18–32, 2021.
ISNAD Ustaoğlu, Dilek et al. “Yüksek Dozlarda Cd Ve Cu’nun Lemna Minor üzerindeki Kombine Toksik Etkilerinin Modellenmesi”. Uluslararası Batı Karadeniz Mühendislik ve Fen Bilimleri Dergisi 3/2 (December 2021), 18-32.
JAMA Ustaoğlu D, Terzioğlu K, Ucuncu E, Türe H, Yılmaz E, Tunca E. Yüksek dozlarda Cd ve Cu’nun Lemna minor üzerindeki kombine toksik etkilerinin modellenmesi. UMÜFED. 2021;3:18–32.
MLA Ustaoğlu, Dilek et al. “Yüksek Dozlarda Cd Ve Cu’nun Lemna Minor üzerindeki Kombine Toksik Etkilerinin Modellenmesi”. Uluslararası Batı Karadeniz Mühendislik Ve Fen Bilimleri Dergisi, vol. 3, no. 2, 2021, pp. 18-32.
Vancouver Ustaoğlu D, Terzioğlu K, Ucuncu E, Türe H, Yılmaz E, Tunca E. Yüksek dozlarda Cd ve Cu’nun Lemna minor üzerindeki kombine toksik etkilerinin modellenmesi. UMÜFED. 2021;3(2):18-32.