Research Article
BibTex RIS Cite

Comparison of Alkali Concentration to Enhance Utilizability of Musa Sapientum (Banana) Fibers for Possible Textile Applications

Year 2023, Volume: 33 Issue: 4, 313 - 321, 31.12.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1088783

Abstract

The objective of the present research was to investigate the efficiency of alkali treatment on obtaining fine banana fibers. The fibers were exposed to alkali aqueous solutions at different concentrations changing from 5 to 20 wt%. The acting mechanism of the alkali treatment is removing of non-cellulosic constituents and separating the fiber bundle into smaller elementary single fibers. The efficiency of the alkali treatments was analyzed with the help of optical observations, fiber diameter measurement, single fiber tensile test and determination of pectin component. Chemical, crystalline, thermal and morphological properties of the fibers were examined by FTIR, XRD, TGA and SEM, respectively. FTIR analyses proved the removal of non-cellulosic components such as hemicellulose and lignin after alkali treatment. Fiber diameter decreased with increasing concentration of alkali treatment. Tensile properties and crystallinity index are correlated with alkali concentration. However, cellulose structure of the banana fiber was altered at mild alkali treatments. Microscopic observations revealed the appearance of single elementary fibers from the fiber bundle of the banana. These experimental findings suggested that alkali treatment can play promising role to prepare lignocellulosic fibers for textile applications.

References

  • Agama-Acevedo, E., Sañudo-Barajas, J. A., Vélez De La Rocha, R., González-Aguilar, G. A., & Bello-Perez, L. A. (2016). Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA-Journal of Food, 14(1), 117-123.
  • Cai, M., Takagi, H., Nakagaito, A.N. (2015). Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products. 65, 27-35.
  • Chen, H., Zhang, W., Wang, X., Wang, H.,Wu, Y. et al. (2018). Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. Journal of Wood Science. 64, 398-405.
  • Cheung, H. Y., Ho, M. P., Lau, K. T., Cardona, F., & Hui, D. (2009). Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, 40(7), 655-663.
  • El Oudiani, A., Chaabouni, Y., Msahli, S. and Sakli, F. (2011). Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydrate Polymers. 86(3). 1221-1229.
  • Erdogan, Ü.H., Seki, Y., Aydogdu, G., Kutlu, B., Akşit, A. (2016). Effect of Different Surface Treatments on the Properties of Jute. Journal of Natural Fibers. 13(2), 158-171.
  • Erdogan, Ü.H., Selli, F., Duran, H. (2017). Banana plant waste as raw material for cellulose extraction, Vlakna a Textile, 24(3), 47-52.
  • Fan, X.S., Liu, Z.W., Liu, Z.T. et al. (2010). A Novel Chemical Degumming Process for Ramie Bast Fiber. Textle Research Journal. 80(19).
  • Filho, G.R., Assunçao, R.M.N., Vieira, J.G. et al. (2007). Characterization of methylcellulose produced from sugar cane bagasse cellulose: Crystallinity and thermal properties. Polymer Degradation and Stability. 92(2), 205-210.
  • Gupta, V., Ramakanth, D., Verma, C., Maji, P.K., Gaikwad, K.K. (2021). Isolation and characterization of cellulose nanocrystals from amla (Phyllanthus emblica) pomace, Biomass Conversion and Biorefinery.
  • Han, X., Ding, L., Tian, Z., Wu, W., Jiang, S. (2021). Extraction and characterization of novel ultrastrong and tough natural cellulosic fiber bundles from manau rattan (Calamus manan). Industrial Crops and Products. 173. 114103.
  • Hassan, M. Z., Sapuan, S. M., Roslan, S. A., & Sarip, S. (2019). Optimization of tensile behavior of banana pseudo-stem (Musa acuminate) fiber reinforced epoxy composites using response surface methodology. Journal of Materials Research and Technology, 8(4), 3517-3528.
  • Hospodarova, V., Singovszka, E., Stevulova, N. (2018). Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. American Journal of Analytical Chemistry. 9(6), 303-310.
  • Hoyos, C.G., Alvarez, V.A., Rojo, P.G., Vazquez, A. (2012). Fique Fibers: Enhancement of the Tensile Strength of Alkali Treated Fibers During Tensile Load Application, Fibers and Polymers, 13(5), 632-640.
  • Hych et al., (2021). Trial Using of Ultrasonic Cavitation in Cottonization Processes of Hemp Fibers. ScienceRise. 4, 24-31.
  • Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V.P., Saravanakumar, S.S. (2019). Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydrate Polymers. 217, 178-189.
  • Khoozani, A. A., Birch, J., & Bekhit, A. E. D. A. (2019). Production, application and health effects of banana pulp and peel flour in the food industry. Journal of food science and technology, 56(2), 548-559.
  • Keskin, O.Y., Dalmis, R., Kilic, G.B., Seki, Y., Koktas, S. (2020). Extraction and characterization of cellulosic fiber from Centaurea solstitialis for composites. Cellulose, 27, 9963-9974.
  • Lyu, P., Zhang, Y., Wang, X., & Hurren, C. (2021). Degumming methods for bast fibers—A mini review. Industrial Crops and Products, 174, 114158.
  • Mewoli, A.E., Segovia, C., Ebanda, F.B. et al. (2020). Physical-Chemical and Mechanical Characterization of the Bast Fibers of Triumfetta cordifolia A.Rich. from the Equatorial Region of Cameroon. Journal of Minerals and Materials Characterization and Engineering. 08(04). 10.4236/jmmce.2020.84011.
  • Milani, M.D.Y., Samarawickrama, D.S., Dharmasiri, G.P.C.A., Kottegoda, I.R.M. (2013). Study the Structure, Morphology, and Thermal Behavior of Banana Fiber and Its Charcoal Derivative from Selected Banana Varieties. Journal of Natural Fibers. 13(3), 332-342.
  • Moussa, M., El Hage, R., Sonnier, R., Chrusciel, L., Ziegler-Devin, I., Brosse, N. (2020). Toward the cottonization of hemp fibers by steam explosion. Flame-retardant fibers. Industrial Crops and Product, 151, 1-7.
  • Nagarajan, S., Skillen, N.C., Irvine, J.T.S. et al. (2017). Cellulose II as bioethanol feedstock and its advantages over native cellulose. Renewable and Sustainable Energy Reviews. 77, 182-192.
  • Paramasivam, S. K., Panneerselvam, D., Sundaram, D., Shiva, K. N., & Subbaraya, U. (2020). Extraction, characterization and enzymatic degumming of banana fiber. Journal of Natural Fibers, 1-10.
  • Paridah, M. T., Basher, A. B., SaifulAzry, S., & Ahmed, Z. (2011). Retting process of some bast plant fibres and its effect on fibre quality: A review. BioResources, 6(4), 5260-5281.
  • Pozo, C., Rodriguez-Llamazares, S., Bouza, R. et al. (2018). Study of the structural order of native starch granules using combined FTIR and XRD analysis, Journal of Polymer Research, 25, 266, 1-8.
  • Queiroz, R.S., Silva, A.P.V., Luz Broega, A.C., Souto, A.P.G.V. (2020). New Brazilian pineapple leaf fbers for textile application: cottonization and dyeing performance. SN Applied Sciences. 2:72. https://doi.org/10.1007/s42452-019-1855-8.
  • Ramesh, M., Atreya, T. S. A., Aswin, U. S., Eashwar, H., & Deepa, C. (2014). Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Engineering, 97, 563-572.
  • Ramkumar, R. And Saravanan, P. (2021). Characterization of the Cellulose Fibers Extracted from the Bark of Piliostigma Racemosa. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2021.1875356.
  • Sahi, A.K., Singh, M.K. and Das, A. (2021). Study on the Characteristics of Cottonized Indian Industrial Hemp Fibers. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2021.1975343.
  • Sauvageaon, T., Lavoie, J.M., Segovia, C., Brosse, N. (2018). Toward the cottonization of hemp fibers by steam explosion – Part 1: defibration and morphological characterization. Textile Research Journal, 88(9), 1047-1055.
  • Shaker, K. et al. (2020). Extraction and characterization of novel fibers from Vernonia elaeagnifolia as a potential textile fiber. Industrial Crops and Products. 152. 112518.
  • Syafri, E., Melly, S., Anas, I. et al. (2021). Extraction and Characterization of Agave gigantea Fibers with Alkali Treatment as Reinforcement for Composites. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2021.1964124.
  • Tenazoa, C., Savastano, H., Charca, S., Quintana, M., Flores, E. (2021). The Effect of Alkali Treatment on Chemical and Physical Properties of Ichu and Cabuya Fibers. Journal of Natural Fibers. 18(7), 923-936.
  • Venkateshwaran, N., & Elayaperumal, A. (2010). Banana fiber reinforced polymer composites-a review. Journal of Reinforced Plastics and Composites, 29(15), 2387-2396.
  • Vijay, R., Lenin Singaravelu, D., Vinod, A. et al. (2020). Characterization of Novel Natural Fiber from Saccharum Bengalense Grass (Sarkanda). Journal of Natural Fibers. 17(12). 1739-1747.
  • Zimniewska, M., Zbrowski, A., Konczewicz, W. et al. (2017). Cottonisation of Decorticated Flax Fibres. Fibres & Textiles in Eastern Europe. 3(123), 26-33.
Year 2023, Volume: 33 Issue: 4, 313 - 321, 31.12.2023
https://doi.org/10.32710/tekstilvekonfeksiyon.1088783

Abstract

References

  • Agama-Acevedo, E., Sañudo-Barajas, J. A., Vélez De La Rocha, R., González-Aguilar, G. A., & Bello-Perez, L. A. (2016). Potential of plantain peels flour (Musa paradisiaca L.) as a source of dietary fiber and antioxidant compound. CyTA-Journal of Food, 14(1), 117-123.
  • Cai, M., Takagi, H., Nakagaito, A.N. (2015). Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Industrial Crops and Products. 65, 27-35.
  • Chen, H., Zhang, W., Wang, X., Wang, H.,Wu, Y. et al. (2018). Effect of alkali treatment on wettability and thermal stability of individual bamboo fibers. Journal of Wood Science. 64, 398-405.
  • Cheung, H. Y., Ho, M. P., Lau, K. T., Cardona, F., & Hui, D. (2009). Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Composites Part B: Engineering, 40(7), 655-663.
  • El Oudiani, A., Chaabouni, Y., Msahli, S. and Sakli, F. (2011). Crystal transition from cellulose I to cellulose II in NaOH treated Agave americana L. fibre. Carbohydrate Polymers. 86(3). 1221-1229.
  • Erdogan, Ü.H., Seki, Y., Aydogdu, G., Kutlu, B., Akşit, A. (2016). Effect of Different Surface Treatments on the Properties of Jute. Journal of Natural Fibers. 13(2), 158-171.
  • Erdogan, Ü.H., Selli, F., Duran, H. (2017). Banana plant waste as raw material for cellulose extraction, Vlakna a Textile, 24(3), 47-52.
  • Fan, X.S., Liu, Z.W., Liu, Z.T. et al. (2010). A Novel Chemical Degumming Process for Ramie Bast Fiber. Textle Research Journal. 80(19).
  • Filho, G.R., Assunçao, R.M.N., Vieira, J.G. et al. (2007). Characterization of methylcellulose produced from sugar cane bagasse cellulose: Crystallinity and thermal properties. Polymer Degradation and Stability. 92(2), 205-210.
  • Gupta, V., Ramakanth, D., Verma, C., Maji, P.K., Gaikwad, K.K. (2021). Isolation and characterization of cellulose nanocrystals from amla (Phyllanthus emblica) pomace, Biomass Conversion and Biorefinery.
  • Han, X., Ding, L., Tian, Z., Wu, W., Jiang, S. (2021). Extraction and characterization of novel ultrastrong and tough natural cellulosic fiber bundles from manau rattan (Calamus manan). Industrial Crops and Products. 173. 114103.
  • Hassan, M. Z., Sapuan, S. M., Roslan, S. A., & Sarip, S. (2019). Optimization of tensile behavior of banana pseudo-stem (Musa acuminate) fiber reinforced epoxy composites using response surface methodology. Journal of Materials Research and Technology, 8(4), 3517-3528.
  • Hospodarova, V., Singovszka, E., Stevulova, N. (2018). Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. American Journal of Analytical Chemistry. 9(6), 303-310.
  • Hoyos, C.G., Alvarez, V.A., Rojo, P.G., Vazquez, A. (2012). Fique Fibers: Enhancement of the Tensile Strength of Alkali Treated Fibers During Tensile Load Application, Fibers and Polymers, 13(5), 632-640.
  • Hych et al., (2021). Trial Using of Ultrasonic Cavitation in Cottonization Processes of Hemp Fibers. ScienceRise. 4, 24-31.
  • Kathirselvam, M., Kumaravel, A., Arthanarieswaran, V.P., Saravanakumar, S.S. (2019). Characterization of cellulose fibers in Thespesia populnea barks: Influence of alkali treatment. Carbohydrate Polymers. 217, 178-189.
  • Khoozani, A. A., Birch, J., & Bekhit, A. E. D. A. (2019). Production, application and health effects of banana pulp and peel flour in the food industry. Journal of food science and technology, 56(2), 548-559.
  • Keskin, O.Y., Dalmis, R., Kilic, G.B., Seki, Y., Koktas, S. (2020). Extraction and characterization of cellulosic fiber from Centaurea solstitialis for composites. Cellulose, 27, 9963-9974.
  • Lyu, P., Zhang, Y., Wang, X., & Hurren, C. (2021). Degumming methods for bast fibers—A mini review. Industrial Crops and Products, 174, 114158.
  • Mewoli, A.E., Segovia, C., Ebanda, F.B. et al. (2020). Physical-Chemical and Mechanical Characterization of the Bast Fibers of Triumfetta cordifolia A.Rich. from the Equatorial Region of Cameroon. Journal of Minerals and Materials Characterization and Engineering. 08(04). 10.4236/jmmce.2020.84011.
  • Milani, M.D.Y., Samarawickrama, D.S., Dharmasiri, G.P.C.A., Kottegoda, I.R.M. (2013). Study the Structure, Morphology, and Thermal Behavior of Banana Fiber and Its Charcoal Derivative from Selected Banana Varieties. Journal of Natural Fibers. 13(3), 332-342.
  • Moussa, M., El Hage, R., Sonnier, R., Chrusciel, L., Ziegler-Devin, I., Brosse, N. (2020). Toward the cottonization of hemp fibers by steam explosion. Flame-retardant fibers. Industrial Crops and Product, 151, 1-7.
  • Nagarajan, S., Skillen, N.C., Irvine, J.T.S. et al. (2017). Cellulose II as bioethanol feedstock and its advantages over native cellulose. Renewable and Sustainable Energy Reviews. 77, 182-192.
  • Paramasivam, S. K., Panneerselvam, D., Sundaram, D., Shiva, K. N., & Subbaraya, U. (2020). Extraction, characterization and enzymatic degumming of banana fiber. Journal of Natural Fibers, 1-10.
  • Paridah, M. T., Basher, A. B., SaifulAzry, S., & Ahmed, Z. (2011). Retting process of some bast plant fibres and its effect on fibre quality: A review. BioResources, 6(4), 5260-5281.
  • Pozo, C., Rodriguez-Llamazares, S., Bouza, R. et al. (2018). Study of the structural order of native starch granules using combined FTIR and XRD analysis, Journal of Polymer Research, 25, 266, 1-8.
  • Queiroz, R.S., Silva, A.P.V., Luz Broega, A.C., Souto, A.P.G.V. (2020). New Brazilian pineapple leaf fbers for textile application: cottonization and dyeing performance. SN Applied Sciences. 2:72. https://doi.org/10.1007/s42452-019-1855-8.
  • Ramesh, M., Atreya, T. S. A., Aswin, U. S., Eashwar, H., & Deepa, C. (2014). Processing and mechanical property evaluation of banana fiber reinforced polymer composites. Procedia Engineering, 97, 563-572.
  • Ramkumar, R. And Saravanan, P. (2021). Characterization of the Cellulose Fibers Extracted from the Bark of Piliostigma Racemosa. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2021.1875356.
  • Sahi, A.K., Singh, M.K. and Das, A. (2021). Study on the Characteristics of Cottonized Indian Industrial Hemp Fibers. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2021.1975343.
  • Sauvageaon, T., Lavoie, J.M., Segovia, C., Brosse, N. (2018). Toward the cottonization of hemp fibers by steam explosion – Part 1: defibration and morphological characterization. Textile Research Journal, 88(9), 1047-1055.
  • Shaker, K. et al. (2020). Extraction and characterization of novel fibers from Vernonia elaeagnifolia as a potential textile fiber. Industrial Crops and Products. 152. 112518.
  • Syafri, E., Melly, S., Anas, I. et al. (2021). Extraction and Characterization of Agave gigantea Fibers with Alkali Treatment as Reinforcement for Composites. Journal of Natural Fibers. https://doi.org/10.1080/15440478.2021.1964124.
  • Tenazoa, C., Savastano, H., Charca, S., Quintana, M., Flores, E. (2021). The Effect of Alkali Treatment on Chemical and Physical Properties of Ichu and Cabuya Fibers. Journal of Natural Fibers. 18(7), 923-936.
  • Venkateshwaran, N., & Elayaperumal, A. (2010). Banana fiber reinforced polymer composites-a review. Journal of Reinforced Plastics and Composites, 29(15), 2387-2396.
  • Vijay, R., Lenin Singaravelu, D., Vinod, A. et al. (2020). Characterization of Novel Natural Fiber from Saccharum Bengalense Grass (Sarkanda). Journal of Natural Fibers. 17(12). 1739-1747.
  • Zimniewska, M., Zbrowski, A., Konczewicz, W. et al. (2017). Cottonisation of Decorticated Flax Fibres. Fibres & Textiles in Eastern Europe. 3(123), 26-33.
There are 37 citations in total.

Details

Primary Language English
Subjects Wearable Materials
Journal Section Articles
Authors

Rabia İzel Şenay 0000-0003-4477-9709

Havva Nur Özdemir 0000-0002-0630-7340

Yasemin Seki 0000-0002-9267-922X

Özgür Yasin Keskin 0000-0003-4492-3360

Ramazan Dalmış 0000-0002-5508-2539

Serhan Köktaş 0000-0001-8909-6528

Ümit Halis Erdoğan 0000-0002-5279-5082

Early Pub Date January 1, 2024
Publication Date December 31, 2023
Submission Date March 25, 2022
Acceptance Date September 13, 2022
Published in Issue Year 2023 Volume: 33 Issue: 4

Cite

APA Şenay, R. İ., Özdemir, H. N., Seki, Y., Keskin, Ö. Y., et al. (2023). Comparison of Alkali Concentration to Enhance Utilizability of Musa Sapientum (Banana) Fibers for Possible Textile Applications. Textile and Apparel, 33(4), 313-321. https://doi.org/10.32710/tekstilvekonfeksiyon.1088783

No part of this journal may be reproduced, stored, transmitted or disseminated in any forms or by any means without prior written permission of the Editorial Board. The views and opinions expressed here in the articles are those of the authors and are not the views of Tekstil ve Konfeksiyon and Textile and Apparel Research-Application Center.