Research Article
BibTex RIS Cite

OPTIMIZATION OF SYNTHESIS PARAMETERS FOR LEAD OXIDE NANOPARTICLES USING RESPONSE SURFACE METHODOLOGY

Year 2019, Volume: 7 Issue: 2, 298 - 308, 01.06.2019
https://doi.org/10.15317/Scitech.2019.200

Abstract

Nano-sized lead oxide has useful applications
that can be used in industry. In this study, the synthesis parameters were
optimized using response surface methodology and ANOVA study was also carried
out. Reaction temperature, sodium hydroxide and lead (II) acetate concentration
were studied as the factors and the particle size was selected as the response
variable. The modification was lead to increase the adequate precision of the
model. Close results between R2 (correlation coefficient) and R2adj
showed the accuracy of the model. The optimum results of the study were found
14.89 M NaOH concentration, 0.87 M Pb(II)Ac and reaction temperature of 88.56
°C. The particle size of lead II oxide was found to be 19.75 nm under optimum parameters.

References

  • Akbay, İsmail Kutlugün, Ahmet Güngör, and Tonguç Özdemir. 2017. “Optimization of the Vulcanization Parameters for Ethylene–propylene–diene Termonomer (EPDM)/Ground Waste Tyre Composite Using Response Surface Methodology.” Polymer Bulletin 74(12): 5095–5109.
  • Alagar, M., T. Theivasant, and A. Kubera Raja. 2012. “Chemical Synthesis of Nano-Sized Particles of Lead Oxide and Their Characterization Studies.” Journal of Applied Sciences 12(4): 398–401. http://www.scialert.net/abstract/?doi=jas.2012.398.401 (June 11, 2018).
  • Arulmozhi, K. T., and N. Mythili. 2013. “Studies on the Chemical Synthesis and Characterization of Lead Oxide Nanoparticles with Different Organic Capping Agents.” AIP Advances 3(12): 122122. http://aip.scitation.org/doi/10.1063/1.4858419 (June 11, 2018).
  • Ba-Abbad, Muneer M. et al. 2013. “Optimization of Process Parameters Using D-Optimal Design for Synthesis of ZnO Nanoparticles via Sol-Gel Technique.” Journal of Industrial and Engineering Chemistry 19(1): 99–105. http://dx.doi.org/10.1016/j.jiec.2012.07.010.
  • Ba-Abbad, Muneer M.; Chai, Pui Vun; Takriff, Mohd; Benamor, Abdelbaki; Mohammad, Abdul Wahab. 2015. “Optimization of Nickel Oxide Nanoparticle Synthesis through the Sol-Gel Method Using Box-Behnken Design.” Materials and Design 86: 948–56. http://dx.doi.org/10.1016/j.matdes.2015.07.176.
  • Cho, Il Hyoung, and Kyung Duk Zoh. 2007. “Photocatalytic Degradation of Azo Dye (Reactive Red 120) in TiO2/UV System: Optimization and Modeling Using a Response Surface Methodology (RSM) Based on the Central Composite Design.” Dyes and Pigments 75(3): 533–43.
  • Dehghani, Mohammad Hadi, Maryam Faraji, Amir Mohammadi, and Hossein Kamani. 2017. “Optimization of Fluoride Adsorption onto Natural and Modified Pumice Using Response Surface Methodology: Isotherm, Kinetic and Thermodynamic Studies.” Korean Journal of Chemical Engineering 34(2): 454–62. http://link.springer.com/10.1007/s11814-016-0274-4 (November 20, 2018).
  • Genç, Rükan, Gael Clergeaud, Mayreli Ortiz, and Ciara K. O’sullivan. 2011. “Green Synthesis of Gold Nanoparticles Using Glycerol-Incorporated Nanosized Liposomes.” Langmuir 27(17): 10894–900.
  • Güngör, Ahmet, Rükan Genç, and Tonguç Özdemir. 2017. “Facile Synthesis of Semiconducting Nanosized 0D and 2D Lead Oxides Using a Modified Co-Precipitation Method.” Journal of Turkish Chemical Society Part A: Chemistry 4(3): 1017–30.
  • Jyoti, Mayekar, Dhar Vijay, and Srinivasan Radha. 2013. “To Study the Role of Temperature and Sodium Hydroxide Concentration in the Synthesis of Zinc Oxide Nanoparticles.” International Journal of Scientific and Research Publications 3(11): 2250–3153. www.ijsrp.org.
  • Karami, Hasan et al. 2008. “Synthesis of Lead Oxide Nanoparticles by Sonochemical Method and Its Application as Cathode and Anode of Lead-Acid Batteries.” Materials Chemistry and Physics 108(2–3): 337–44. https://www.sciencedirect.com/science/article/pii/S0254058407006128#bbib22 (June 11, 2018).
  • Karami, Hassan, Mohammad Ali Karimi, and Saeed Haghdar. 2008. “Synthesis of Uniform Nano-Structured Lead Oxide by Sonochemical Method and Its Application as Cathode and Anode of Lead-Acid Batteries.” Materials Research Bulletin 43(11): 3054–65.
  • Körbahti, Bahadır K., and Selin Taşyürek. 2015. “Electrochemical Oxidation of Ampicillin Antibiotic at Boron-Doped Diamond Electrodes and Process Optimization Using Response Surface Methodology.” Environmental Science and Pollution Research 22(5): 3265–78. http://link.springer.com/10.1007/s11356-014-3101-7.
  • Li, Yuhan, Qi Qiang, Xingwang Zheng, and Zenglin Wang. 2015. “Controllable Electrochemical Synthesis of Ag Nanoparticles in Ionic Liquid Microemulsions.” Electrochemistry Communications 58: 41–45. http://dx.doi.org/10.1016/j.elecom.2015.05.020.
  • Raissi, S, and R-Eslami Farsani. 2009. “Statistical Process Optimization through Multi-Response Surface Methodology.” World Academy of Science, Engineering and Technology 51(46): 267–71.
  • Ranjbar, Zohreh Rashidi, and Ali Morsali. 2009. “Sonochemical Syntheses of a New Nano-Sized Porous Lead(II) Coordination Polymer as Precursor for Preparation of Lead(II) Oxide Nanoparticles.” Journal of Molecular Structure 936(1–3): 206–12. https://www.sciencedirect.com/science/article/pii/S0022286009004992 (June 11, 2018).
  • Sun, Lei, Shungang Wan, Zebin Yu, and Lijun Wang. 2014. “Optimization and Modeling of Preparation Conditions of TiO2nanoparticles Coated on Hollow Glass Microspheres Using Response Surface Methodology.” Separation and Purification Technology 125: 156–62. http://dx.doi.org/10.1016/j.seppur.2014.01.042.
  • Vaidyanathan, Ramanathan et al. 2010. “Enhanced Silver Nanoparticle Synthesis by Optimization of Nitrate Reductase Activity.” Colloids and Surfaces B: Biointerfaces 75(1): 335–41.
  • Wang, Yu, and Jianxin Zhu. 2012. “Preparation of Lead Oxide Nanoparticles from Cathode-Ray Tube Funnel Glass by Self-Propagating Method.” Journal of Hazardous Materials 215–216: 90–97. https://www.sciencedirect.com/science/article/pii/S0304389412001987 (June 11, 2018).
  • Weng, Ling et al. 2014. “Facile Fabrication and Properties of Core-Shell Structure Ag@Al2(SiO3)3nanocomposites with Controllable Morphologies.” Materials Letters 126: 240–43. http://dx.doi.org/10.1016/j.matlet.2014.03.182.
  • Wilkinson, Tommy J. et al. 2001. “A Facile Wet Synthesis of Nanoparticles of Litharge, the Tetragonal Form of PbO.” MRS Proceedings 704(Ii): 1–5.
  • Xing, Yan et al. 2015. “Controllable Synthesis and Characterization of Fe3O4/Au Composite Nanoparticles.” Journal of Magnetism and Magnetic Materials 380(1): 150–56. http://dx.doi.org/10.1016/j.jmmm.2014.09.060.
  • Yaghmaeian, Kamyar, Susana Silva Martinez, Mohammad Hoseini, and Hoda Amiri. 2016. “Optimization of As(III) Removal in Hard Water by Electrocoagulation Using Central Composite Design with Response Surface Methodology.” Desalination and Water Treatment: 1–7. http://www.tandfonline.com/doi/full/10.1080/19443994.2016.1177735 (November 20, 2018).

Yüzey Cevap Metodolojisi Kullanilarak Kurşun Oksit Nanoparçaciklarinin Sentez Parametrelerinin Optimizasyonu

Year 2019, Volume: 7 Issue: 2, 298 - 308, 01.06.2019
https://doi.org/10.15317/Scitech.2019.200

Abstract

Nano boyutlu kurşun oksit, endüstride kullanılabilecek
faydalı uygulamalara sahiptir. Bu çalışmada, sentez parametreleri cevap yüzey
metodolojisi kullanılarak optimize edilmiş ve ANOVA çalışması da yapılmıştır. Sentez
parametreleri olarak reaksiyon sıcaklığı, sodyum hidroksit ve kurşun (II) asetat
konsantrasyonu incelenmiştir ve parçacık boyutu cevap değişkeni olarak
seçilmiştir. Optimizasyon sonucunda modelin hassasiyeti artmıştır. R2
(korelasyon katsayısı) ile R2adj arasındaki yakın sonuç,
modelin doğruluğunu göstermiştir.  Çalışmanın sonucunda, 14.89 M NaOH konsantrasyonu,
0.87 M Pb (II)Ac konsantrasyonu ve 88.56 ° C reaksiyon sıcaklığı optimum sentez
koşulları olarak belirlenmiştir. Kurşun (II) oksidin parçacık büyüklüğü,
optimum parametreler altında 19.75 nm olarak bulunmuştur. 

References

  • Akbay, İsmail Kutlugün, Ahmet Güngör, and Tonguç Özdemir. 2017. “Optimization of the Vulcanization Parameters for Ethylene–propylene–diene Termonomer (EPDM)/Ground Waste Tyre Composite Using Response Surface Methodology.” Polymer Bulletin 74(12): 5095–5109.
  • Alagar, M., T. Theivasant, and A. Kubera Raja. 2012. “Chemical Synthesis of Nano-Sized Particles of Lead Oxide and Their Characterization Studies.” Journal of Applied Sciences 12(4): 398–401. http://www.scialert.net/abstract/?doi=jas.2012.398.401 (June 11, 2018).
  • Arulmozhi, K. T., and N. Mythili. 2013. “Studies on the Chemical Synthesis and Characterization of Lead Oxide Nanoparticles with Different Organic Capping Agents.” AIP Advances 3(12): 122122. http://aip.scitation.org/doi/10.1063/1.4858419 (June 11, 2018).
  • Ba-Abbad, Muneer M. et al. 2013. “Optimization of Process Parameters Using D-Optimal Design for Synthesis of ZnO Nanoparticles via Sol-Gel Technique.” Journal of Industrial and Engineering Chemistry 19(1): 99–105. http://dx.doi.org/10.1016/j.jiec.2012.07.010.
  • Ba-Abbad, Muneer M.; Chai, Pui Vun; Takriff, Mohd; Benamor, Abdelbaki; Mohammad, Abdul Wahab. 2015. “Optimization of Nickel Oxide Nanoparticle Synthesis through the Sol-Gel Method Using Box-Behnken Design.” Materials and Design 86: 948–56. http://dx.doi.org/10.1016/j.matdes.2015.07.176.
  • Cho, Il Hyoung, and Kyung Duk Zoh. 2007. “Photocatalytic Degradation of Azo Dye (Reactive Red 120) in TiO2/UV System: Optimization and Modeling Using a Response Surface Methodology (RSM) Based on the Central Composite Design.” Dyes and Pigments 75(3): 533–43.
  • Dehghani, Mohammad Hadi, Maryam Faraji, Amir Mohammadi, and Hossein Kamani. 2017. “Optimization of Fluoride Adsorption onto Natural and Modified Pumice Using Response Surface Methodology: Isotherm, Kinetic and Thermodynamic Studies.” Korean Journal of Chemical Engineering 34(2): 454–62. http://link.springer.com/10.1007/s11814-016-0274-4 (November 20, 2018).
  • Genç, Rükan, Gael Clergeaud, Mayreli Ortiz, and Ciara K. O’sullivan. 2011. “Green Synthesis of Gold Nanoparticles Using Glycerol-Incorporated Nanosized Liposomes.” Langmuir 27(17): 10894–900.
  • Güngör, Ahmet, Rükan Genç, and Tonguç Özdemir. 2017. “Facile Synthesis of Semiconducting Nanosized 0D and 2D Lead Oxides Using a Modified Co-Precipitation Method.” Journal of Turkish Chemical Society Part A: Chemistry 4(3): 1017–30.
  • Jyoti, Mayekar, Dhar Vijay, and Srinivasan Radha. 2013. “To Study the Role of Temperature and Sodium Hydroxide Concentration in the Synthesis of Zinc Oxide Nanoparticles.” International Journal of Scientific and Research Publications 3(11): 2250–3153. www.ijsrp.org.
  • Karami, Hasan et al. 2008. “Synthesis of Lead Oxide Nanoparticles by Sonochemical Method and Its Application as Cathode and Anode of Lead-Acid Batteries.” Materials Chemistry and Physics 108(2–3): 337–44. https://www.sciencedirect.com/science/article/pii/S0254058407006128#bbib22 (June 11, 2018).
  • Karami, Hassan, Mohammad Ali Karimi, and Saeed Haghdar. 2008. “Synthesis of Uniform Nano-Structured Lead Oxide by Sonochemical Method and Its Application as Cathode and Anode of Lead-Acid Batteries.” Materials Research Bulletin 43(11): 3054–65.
  • Körbahti, Bahadır K., and Selin Taşyürek. 2015. “Electrochemical Oxidation of Ampicillin Antibiotic at Boron-Doped Diamond Electrodes and Process Optimization Using Response Surface Methodology.” Environmental Science and Pollution Research 22(5): 3265–78. http://link.springer.com/10.1007/s11356-014-3101-7.
  • Li, Yuhan, Qi Qiang, Xingwang Zheng, and Zenglin Wang. 2015. “Controllable Electrochemical Synthesis of Ag Nanoparticles in Ionic Liquid Microemulsions.” Electrochemistry Communications 58: 41–45. http://dx.doi.org/10.1016/j.elecom.2015.05.020.
  • Raissi, S, and R-Eslami Farsani. 2009. “Statistical Process Optimization through Multi-Response Surface Methodology.” World Academy of Science, Engineering and Technology 51(46): 267–71.
  • Ranjbar, Zohreh Rashidi, and Ali Morsali. 2009. “Sonochemical Syntheses of a New Nano-Sized Porous Lead(II) Coordination Polymer as Precursor for Preparation of Lead(II) Oxide Nanoparticles.” Journal of Molecular Structure 936(1–3): 206–12. https://www.sciencedirect.com/science/article/pii/S0022286009004992 (June 11, 2018).
  • Sun, Lei, Shungang Wan, Zebin Yu, and Lijun Wang. 2014. “Optimization and Modeling of Preparation Conditions of TiO2nanoparticles Coated on Hollow Glass Microspheres Using Response Surface Methodology.” Separation and Purification Technology 125: 156–62. http://dx.doi.org/10.1016/j.seppur.2014.01.042.
  • Vaidyanathan, Ramanathan et al. 2010. “Enhanced Silver Nanoparticle Synthesis by Optimization of Nitrate Reductase Activity.” Colloids and Surfaces B: Biointerfaces 75(1): 335–41.
  • Wang, Yu, and Jianxin Zhu. 2012. “Preparation of Lead Oxide Nanoparticles from Cathode-Ray Tube Funnel Glass by Self-Propagating Method.” Journal of Hazardous Materials 215–216: 90–97. https://www.sciencedirect.com/science/article/pii/S0304389412001987 (June 11, 2018).
  • Weng, Ling et al. 2014. “Facile Fabrication and Properties of Core-Shell Structure Ag@Al2(SiO3)3nanocomposites with Controllable Morphologies.” Materials Letters 126: 240–43. http://dx.doi.org/10.1016/j.matlet.2014.03.182.
  • Wilkinson, Tommy J. et al. 2001. “A Facile Wet Synthesis of Nanoparticles of Litharge, the Tetragonal Form of PbO.” MRS Proceedings 704(Ii): 1–5.
  • Xing, Yan et al. 2015. “Controllable Synthesis and Characterization of Fe3O4/Au Composite Nanoparticles.” Journal of Magnetism and Magnetic Materials 380(1): 150–56. http://dx.doi.org/10.1016/j.jmmm.2014.09.060.
  • Yaghmaeian, Kamyar, Susana Silva Martinez, Mohammad Hoseini, and Hoda Amiri. 2016. “Optimization of As(III) Removal in Hard Water by Electrocoagulation Using Central Composite Design with Response Surface Methodology.” Desalination and Water Treatment: 1–7. http://www.tandfonline.com/doi/full/10.1080/19443994.2016.1177735 (November 20, 2018).
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

İsmail Kutlugün Akbay

Ahmet Güngör

Rükan Genç

Tonguç Özdemir

Publication Date June 1, 2019
Published in Issue Year 2019 Volume: 7 Issue: 2

Cite

APA Akbay, İ. K., Güngör, A., Genç, R., Özdemir, T. (2019). OPTIMIZATION OF SYNTHESIS PARAMETERS FOR LEAD OXIDE NANOPARTICLES USING RESPONSE SURFACE METHODOLOGY. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 7(2), 298-308. https://doi.org/10.15317/Scitech.2019.200
AMA Akbay İK, Güngör A, Genç R, Özdemir T. OPTIMIZATION OF SYNTHESIS PARAMETERS FOR LEAD OXIDE NANOPARTICLES USING RESPONSE SURFACE METHODOLOGY. sujest. June 2019;7(2):298-308. doi:10.15317/Scitech.2019.200
Chicago Akbay, İsmail Kutlugün, Ahmet Güngör, Rükan Genç, and Tonguç Özdemir. “OPTIMIZATION OF SYNTHESIS PARAMETERS FOR LEAD OXIDE NANOPARTICLES USING RESPONSE SURFACE METHODOLOGY”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7, no. 2 (June 2019): 298-308. https://doi.org/10.15317/Scitech.2019.200.
EndNote Akbay İK, Güngör A, Genç R, Özdemir T (June 1, 2019) OPTIMIZATION OF SYNTHESIS PARAMETERS FOR LEAD OXIDE NANOPARTICLES USING RESPONSE SURFACE METHODOLOGY. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7 2 298–308.
IEEE İ. K. Akbay, A. Güngör, R. Genç, and T. Özdemir, “OPTIMIZATION OF SYNTHESIS PARAMETERS FOR LEAD OXIDE NANOPARTICLES USING RESPONSE SURFACE METHODOLOGY”, sujest, vol. 7, no. 2, pp. 298–308, 2019, doi: 10.15317/Scitech.2019.200.
ISNAD Akbay, İsmail Kutlugün et al. “OPTIMIZATION OF SYNTHESIS PARAMETERS FOR LEAD OXIDE NANOPARTICLES USING RESPONSE SURFACE METHODOLOGY”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7/2 (June 2019), 298-308. https://doi.org/10.15317/Scitech.2019.200.
JAMA Akbay İK, Güngör A, Genç R, Özdemir T. OPTIMIZATION OF SYNTHESIS PARAMETERS FOR LEAD OXIDE NANOPARTICLES USING RESPONSE SURFACE METHODOLOGY. sujest. 2019;7:298–308.
MLA Akbay, İsmail Kutlugün et al. “OPTIMIZATION OF SYNTHESIS PARAMETERS FOR LEAD OXIDE NANOPARTICLES USING RESPONSE SURFACE METHODOLOGY”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, vol. 7, no. 2, 2019, pp. 298-0, doi:10.15317/Scitech.2019.200.
Vancouver Akbay İK, Güngör A, Genç R, Özdemir T. OPTIMIZATION OF SYNTHESIS PARAMETERS FOR LEAD OXIDE NANOPARTICLES USING RESPONSE SURFACE METHODOLOGY. sujest. 2019;7(2):298-30.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz