Research Article
BibTex RIS Cite

Floresans Karbon Nanoparçacıkların Yeşil Sentezi ve Pasivasyon Ajanının Molekül Ağırlığının Nanoparçacık Özellikleri Üzerine Etkisinin İncelenmesi

Year 2016, Volume: 1 Issue: 2, 123 - 134, 31.12.2016

Abstract

Karbon nanodot (KNDlar) olarak da bilinen karbon
nanoparçacıklar (KNDlar), karbon temelli nanoyapıların yeni ve özel bir üyesi
olarak bilinmektedir. KNDların elektronik, optik, katalitik, biyouyumlu
ve,kimyasal olarak inert olmaları ve yüksek fotolüminesans (PL) davranışı gibi
özellikleri ile boyalar, ağır metal temelli kuantum noktaları (QDs) yerine
alternatif olarak kullanılmaya başlanmış ve biyomedikal araştırmalar ve enerji
alanlarındaki popülariteleri de hızla artmıştır. Bu çalışmada, floresans
özellikli karbon nanoparçacıkların (FKNDlar) keçiboynuzu pekmezinin doğal
karbon kaynağı olarak kullanılması ile sentezlenmesi konu alınmıştır. Bu amaç
doğrultusunda, kolay ve ekonomik açıdan avantajlı olduğu bilinen yeşil sentez
yöntemlerinden biri olan, ısıl sentez yöntemi kullanılmış ve sentezlenen karbon
nanoparçacıkların yüzeyleri; farklı moleküler ağırlıklarda polietilen glikol
(PEG M
n:300~
20000) ile pasivize edilmiştir. Sentezlenen
FKNPların, alan emisyonlu taramalı elektron mikroskobu (FE-SEM), XRD, UV
spektrofotometresi, floresans emisyon spektroskopisi ve dinamik ışık kırılım
yöntemleri ile karakterizasyonları yapılmıştır. 
Karakterizasyonlar sonucunda
pasivasyon ajanının değişen molekül ağırlığına göre parçacıkların yüzey
özelliklerinin ve buna bağlı olarakta floresans spektrum cevaplarının değiştiği
ve kor parçacık boyutu yaklaşık olarak 10-15 nm olarak belirlenenen
nanoparçacıkların hidrodinamik çaplarının pasivasyon ajanının M
n’sine
göre değişiklik gösterdiği belirlenmiştir. Floresans özellikteki karbon
nanoparçacıklar biyogörüntüleme ve teşhis amaçlı nanoetiket ve ilaç taşıyıcı
sistem olarak biyomedikal uygulamaları ile fotovoltaik cihazların ve yeni nesil
katalizörlerin geliştirilmesinde kullanılma potansiyeline sahiptirler.


References

  • [1] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737. doi:10.1021/ja040082h
  • [2] Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M. ve Pang, D.-W. (2008). Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite.Chemical Communications, (41), 5116. doi:10.1039/b812420e.
  • [3] Sk, M. P., Jaiswal, A., Paul, A., Ghosh, S. S. ve Chattopadhyay, A. (2012). Presence of Amorphous Carbon Nanoparticles in Food Caramels. Scientific Reports, 2. doi:10.1038/srep00383
  • [4] Park, S. Y., Lee, H. U., Park, E. S., Lee, S. C., Lee, J.-W., Jeong, S. W., … Lee, J. (2014). Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS applied materials & interfaces, 6(5), 3365–70. doi:10.1021/am500159p
  • [5] Lu, W., Qin, X., Liu, S., Chang, G., Zhang, Y., Luo, Y., … Sun, X. (2012). Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Analytical Chemistry, 84(12), 5351–5357. doi:10.1021/ac3007939.
  • [6] Mukherjee, P., Misra, S. K., Gryka, M. C., Chang, H.-H. H., Tiwari, S., Wilson, W. L., … Pan, D. (2015). Tunable Luminescent Carbon Nanospheres with Well-Defined Nanoscale Chemistry for Synchronized Imaging and Therapy. Small, 11(36), 4691–4703. doi:10.1002/smll.201500728
  • [7] Ke, Y., Garg, B. ve Ling, Y. (2014). Waste chicken eggshell as low-cost precursor for efficient synthesis of nitrogen-doped fluorescent carbon nanodots and their multi-functional applications. RSC Adv., 4(102), 58329–58336. doi:10.1039/C4RA10178B
  • [8] Liu, S.-S., Wang, C.-F., Li, C.-X., Wang, J., Mao, L.-H. ve Chen, S. (2014). Hair-derived carbon dots toward versatile multidimensional fluorescent materials. Journal of Materials Chemistry C, 2(32), 6477. doi:10.1039/C4TC00636D.
  • [9] Chandra, S., Das, P., Bag, S., Laha, D. ve Pramanik, P. (2011). Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale, 3(4), 1533. doi:10.1039/c0nr00735h
  • [10] Links, D. A., Yang, Y., Cui, J., Zheng, M., Hu, C., Tan, S., … Liu, Y. (2012). ChemComm One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan w. Chem. Commun., 48(3), 380–382. doi:10.1039/c1cc15678k
  • Hu, S.-L., Niu, K.-Y., Sun, J., Yang, J., Zhao, N.-Q. ve Du, X.-W. (2009). One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem., 19(4), 484–488. doi:10.1039/B812943F
  • [12] Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L. ve Liu, W. (2012). Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications, 48(64), 7955–7957. doi:10.1039/c2cc33869f
  • [13] Zhang, C., Hu, Z., Song, L., Cui, Y. ve Liu, X. (2015). Valine-derived carbon dots with colour-tunable fluorescence for the detection of Hg 2+ with high sensitivity and selectivity. New J. Chem., 39(8), 6201–6206. doi:10.1039/C5NJ00554J
  • [14] Guo, X., Wang, C.-F., Yu, Z.-Y., Chen, L. ve Chen, S. (2012). Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chemical Communications, 48(21), 2692. doi:10.1039/c2cc17769b
  • [15] Jiang, K., Sun, S., Zhang, L., Lu, Y., Wu, A., Cai, C. ve Lin, H. (2015). Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angewandte Chemie - International Edition, 54(18), 5360–5363. doi:10.1002/anie.201501193
  • [16] Wang, X., Cao, L., Yang, S. T., Lu, F., Meziani, M. J., Tian, L., … Sun, Y. P. (2010). Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angewandte Chemie - International Edition, 49, 5310–5314.doi:10.1002/anie.201000982.
  • [17] Baker, S. N. ve Baker, G. A. (2010). Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie International Edition, 49(38), 6726–6744. doi:10.1002/anie.200906623
  • [18] Zhu, H., Wang, X., Li, Y., Wang, Z., Yang, F. ve Yang, X. (2009). Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communications, (34), 5118–5120. doi:10.1039/b907612c
  • [19] Qu, S., Wang, X., Lu, Q., Liu, X. ve Wang, L. (2012). A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angewandte Chemie - International Edition, 51(49), 12215–12218. doi:10.1002/anie.201206791
  • [20] Davis, P. H. (1965). Flora of Turkey and the East Aegean Islands, Volume 10. Edinburgh University Press.
  • [21] Ayaz, F. A., Torun, H., Ayaz, S., Correia, P. J., Alaiz, M., Sanz, C., … Strnad, M. (2007). Determination of chemical composition of anatolian carob pod (Ceratonia siliqua L.): Sugars, amino and organic acids, minerals and phenolic compounds. Journal of Food Quality, 30(6), 1040–1055. doi:10.1111/j.1745-4557.2007.00176.x
  • [22] Jia, X., Li, J. ve Wang, E. (2012). One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4(18), 5572. doi:10.1039/c2nr31319g
  • [23] Wu, L., Luderer, M., Yang, X., Swain, C., Zhang, H., Nelson, K., … Pan, D. (2013). Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging. Theranostics, 3(9), 677–86. doi:10.7150/thno.6535
  • [24] Thanh, N. T. K. K. ve Green, L. A. W. W. (2010). Functionalisation of nanoparticles for biomedical applications. Nano Today, 5(3), 213–230.doi:10.1016/j.nantod.2010.05.003
  • [25] Li, S., Pan, R., Ait Mehdi, Y., Xiao, D. ve He, H. (2015). One-step spontaneous synthesis of fluorescent carbon nanoparticles with thermosensitivity from polyethylene glycol. New J. Chem., 39(9), 7033–7039. doi:10.1039/C5NJ01129A
  • [26] Li, H., Kang, Z., Liu, Y. ve Lee, S.-T. (2012). Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 22(46), 24230. doi:10.1039/c2jm34690g.
  • [27] Bhaisare, M. L., Talib, A., Khan, M. S., Pandey, S. ve Wu, H. F. (2015). Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchimica Acta, 182(13–14), 2173–2181. doi:10.1007/s00604-015-1541-5
  • [28] Zhu, S., Panne, U. ve Rurack, K. (2013). A rapid method for the assessment of the surface group density of carboxylic acid-functionalized polystyrene microparticles. The Analyst, 138(10), 2924–30. doi:10.1039/c3an36578f
Year 2016, Volume: 1 Issue: 2, 123 - 134, 31.12.2016

Abstract

References

  • [1] X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens. (2004). Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 126(40), 12736–12737. doi:10.1021/ja040082h
  • [2] Zhao, Q.-L., Zhang, Z.-L., Huang, B.-H., Peng, J., Zhang, M. ve Pang, D.-W. (2008). Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite.Chemical Communications, (41), 5116. doi:10.1039/b812420e.
  • [3] Sk, M. P., Jaiswal, A., Paul, A., Ghosh, S. S. ve Chattopadhyay, A. (2012). Presence of Amorphous Carbon Nanoparticles in Food Caramels. Scientific Reports, 2. doi:10.1038/srep00383
  • [4] Park, S. Y., Lee, H. U., Park, E. S., Lee, S. C., Lee, J.-W., Jeong, S. W., … Lee, J. (2014). Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS applied materials & interfaces, 6(5), 3365–70. doi:10.1021/am500159p
  • [5] Lu, W., Qin, X., Liu, S., Chang, G., Zhang, Y., Luo, Y., … Sun, X. (2012). Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Analytical Chemistry, 84(12), 5351–5357. doi:10.1021/ac3007939.
  • [6] Mukherjee, P., Misra, S. K., Gryka, M. C., Chang, H.-H. H., Tiwari, S., Wilson, W. L., … Pan, D. (2015). Tunable Luminescent Carbon Nanospheres with Well-Defined Nanoscale Chemistry for Synchronized Imaging and Therapy. Small, 11(36), 4691–4703. doi:10.1002/smll.201500728
  • [7] Ke, Y., Garg, B. ve Ling, Y. (2014). Waste chicken eggshell as low-cost precursor for efficient synthesis of nitrogen-doped fluorescent carbon nanodots and their multi-functional applications. RSC Adv., 4(102), 58329–58336. doi:10.1039/C4RA10178B
  • [8] Liu, S.-S., Wang, C.-F., Li, C.-X., Wang, J., Mao, L.-H. ve Chen, S. (2014). Hair-derived carbon dots toward versatile multidimensional fluorescent materials. Journal of Materials Chemistry C, 2(32), 6477. doi:10.1039/C4TC00636D.
  • [9] Chandra, S., Das, P., Bag, S., Laha, D. ve Pramanik, P. (2011). Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale, 3(4), 1533. doi:10.1039/c0nr00735h
  • [10] Links, D. A., Yang, Y., Cui, J., Zheng, M., Hu, C., Tan, S., … Liu, Y. (2012). ChemComm One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan w. Chem. Commun., 48(3), 380–382. doi:10.1039/c1cc15678k
  • Hu, S.-L., Niu, K.-Y., Sun, J., Yang, J., Zhao, N.-Q. ve Du, X.-W. (2009). One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem., 19(4), 484–488. doi:10.1039/B812943F
  • [12] Zhai, X., Zhang, P., Liu, C., Bai, T., Li, W., Dai, L. ve Liu, W. (2012). Highly luminescent carbon nanodots by microwave-assisted pyrolysis. Chemical Communications, 48(64), 7955–7957. doi:10.1039/c2cc33869f
  • [13] Zhang, C., Hu, Z., Song, L., Cui, Y. ve Liu, X. (2015). Valine-derived carbon dots with colour-tunable fluorescence for the detection of Hg 2+ with high sensitivity and selectivity. New J. Chem., 39(8), 6201–6206. doi:10.1039/C5NJ00554J
  • [14] Guo, X., Wang, C.-F., Yu, Z.-Y., Chen, L. ve Chen, S. (2012). Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chemical Communications, 48(21), 2692. doi:10.1039/c2cc17769b
  • [15] Jiang, K., Sun, S., Zhang, L., Lu, Y., Wu, A., Cai, C. ve Lin, H. (2015). Red, green, and blue luminescence by carbon dots: Full-color emission tuning and multicolor cellular imaging. Angewandte Chemie - International Edition, 54(18), 5360–5363. doi:10.1002/anie.201501193
  • [16] Wang, X., Cao, L., Yang, S. T., Lu, F., Meziani, M. J., Tian, L., … Sun, Y. P. (2010). Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angewandte Chemie - International Edition, 49, 5310–5314.doi:10.1002/anie.201000982.
  • [17] Baker, S. N. ve Baker, G. A. (2010). Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie International Edition, 49(38), 6726–6744. doi:10.1002/anie.200906623
  • [18] Zhu, H., Wang, X., Li, Y., Wang, Z., Yang, F. ve Yang, X. (2009). Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chemical Communications, (34), 5118–5120. doi:10.1039/b907612c
  • [19] Qu, S., Wang, X., Lu, Q., Liu, X. ve Wang, L. (2012). A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angewandte Chemie - International Edition, 51(49), 12215–12218. doi:10.1002/anie.201206791
  • [20] Davis, P. H. (1965). Flora of Turkey and the East Aegean Islands, Volume 10. Edinburgh University Press.
  • [21] Ayaz, F. A., Torun, H., Ayaz, S., Correia, P. J., Alaiz, M., Sanz, C., … Strnad, M. (2007). Determination of chemical composition of anatolian carob pod (Ceratonia siliqua L.): Sugars, amino and organic acids, minerals and phenolic compounds. Journal of Food Quality, 30(6), 1040–1055. doi:10.1111/j.1745-4557.2007.00176.x
  • [22] Jia, X., Li, J. ve Wang, E. (2012). One-pot green synthesis of optically pH-sensitive carbon dots with upconversion luminescence. Nanoscale, 4(18), 5572. doi:10.1039/c2nr31319g
  • [23] Wu, L., Luderer, M., Yang, X., Swain, C., Zhang, H., Nelson, K., … Pan, D. (2013). Surface passivation of carbon nanoparticles with branched macromolecules influences near infrared bioimaging. Theranostics, 3(9), 677–86. doi:10.7150/thno.6535
  • [24] Thanh, N. T. K. K. ve Green, L. A. W. W. (2010). Functionalisation of nanoparticles for biomedical applications. Nano Today, 5(3), 213–230.doi:10.1016/j.nantod.2010.05.003
  • [25] Li, S., Pan, R., Ait Mehdi, Y., Xiao, D. ve He, H. (2015). One-step spontaneous synthesis of fluorescent carbon nanoparticles with thermosensitivity from polyethylene glycol. New J. Chem., 39(9), 7033–7039. doi:10.1039/C5NJ01129A
  • [26] Li, H., Kang, Z., Liu, Y. ve Lee, S.-T. (2012). Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 22(46), 24230. doi:10.1039/c2jm34690g.
  • [27] Bhaisare, M. L., Talib, A., Khan, M. S., Pandey, S. ve Wu, H. F. (2015). Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging. Microchimica Acta, 182(13–14), 2173–2181. doi:10.1007/s00604-015-1541-5
  • [28] Zhu, S., Panne, U. ve Rurack, K. (2013). A rapid method for the assessment of the surface group density of carboxylic acid-functionalized polystyrene microparticles. The Analyst, 138(10), 2924–30. doi:10.1039/c3an36578f
There are 28 citations in total.

Details

Subjects Engineering
Journal Section Research Articles
Authors

Rükan Genc

Melis Özge Alaş This is me

Publication Date December 31, 2016
Submission Date November 3, 2016
Published in Issue Year 2016 Volume: 1 Issue: 2

Cite

APA Genc, R., & Alaş, M. Ö. (2016). Floresans Karbon Nanoparçacıkların Yeşil Sentezi ve Pasivasyon Ajanının Molekül Ağırlığının Nanoparçacık Özellikleri Üzerine Etkisinin İncelenmesi. Sinop Üniversitesi Fen Bilimleri Dergisi, 1(2), 123-134.