Research Article
BibTex RIS Cite

İki Doğal Polisakkaritin Hiyalüronidaz, Kollajenaz ve Elastaz İnhibitör Potansiyellerinin Araştırılması ve Antimikrobiyal, Antioksidan ve Homeostatik Aktivitelerinin Karşılaştırmalı Olarak Değerlendirmesi

Year 2018, Volume: 22 Issue: 3, 1182 - 1189, 20.09.2018
https://doi.org/10.19113/sdufenbed.471994

Abstract

Bu çalışmanın amacı, kitre zamkı (TG) ve
keçiboynuzu zamkı (LBG)'nin antibakteriyel, antioksidan ve homeostatik
aktiviteleri ile birlikte yara iyileşmesi için önemli olan hiyalüronidaz,
kollajenaz ve elastaz inhibitör etkilerini araştırmaktır. Antimikrobiyal
aktiviteleri dört bakteriye karşı test edilerek, antioksidan aktiviteleri
1,1-difenil-2-pikrilhidrazil (DPPH), hidrojen peroksit (H
202)
radikal temizleme ve β-karoten ağartma deneyleri ile tespit edilmiştir.
Homeostatik
etki Protrombin Zamanı (PT) ve Aktive Edilen Kısmi Tromboplastin Zamanı (aPTT)
test parametreleri ile değerlendirilmiştir. Yara iyileştirme potansiyelleri
ise, hiyalüronidaz, kollajenaz ve elastaz inhibisyonu ile belirlenmiştir. TG,
Pseudomonas aeruginosa ATCC27853 ve Escherichia coli ATCC25922'ye karşı
antibakteriyel aktivite göstermiştir. Sonuçlar TG ve LBG'nin DPPH temizleme
(sırasıyla %21.0 ve %17.6) ve H
2O2 radikal temizleme
(sırasıyla %59.4 ve %79.0) aktiviteleri de dahil olmak üzere antioksidan
özelliklere sahip olduğunu göstermiştir. Polisakkaritler, PT ve aPTT'de önemli
azalma göstermiştir. Test edilen iki polisakkarit arasından LBG, 10 mg/mL
konsantrasyonda, önemli hiyalüronidaz ve kollajenaz inhibisyon aktivitesi
göstermiştir. Bu bulgular, bu doğal polisakkaritlerin yara iyileşmesini
desteklemek için kullanılabileceğini göstermektedir.

References

  • [1] Maiti, S., Dey, P., Banik, A., Sa, B., Ray, S., Kaity, S. 2010. Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Delivery, 17(5), 288–300.
  • [2] Fayazzadeh, E., Rahimpour, S., Ahmadi, S. M., Farzampour, S., Sotoudeh Anvari, M., Borouman, M. A., Ahmadi, S. H. 2014. Acceleration of skin wound healing with tragacanth (Astragalus) preparation: an experimental pilot study in rats. Acta Medica Iranica, 52, 3–8.
  • [3] Mohammadi, M. R. 2017. Production of cotton fabric with durable antibacterial property by using gum tragacanth and silver. International Journal of Biological Macromolecules, 109, 476–482.
  • [4] Braz, L., Grenhad, A., Corvof, M. C., Lourenço, J. P., Ferreirac, D., Sarmentoi, B., Rosa da Costa, A. M. 2018. Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydrate Polymers, 181, 974–985.
  • [5] Locoweeds for A Natural Gum & Medicinal Herbs. Gum tragacanth and Astragalus root. http://waynesword.palomar.edu/ecoph34.htm (Accessed: 25 Dec 2017).
  • [6] Mostafavi, F. S., Kadkhodaee, R., Emadzadeh, B., Koocheki, A. 2016. Preparation and characterization of tragacanth–locust bean gum edible blend films. Carbohydrate Polymers,139, 20–27.
  • [7] Moghbel, A., Agheli, H., Kalantari, E., Naji, M. 2008. Design and formulation of tragacanth dressing bandage for burn healing with no dermal toxicity. Toxicology Letters, 180154.
  • [8] Singh, B., Varshney, L., Rajneesh, F. S. 2017. Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application. Radiation Physics and Chemistry, 135, 94–105.
  • [9] Otady, M., Vaziri, A., Seifkordi, A. A., Kheirolomoom, A. 2005. Gum tragacanth gel as a new supporting matrix for immobilization of whole-cell. Iranian Journal of Chemistry and Chemical Engineering, 24, 1–7.
  • [10] Jaber, E., Jaleh, V., Mohammadreza, A., Fatemeh, A. 2012. Preparation and evaluation of a sustained-release suspension containing theophylline microcapsules. African Journal of Pharmacy and Pharmacology, 6, 2091–2099.
  • [11] Dionísio, M., Grenha, A. 2012. Locust bean gum: Exploring its potential for biopharmaceutical applications. Journal of Pharmacy And Bioallied Sciences, 4(3), 175–185.
  • [12] Xue, M., Jackson, C. J. 2015. Extracellular matrix reorganization during wound healing and its impact on abnormal ccarring. Advances in Wound Care, 4(3),119–136.
  • [13] Agren, M. S., Werthén, M. 2007. The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. International Journal of Lower Extremity Wounds, 6(2), 82–97.
  • [14] Haraway, G. D. 2006. The Extracellular Matrix in Wound Healing. http://www.o-wm.com/files/docs/Healthpoint_July.pdf (Accessed: 20 Dec 2017).
  • [15] Mukherjee, P. K., Maity, N., Nema, N. K., Sarkar, B. K. 2011. Bioactive compounds from natural resources against skin aging. Phytomedicine, 19, 64–73.
  • [16] Gethin, G. 2012. Understanding the inflammatory process in wound healing. British Journal of Community Nursing, 17(8), 20–22.
  • [17] Edwards, R., Harding, K. G. 2004. Bacteria and wound healing. Current Opinion in Infectious Diseases,17(2), 91–96.
  • [18] Djemaa, F. G. B., edBellassoued, K., Zouari, S., El Feki, A., Ammar, E. 2016. Antioxidant and wound healing activity of Lavandula aspic L. ointment. Journal of Tissue Viability, 25, 193–200.
  • [19] Ktari, N., Trabelsi, I., Bardaa, S., Triki, M., Bkhairiaa, I., Salema, R. B. S. B., Nasri, M., Salah, R. B. 2017. Antioxidant and hemolytic activities, and effects in rat cutaneous wound healing of a novel polysaccharide from fenugreek (Trigonella foenum-graecum) seeds. International Journal of Biological Macromolecules, 95, 625–634.
  • [20] Ranjbar-Mohammadi, M., Bahrami, S. H., Joghataei, M. T. 2013. Fabrication of novel nanofiber scaffolds from gum tragacanth/ poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties. Materials Science and Engineering: C, 33(8), 4935–4943.
  • [21] Boateng, J. S., Pawar, H. V., Tetteh, J. 2013. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. International Journal of Pharmaceutics, 441 (1–2), 181–191.
  • [22] C. L. S. I. 2012. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
  • [23] Ebrahimabadi, A. H., Mazoochi, A., Kashi, F. J., Djafari-Bidgoli, Z., Batooli, H. 2010. Essential oil composition and antioxidant and antimicrobial properties of the aerial parts of Salvia eremophila Boiss. from Iran. Food and Chemical Toxicology, 48(5), 1371–1376.
  • [24] Boran, R., Ugur, A. 2017. The mutagenic, antimutagenic and antioxidant properties of Hypericum lydium. Pharmaceutical Biology, 55(1), 402–405.
  • [25] Zhang, C.-H., Yu, Y., Liang, Y.-Z., Chen, X.-Q. 2015. Purification, partial characterization and antioxidant activity of polysaccharides from Glycyrrhiza uralensis. International Journal of Biological Macromolecules, 79, 681–686.
  • [26] Rauter, A. P., Dias, C., Martins, A., Branco, I., Neng, N. R., Nogueira, J. M., Goulart, M., Silva, F. V. M., Justino, J., Trevitt, C., Waltho, J. P. 2012. Non-toxic Salvia sclareoides Brot. extracts as a source of functional food ingredients: Phenolic profile, antioxidant activity and prion binding properties. Food Chemistry, 132, 1930–1935.
  • [27] Chen, H., Jin, M., Wang, Y.-F., Wang, Y.-Q., Meng, L., Li, R., Wang, J.-P., Gao, L., Kong, Y., Wei, J.-F. 2014. Effect of Toona microcarpa harms leaf extract on the coagulation system. BioMed Research International, 2014, 1–7.
  • [28] Lee, K. K., Kim, J. H., Cho, J. J., Choi, J. D. 1999. Inhibitory effects of 150 plant extracts on anti-elastase activity and their anti-inflammatory effects. International Journal of Cosmetic Science, 21, 71–82.
  • [29] Barrantes, E., Guinea, M. 2003. Inhibition of collagenase and metalloproteinases by aloins and aloe gel. Life Science, 72(7), 843–850.
  • [30] Tan, B. K. H., Vanitha, J. 2004. Immunomodulatory and antimicrobial effects of some traditional Chinese medicinal herbs. Current Medicinal Chemistry, 11, 1423–1430.
  • [31] Li, S. –P., Hao, Y. –S., Chen, F. -X., Zhang, Q. –R., Zhao, X. –J. 2007. Antimicrobial activity of Astragalus polysaccharides and Lactobacillus, B. cereus in vitro. Journal of Henan Agricicultural Sciences, 2007–4.
  • [32] Karlton-Senaye, B., Ayad, A., Davis, S., Khatiwada, J., Williams, L. 2016. Interaction of gums and antimicrobial agents on susceptibility of selected foodborne pathogens. Journal of Antimicrobial Agents, 2(2), 1–7.
  • [33] De Cicco, F., Porta, A., Sansone, F., Aquino, R. P., Del Gaudio, P. 2014. Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing. International Journal of Pharmaceutics, 473(1-2), 30–37.
  • [34] Li, R., Chen, W.-C., Wang, W.-P., Tian, W.-Y., Zhang, X.-G. 2010. Antioxidant activity of Astragalus polysaccharides and antitumour activity of the polysaccharides and siRNA. Carbohydrate Polymers, 82(2), 240–244.
  • [35] Huang, W. M., Liang, Y. Q., Tang, L. J., Ding, Y., Wang, X. H. 2013. Antioxidant and anti-inflammatory effects of Astragalus polysaccharide on EA. hy926 cells. Experimental and Therapeutic Medicine, 6(1), 199–203.
  • [36] Süntar, I., Küpeli Akkol, E., Keles, H., Yesilada, E., Sarker, S. D., Baykal, T. 2012. Comparative evaluation of traditional prescriptions from Cichorium intybus L. for wound healing: Stepwise isolation of an active component by in vivo bioassay and its mode of activity. Journal of Ethnopharmacology, 143(1), 299–309.
  • [37] Azevedo, A. P. S., Farias, J. C., Costa, G. C., Ferreira, S. C., Aragão-Filho, W. C., Sousa, P. R., Pinheiro, M. T., Maciel, M. C., Silva, L. A., Lopes, A. S., Barroqueiro, E. S., Borges, M. O., Guerra, R. N., Nascimento, F. R. 2007. Anti-thrombotic effect of chronic oral treatment with Orbignya phalerata Mart. Journal of Ethnopharmacology, 111(1), 155–159.
  • [38] Edwards, J. V., Howley, F., Cohen, I. K. 2004. In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings. International Journal of Pharmaceutics, 284, 1–12.
  • [39] Moghbel, A., Hemmati, A.-A., Agheli, H., Rashidi, I., Amraee, K. 2005. The effect of tragacanth mucilage on the healing of full-thickness wound in rabbit. Archives of Iranian Medicine, 8(4), 257–262.

Investigation of Hyaluronidase, Collagenase and Elastase Inhibitory Potentials and Comparative Evaluation of the Antimicrobial, Antioxidant and Homeostatic Activities of Two Natural Polysaccharides

Year 2018, Volume: 22 Issue: 3, 1182 - 1189, 20.09.2018
https://doi.org/10.19113/sdufenbed.471994

Abstract

The aim of this study was to investigate the
hyaluronidase, collagenase and elastase inhibitory effects, which play important
role for wound healing, together with the antibacterial, antioxidant and
homeostatic activities of tragacanth gum
(TG)
and
locust bean gum (LBG). The
antimicrobial activities were tested against four bacteria and the antioxidant
activities were estimated by the 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydrogen
peroxide (H
2O2) radical
scavenging
and β-carotene bleaching assays. Homeostatic effect was
evaluated with the
Prothrombin Time (PT)
and
Activated Partial Thromboplastin Time (aPTT)
test parameters. The wound healing potentials were determined with the
inhibition of hyaluronidase, collagenase and elastase enzymes. The TG showed
antibacterial activity against
Pseudomonas
aeruginosa
ATCC27853 and
Escherichia coli ATCC25922. The results showed that TG and LBG possessed
antioxidant properties including DPPH scavenging 
(21.0% and 17.6%,
respectively)
  and H2O2 radical scavenging (59.4% and 79.0%,
respectively)
activities. The polysaccharides displayed significantly reducing PT and aPTT results.
Between the two tested polysaccharides LBG showed significant
hyaluronidase and collagenase inhibition activity at 10 mg/mL concentration.
These findings show that these natural polysaccharides can be used to
support of wound healing.

References

  • [1] Maiti, S., Dey, P., Banik, A., Sa, B., Ray, S., Kaity, S. 2010. Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Delivery, 17(5), 288–300.
  • [2] Fayazzadeh, E., Rahimpour, S., Ahmadi, S. M., Farzampour, S., Sotoudeh Anvari, M., Borouman, M. A., Ahmadi, S. H. 2014. Acceleration of skin wound healing with tragacanth (Astragalus) preparation: an experimental pilot study in rats. Acta Medica Iranica, 52, 3–8.
  • [3] Mohammadi, M. R. 2017. Production of cotton fabric with durable antibacterial property by using gum tragacanth and silver. International Journal of Biological Macromolecules, 109, 476–482.
  • [4] Braz, L., Grenhad, A., Corvof, M. C., Lourenço, J. P., Ferreirac, D., Sarmentoi, B., Rosa da Costa, A. M. 2018. Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydrate Polymers, 181, 974–985.
  • [5] Locoweeds for A Natural Gum & Medicinal Herbs. Gum tragacanth and Astragalus root. http://waynesword.palomar.edu/ecoph34.htm (Accessed: 25 Dec 2017).
  • [6] Mostafavi, F. S., Kadkhodaee, R., Emadzadeh, B., Koocheki, A. 2016. Preparation and characterization of tragacanth–locust bean gum edible blend films. Carbohydrate Polymers,139, 20–27.
  • [7] Moghbel, A., Agheli, H., Kalantari, E., Naji, M. 2008. Design and formulation of tragacanth dressing bandage for burn healing with no dermal toxicity. Toxicology Letters, 180154.
  • [8] Singh, B., Varshney, L., Rajneesh, F. S. 2017. Synthesis and characterization of tragacanth gum based hydrogels by radiation method for use in wound dressing application. Radiation Physics and Chemistry, 135, 94–105.
  • [9] Otady, M., Vaziri, A., Seifkordi, A. A., Kheirolomoom, A. 2005. Gum tragacanth gel as a new supporting matrix for immobilization of whole-cell. Iranian Journal of Chemistry and Chemical Engineering, 24, 1–7.
  • [10] Jaber, E., Jaleh, V., Mohammadreza, A., Fatemeh, A. 2012. Preparation and evaluation of a sustained-release suspension containing theophylline microcapsules. African Journal of Pharmacy and Pharmacology, 6, 2091–2099.
  • [11] Dionísio, M., Grenha, A. 2012. Locust bean gum: Exploring its potential for biopharmaceutical applications. Journal of Pharmacy And Bioallied Sciences, 4(3), 175–185.
  • [12] Xue, M., Jackson, C. J. 2015. Extracellular matrix reorganization during wound healing and its impact on abnormal ccarring. Advances in Wound Care, 4(3),119–136.
  • [13] Agren, M. S., Werthén, M. 2007. The extracellular matrix in wound healing: a closer look at therapeutics for chronic wounds. International Journal of Lower Extremity Wounds, 6(2), 82–97.
  • [14] Haraway, G. D. 2006. The Extracellular Matrix in Wound Healing. http://www.o-wm.com/files/docs/Healthpoint_July.pdf (Accessed: 20 Dec 2017).
  • [15] Mukherjee, P. K., Maity, N., Nema, N. K., Sarkar, B. K. 2011. Bioactive compounds from natural resources against skin aging. Phytomedicine, 19, 64–73.
  • [16] Gethin, G. 2012. Understanding the inflammatory process in wound healing. British Journal of Community Nursing, 17(8), 20–22.
  • [17] Edwards, R., Harding, K. G. 2004. Bacteria and wound healing. Current Opinion in Infectious Diseases,17(2), 91–96.
  • [18] Djemaa, F. G. B., edBellassoued, K., Zouari, S., El Feki, A., Ammar, E. 2016. Antioxidant and wound healing activity of Lavandula aspic L. ointment. Journal of Tissue Viability, 25, 193–200.
  • [19] Ktari, N., Trabelsi, I., Bardaa, S., Triki, M., Bkhairiaa, I., Salema, R. B. S. B., Nasri, M., Salah, R. B. 2017. Antioxidant and hemolytic activities, and effects in rat cutaneous wound healing of a novel polysaccharide from fenugreek (Trigonella foenum-graecum) seeds. International Journal of Biological Macromolecules, 95, 625–634.
  • [20] Ranjbar-Mohammadi, M., Bahrami, S. H., Joghataei, M. T. 2013. Fabrication of novel nanofiber scaffolds from gum tragacanth/ poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties. Materials Science and Engineering: C, 33(8), 4935–4943.
  • [21] Boateng, J. S., Pawar, H. V., Tetteh, J. 2013. Polyox and carrageenan based composite film dressing containing anti-microbial and anti-inflammatory drugs for effective wound healing. International Journal of Pharmaceutics, 441 (1–2), 181–191.
  • [22] C. L. S. I. 2012. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th ed., CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA.
  • [23] Ebrahimabadi, A. H., Mazoochi, A., Kashi, F. J., Djafari-Bidgoli, Z., Batooli, H. 2010. Essential oil composition and antioxidant and antimicrobial properties of the aerial parts of Salvia eremophila Boiss. from Iran. Food and Chemical Toxicology, 48(5), 1371–1376.
  • [24] Boran, R., Ugur, A. 2017. The mutagenic, antimutagenic and antioxidant properties of Hypericum lydium. Pharmaceutical Biology, 55(1), 402–405.
  • [25] Zhang, C.-H., Yu, Y., Liang, Y.-Z., Chen, X.-Q. 2015. Purification, partial characterization and antioxidant activity of polysaccharides from Glycyrrhiza uralensis. International Journal of Biological Macromolecules, 79, 681–686.
  • [26] Rauter, A. P., Dias, C., Martins, A., Branco, I., Neng, N. R., Nogueira, J. M., Goulart, M., Silva, F. V. M., Justino, J., Trevitt, C., Waltho, J. P. 2012. Non-toxic Salvia sclareoides Brot. extracts as a source of functional food ingredients: Phenolic profile, antioxidant activity and prion binding properties. Food Chemistry, 132, 1930–1935.
  • [27] Chen, H., Jin, M., Wang, Y.-F., Wang, Y.-Q., Meng, L., Li, R., Wang, J.-P., Gao, L., Kong, Y., Wei, J.-F. 2014. Effect of Toona microcarpa harms leaf extract on the coagulation system. BioMed Research International, 2014, 1–7.
  • [28] Lee, K. K., Kim, J. H., Cho, J. J., Choi, J. D. 1999. Inhibitory effects of 150 plant extracts on anti-elastase activity and their anti-inflammatory effects. International Journal of Cosmetic Science, 21, 71–82.
  • [29] Barrantes, E., Guinea, M. 2003. Inhibition of collagenase and metalloproteinases by aloins and aloe gel. Life Science, 72(7), 843–850.
  • [30] Tan, B. K. H., Vanitha, J. 2004. Immunomodulatory and antimicrobial effects of some traditional Chinese medicinal herbs. Current Medicinal Chemistry, 11, 1423–1430.
  • [31] Li, S. –P., Hao, Y. –S., Chen, F. -X., Zhang, Q. –R., Zhao, X. –J. 2007. Antimicrobial activity of Astragalus polysaccharides and Lactobacillus, B. cereus in vitro. Journal of Henan Agricicultural Sciences, 2007–4.
  • [32] Karlton-Senaye, B., Ayad, A., Davis, S., Khatiwada, J., Williams, L. 2016. Interaction of gums and antimicrobial agents on susceptibility of selected foodborne pathogens. Journal of Antimicrobial Agents, 2(2), 1–7.
  • [33] De Cicco, F., Porta, A., Sansone, F., Aquino, R. P., Del Gaudio, P. 2014. Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing. International Journal of Pharmaceutics, 473(1-2), 30–37.
  • [34] Li, R., Chen, W.-C., Wang, W.-P., Tian, W.-Y., Zhang, X.-G. 2010. Antioxidant activity of Astragalus polysaccharides and antitumour activity of the polysaccharides and siRNA. Carbohydrate Polymers, 82(2), 240–244.
  • [35] Huang, W. M., Liang, Y. Q., Tang, L. J., Ding, Y., Wang, X. H. 2013. Antioxidant and anti-inflammatory effects of Astragalus polysaccharide on EA. hy926 cells. Experimental and Therapeutic Medicine, 6(1), 199–203.
  • [36] Süntar, I., Küpeli Akkol, E., Keles, H., Yesilada, E., Sarker, S. D., Baykal, T. 2012. Comparative evaluation of traditional prescriptions from Cichorium intybus L. for wound healing: Stepwise isolation of an active component by in vivo bioassay and its mode of activity. Journal of Ethnopharmacology, 143(1), 299–309.
  • [37] Azevedo, A. P. S., Farias, J. C., Costa, G. C., Ferreira, S. C., Aragão-Filho, W. C., Sousa, P. R., Pinheiro, M. T., Maciel, M. C., Silva, L. A., Lopes, A. S., Barroqueiro, E. S., Borges, M. O., Guerra, R. N., Nascimento, F. R. 2007. Anti-thrombotic effect of chronic oral treatment with Orbignya phalerata Mart. Journal of Ethnopharmacology, 111(1), 155–159.
  • [38] Edwards, J. V., Howley, F., Cohen, I. K. 2004. In vitro inhibition of human neutrophil elastase by oleic acid albumin formulations from derivatized cotton wound dressings. International Journal of Pharmaceutics, 284, 1–12.
  • [39] Moghbel, A., Hemmati, A.-A., Agheli, H., Rashidi, I., Amraee, K. 2005. The effect of tragacanth mucilage on the healing of full-thickness wound in rabbit. Archives of Iranian Medicine, 8(4), 257–262.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Rukiye Boran

Aysel Ugur

Nurdan Sarac

Publication Date September 20, 2018
Published in Issue Year 2018 Volume: 22 Issue: 3

Cite

APA Boran, R., Ugur, A., & Sarac, N. (2018). Investigation of Hyaluronidase, Collagenase and Elastase Inhibitory Potentials and Comparative Evaluation of the Antimicrobial, Antioxidant and Homeostatic Activities of Two Natural Polysaccharides. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(3), 1182-1189. https://doi.org/10.19113/sdufenbed.471994
AMA Boran R, Ugur A, Sarac N. Investigation of Hyaluronidase, Collagenase and Elastase Inhibitory Potentials and Comparative Evaluation of the Antimicrobial, Antioxidant and Homeostatic Activities of Two Natural Polysaccharides. SDÜ Fen Bil Enst Der. September 2018;22(3):1182-1189. doi:10.19113/sdufenbed.471994
Chicago Boran, Rukiye, Aysel Ugur, and Nurdan Sarac. “Investigation of Hyaluronidase, Collagenase and Elastase Inhibitory Potentials and Comparative Evaluation of the Antimicrobial, Antioxidant and Homeostatic Activities of Two Natural Polysaccharides”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, no. 3 (September 2018): 1182-89. https://doi.org/10.19113/sdufenbed.471994.
EndNote Boran R, Ugur A, Sarac N (September 1, 2018) Investigation of Hyaluronidase, Collagenase and Elastase Inhibitory Potentials and Comparative Evaluation of the Antimicrobial, Antioxidant and Homeostatic Activities of Two Natural Polysaccharides. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 3 1182–1189.
IEEE R. Boran, A. Ugur, and N. Sarac, “Investigation of Hyaluronidase, Collagenase and Elastase Inhibitory Potentials and Comparative Evaluation of the Antimicrobial, Antioxidant and Homeostatic Activities of Two Natural Polysaccharides”, SDÜ Fen Bil Enst Der, vol. 22, no. 3, pp. 1182–1189, 2018, doi: 10.19113/sdufenbed.471994.
ISNAD Boran, Rukiye et al. “Investigation of Hyaluronidase, Collagenase and Elastase Inhibitory Potentials and Comparative Evaluation of the Antimicrobial, Antioxidant and Homeostatic Activities of Two Natural Polysaccharides”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/3 (September 2018), 1182-1189. https://doi.org/10.19113/sdufenbed.471994.
JAMA Boran R, Ugur A, Sarac N. Investigation of Hyaluronidase, Collagenase and Elastase Inhibitory Potentials and Comparative Evaluation of the Antimicrobial, Antioxidant and Homeostatic Activities of Two Natural Polysaccharides. SDÜ Fen Bil Enst Der. 2018;22:1182–1189.
MLA Boran, Rukiye et al. “Investigation of Hyaluronidase, Collagenase and Elastase Inhibitory Potentials and Comparative Evaluation of the Antimicrobial, Antioxidant and Homeostatic Activities of Two Natural Polysaccharides”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 22, no. 3, 2018, pp. 1182-9, doi:10.19113/sdufenbed.471994.
Vancouver Boran R, Ugur A, Sarac N. Investigation of Hyaluronidase, Collagenase and Elastase Inhibitory Potentials and Comparative Evaluation of the Antimicrobial, Antioxidant and Homeostatic Activities of Two Natural Polysaccharides. SDÜ Fen Bil Enst Der. 2018;22(3):1182-9.

e-ISSN: 1308-6529