Research Article
BibTex RIS Cite

Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors

Year 2020, Volume: 23 Issue: 4, 1189 - 1196, 01.12.2020
https://doi.org/10.2339/politeknik.621181

Abstract

In this study, the gas sensing properties of SnO2
and Zn0.50Sn0.50O samples produced by
Succession Ionic Layer
Adsorption and Reaction (
SILAR) method with different SILAR cycles against NO gas were
investigated. Electrical characterization of the produced sample at different
temperatures (35 °C-135 °C) and different gas concentrations (50 ppb-25 ppm)
were performed.
The working temperature was found at 105 °C. The sensors were proved to have acceptable responses towards 50 ppb NO
gas. Zn0.50Sn0.50O sensor exhibited improved sensing
performance at working temperature of 105
°C compared to SnO2 sensor..   The ,responses of SnO2 sensors
for the 50 ppb NO gas concentration, sensitivities of 1.74%, 2.15% and 3.37%
were obtained for 20, 30 and 40 cycles, respectively. On the other hand,
the,responses of Zn0.50Sn0.50O sensors for the 50 ppb NO
gas concentration
sensitivities of 3.01%, 3.74% and 4.16% were obtained for 20, 30 and 40
cycles, respectively. The measurement results showed that the sensitivity of
the sensors changed depending on the doping and producing cycles.

Supporting Institution

Tubitak

Project Number

115M658

References

  • [1] Onofre Y.J., Catto A.C., Bernardini S., Fiorido T., Aguir K., Longo E., Mastelaro V.R., da Silva L.F., de Godoy M.P.F., Highly selective ozone gas sensor based on nanocrystalline Zn0.95Co0.05O thin film obtained via spray pyrolysis technique, Appl. Surf. Sci., 478, 347–354, (2019).[2] Gao H., Yu Q., Chen K., Sun P., Liu F., Yan X., Liu F., Lu G., Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection, J. Colloid Interface Sci., 535, 458-468, (2019).[3] Samerjai T., Channei D., Khanta C., Inyawilert K.,Liewhiran C., Wisitsoraat A., Phokharatkul D., Phanichphant S., Flame-spray-made Zn-In-O alloyed nanoparticles for NO2 gas sensing, J Alloy. Compd., 680, 711-721, (2016).[4] Bai S., Tong W., Tian Y.,Fu H.,Zhao Y.,Shu X., Luo R., Li D., Chen A., Facile synthesis of Pd-doped ZnSnO3 hierarchical microspheres for enhancing sensing properties of formaldehyde, J. Mater. Sci., 54;3, 2025–2036, (2019).[5] Karaduman I., Barin Ö., Yıldız D.E., Acar S., Atomik Tabaka Biriktirme Metodu ile Üretilen HfO2 Tabanlı Sensörlerin Hidrojen Gaz Algılama Özelliklerinin İncelenmesi, Journal of Polytechnic, 2016; 19 (3) : 223-229. [6] Kumar V., Singh K., Sharma J., Kumar A., Vij A., Thakur A., Zn-doped SnO2 nanostructures: structural, morphological and spectroscopic properties, J Mater. Scı.-Mater. El., 28;24, 18849–18856, (2017).[7] Saadeddin I., Hilal H.S., Pecquenard B., Marcus J., Mansouri A., Labrugere C., Subramanian M.A., Campet G., Simultaneous doping of Zn and Sb in SnO2 ceramics: Enhancement of electrical conductivity, Solid State Sci., 8;1, 7-13, (2006). [8] Guan Y., Wang D., Zhou X., Sun P., Wang H., Ma J., Lu G., Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures, Sens. Actuators B, 191, 45-52, (2014).[9] Gupta P., Sharma S.K., A study of oxygen gas sensing in Zn-doped SnO2 nanostructures, Mater. Res. Express, 4, 065010, (2017).[10] Singh D., Singh Kundu V., Maan A. S., Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique, J. Mol. Struct., 1115, 250-257, (2016). [11] Galioglu S. , Karaduman I., Çorlu T. , Akata B. , Yıldırım M. A. , Ateş A. , Acar S. , Zeolite A coated Zn1−XCuXO MOS sensors for NO gas detection, J. Mater. Sci.: Mater. Elektron, 29;2, 1356-1368, (2018).[12] Çorlu T., Karaduman I., Galioglu S., Akata B., Yıldırım M.A., Ates A., Acar S., Low level NO gas sensing properties of Cu doped ZnO thin films prepared by SILAR method, Mater. Lett., 212, 292–295 (2018).[13] Karunakaran M., Maheswari S., Kasirajan K., Dinesh Raj S., Chandramohan R., Structural and Optical Properties of Mn-Doped ZnO Thin Films Prepared by SILAR Method, International Letters of Chemistry, Physics and Astronomy, 73, 22-30, (2017). [14] Karaduman Er I., Çağırtekın A.O., Çorlu T., Yıldırım M.A., Ateş A., Acar S., Low-level NO gas sensing properties of Zn1−xSnxO nanostructure sensors under UV light irradiation at room temperature, Bull. Mater. Sci., 42;32 (2019).[15] Vermaa M., Dwivedib P. K., Das B., Structure–property correlation of pure and Sn-doped ZnO nanocrystalline materials prepared by co-precipitation, Journal of Experimental Nanoscience, 10;6, 438–448, (2015). [16] Zhang Z., Yi J.B., Ding J.,Wong L.M., Seng H.L.,Wang S.J. Cu-Doped ZnO Nanoneedles and Nanonails: Morphological Evolution and Physical Properties, J. Phys. Chem. C 112, 9579, (2008).[17] Patıl A., Dıghavkar C., Borse R., Al Doped Zno Thick Films As CO2 Gas Sensors, J. Optoelectron Adv. M., 13;10, 1331-1337, (2011). [18] Zhou Q., Chen W., Xu L., Kumar R., Gui Y., Zhao Z., Tang C., Zhu S., Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials, Ceram. Int. 44, 4392–4399, (2018).[19] Zheng L., Xu T., Li G., Q Yin, Influence of thickness on oxygen-sensing properties of TiO2 thin films on Al2O3, J. Appl. Phys., Part 1 41, 4655-4658, (2002).[20] Hossein-Babari F., Orvatinia M., Analysis of thickness dependence of the sensitivity in thin film resistive gas sensors, Sens. Actuators B 89, 256-261, (2003).[21] Christoulakis S., Suchea M., Koudoumas E., Katharakis M., Katsarakis N., Kiriakidis G., Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent thin films grown by PLD, Appl. Surf. Sci., 252, 5351-5354, (2006).[22] Çorlu T., Karaduman I.,Yildirim M.A., Ateş A.,Acar S., Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films, J. Electron. Mater., 46;7, 3995–4002, (2017). [23] Huang H., Tian S., Xu J., Xie Z., Zeng D., Chen D., Shen G., Needle-like Zn-doped SnO2 nanorods with enhanced photocatalytic and gas sensing properties, Nanotechnology, 23, 105502, (2012).

Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors

Year 2020, Volume: 23 Issue: 4, 1189 - 1196, 01.12.2020
https://doi.org/10.2339/politeknik.621181

Abstract

In this study, the gas sensing properties of SnO2
and Zn0.50Sn0.50O samples produced by
Succession Ionic Layer
Adsorption and Reaction (
SILAR) method with different SILAR cycles against NO gas were
investigated. Electrical characterization of the produced sample at different
temperatures (35 °C-135 °C) and different gas concentrations (50 ppb-25 ppm)
were performed.
The working temperature was found at 105 °C. The sensors were proved to have acceptable responses towards 50 ppb NO
gas. Zn0.50Sn0.50O sensor exhibited improved sensing
performance at working temperature of 105
°C compared to SnO2 sensor..   The ,responses of SnO2 sensors
for the 50 ppb NO gas concentration, sensitivities of 1.74%, 2.15% and 3.37%
were obtained for 20, 30 and 40 cycles, respectively. On the other hand,
the,responses of Zn0.50Sn0.50O sensors for the 50 ppb NO
gas concentration
sensitivities of 3.01%, 3.74% and 4.16% were obtained for 20, 30 and 40
cycles, respectively. The measurement results showed that the sensitivity of
the sensors changed depending on the doping and producing cycles.

Project Number

115M658

References

  • [1] Onofre Y.J., Catto A.C., Bernardini S., Fiorido T., Aguir K., Longo E., Mastelaro V.R., da Silva L.F., de Godoy M.P.F., Highly selective ozone gas sensor based on nanocrystalline Zn0.95Co0.05O thin film obtained via spray pyrolysis technique, Appl. Surf. Sci., 478, 347–354, (2019).[2] Gao H., Yu Q., Chen K., Sun P., Liu F., Yan X., Liu F., Lu G., Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection, J. Colloid Interface Sci., 535, 458-468, (2019).[3] Samerjai T., Channei D., Khanta C., Inyawilert K.,Liewhiran C., Wisitsoraat A., Phokharatkul D., Phanichphant S., Flame-spray-made Zn-In-O alloyed nanoparticles for NO2 gas sensing, J Alloy. Compd., 680, 711-721, (2016).[4] Bai S., Tong W., Tian Y.,Fu H.,Zhao Y.,Shu X., Luo R., Li D., Chen A., Facile synthesis of Pd-doped ZnSnO3 hierarchical microspheres for enhancing sensing properties of formaldehyde, J. Mater. Sci., 54;3, 2025–2036, (2019).[5] Karaduman I., Barin Ö., Yıldız D.E., Acar S., Atomik Tabaka Biriktirme Metodu ile Üretilen HfO2 Tabanlı Sensörlerin Hidrojen Gaz Algılama Özelliklerinin İncelenmesi, Journal of Polytechnic, 2016; 19 (3) : 223-229. [6] Kumar V., Singh K., Sharma J., Kumar A., Vij A., Thakur A., Zn-doped SnO2 nanostructures: structural, morphological and spectroscopic properties, J Mater. Scı.-Mater. El., 28;24, 18849–18856, (2017).[7] Saadeddin I., Hilal H.S., Pecquenard B., Marcus J., Mansouri A., Labrugere C., Subramanian M.A., Campet G., Simultaneous doping of Zn and Sb in SnO2 ceramics: Enhancement of electrical conductivity, Solid State Sci., 8;1, 7-13, (2006). [8] Guan Y., Wang D., Zhou X., Sun P., Wang H., Ma J., Lu G., Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures, Sens. Actuators B, 191, 45-52, (2014).[9] Gupta P., Sharma S.K., A study of oxygen gas sensing in Zn-doped SnO2 nanostructures, Mater. Res. Express, 4, 065010, (2017).[10] Singh D., Singh Kundu V., Maan A. S., Structural, morphological and gas sensing study of zinc doped tin oxide nanoparticles synthesized via hydrothermal technique, J. Mol. Struct., 1115, 250-257, (2016). [11] Galioglu S. , Karaduman I., Çorlu T. , Akata B. , Yıldırım M. A. , Ateş A. , Acar S. , Zeolite A coated Zn1−XCuXO MOS sensors for NO gas detection, J. Mater. Sci.: Mater. Elektron, 29;2, 1356-1368, (2018).[12] Çorlu T., Karaduman I., Galioglu S., Akata B., Yıldırım M.A., Ates A., Acar S., Low level NO gas sensing properties of Cu doped ZnO thin films prepared by SILAR method, Mater. Lett., 212, 292–295 (2018).[13] Karunakaran M., Maheswari S., Kasirajan K., Dinesh Raj S., Chandramohan R., Structural and Optical Properties of Mn-Doped ZnO Thin Films Prepared by SILAR Method, International Letters of Chemistry, Physics and Astronomy, 73, 22-30, (2017). [14] Karaduman Er I., Çağırtekın A.O., Çorlu T., Yıldırım M.A., Ateş A., Acar S., Low-level NO gas sensing properties of Zn1−xSnxO nanostructure sensors under UV light irradiation at room temperature, Bull. Mater. Sci., 42;32 (2019).[15] Vermaa M., Dwivedib P. K., Das B., Structure–property correlation of pure and Sn-doped ZnO nanocrystalline materials prepared by co-precipitation, Journal of Experimental Nanoscience, 10;6, 438–448, (2015). [16] Zhang Z., Yi J.B., Ding J.,Wong L.M., Seng H.L.,Wang S.J. Cu-Doped ZnO Nanoneedles and Nanonails: Morphological Evolution and Physical Properties, J. Phys. Chem. C 112, 9579, (2008).[17] Patıl A., Dıghavkar C., Borse R., Al Doped Zno Thick Films As CO2 Gas Sensors, J. Optoelectron Adv. M., 13;10, 1331-1337, (2011). [18] Zhou Q., Chen W., Xu L., Kumar R., Gui Y., Zhao Z., Tang C., Zhu S., Highly sensitive carbon monoxide (CO) gas sensors based on Ni and Zn doped SnO2 nanomaterials, Ceram. Int. 44, 4392–4399, (2018).[19] Zheng L., Xu T., Li G., Q Yin, Influence of thickness on oxygen-sensing properties of TiO2 thin films on Al2O3, J. Appl. Phys., Part 1 41, 4655-4658, (2002).[20] Hossein-Babari F., Orvatinia M., Analysis of thickness dependence of the sensitivity in thin film resistive gas sensors, Sens. Actuators B 89, 256-261, (2003).[21] Christoulakis S., Suchea M., Koudoumas E., Katharakis M., Katsarakis N., Kiriakidis G., Thickness influence on surface morphology and ozone sensing properties of nanostructured ZnO transparent thin films grown by PLD, Appl. Surf. Sci., 252, 5351-5354, (2006).[22] Çorlu T., Karaduman I.,Yildirim M.A., Ateş A.,Acar S., Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films, J. Electron. Mater., 46;7, 3995–4002, (2017). [23] Huang H., Tian S., Xu J., Xie Z., Zeng D., Chen D., Shen G., Needle-like Zn-doped SnO2 nanorods with enhanced photocatalytic and gas sensing properties, Nanotechnology, 23, 105502, (2012).
There are 1 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

İrmak Karaduman Er 0000-0003-3786-3865

Tuğba Çorlu This is me 0000-0003-3786-3865

Memet Ali Yıldırım 0000-0003-3786-3865

Aytunç Ateş This is me 0000-0003-3786-3865

Selim Acar 0000-0003-3786-3865

Project Number 115M658
Publication Date December 1, 2020
Submission Date September 17, 2019
Published in Issue Year 2020 Volume: 23 Issue: 4

Cite

APA Karaduman Er, İ., Çorlu, T., Yıldırım, M. A., Ateş, A., et al. (2020). Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors. Politeknik Dergisi, 23(4), 1189-1196. https://doi.org/10.2339/politeknik.621181
AMA Karaduman Er İ, Çorlu T, Yıldırım MA, Ateş A, Acar S. Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors. Politeknik Dergisi. December 2020;23(4):1189-1196. doi:10.2339/politeknik.621181
Chicago Karaduman Er, İrmak, Tuğba Çorlu, Memet Ali Yıldırım, Aytunç Ateş, and Selim Acar. “Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors”. Politeknik Dergisi 23, no. 4 (December 2020): 1189-96. https://doi.org/10.2339/politeknik.621181.
EndNote Karaduman Er İ, Çorlu T, Yıldırım MA, Ateş A, Acar S (December 1, 2020) Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors. Politeknik Dergisi 23 4 1189–1196.
IEEE İ. Karaduman Er, T. Çorlu, M. A. Yıldırım, A. Ateş, and S. Acar, “Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors”, Politeknik Dergisi, vol. 23, no. 4, pp. 1189–1196, 2020, doi: 10.2339/politeknik.621181.
ISNAD Karaduman Er, İrmak et al. “Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors”. Politeknik Dergisi 23/4 (December 2020), 1189-1196. https://doi.org/10.2339/politeknik.621181.
JAMA Karaduman Er İ, Çorlu T, Yıldırım MA, Ateş A, Acar S. Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors. Politeknik Dergisi. 2020;23:1189–1196.
MLA Karaduman Er, İrmak et al. “Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors”. Politeknik Dergisi, vol. 23, no. 4, 2020, pp. 1189-96, doi:10.2339/politeknik.621181.
Vancouver Karaduman Er İ, Çorlu T, Yıldırım MA, Ateş A, Acar S. Low Concentration NO Gas Detection Of SnO2 And Zn0.50Sn0.50O Sensors. Politeknik Dergisi. 2020;23(4):1189-96.