Research Article
BibTex RIS Cite

Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft

Year 2024, Volume: 13 Issue: 2, 419 - 428, 15.04.2024
https://doi.org/10.28948/ngumuh.1396487

Abstract

Continuous research and development have focused on optimizing wing aerodynamics and reducing fuel consumption in air vehicles since their inception. Winglets, fixed curved structures at wingtips, gained significant attention during the oil crisis for their fuel-saving potential in the aviation industry. This study focuses on designing a morphing winglet using a shape memory alloy (SMA) for improved aerodynamic efficiency and fuel economy under various conditions. The XFLR5 software analyzes the wing's lift and drag ratios at different aircraft stages (take-off, cruise, landing) for different cant angles. Results indicate that a moving winglet enhances the lift/drag ratio and reduces induced drag. Cant angle and angle of attack (AOA) variations play key roles in increasing this ratio. Optimal values for different aircraft stages are determined and discussed alongside existing mechanisms for moving winglets. Experimental data validation from previous studies in the literature concludes the research.

References

  • E. Torenbeek, Advanced aircraft design: conceptual design, analysis and optimization of subsonic civil airplanes. John Wiley & Sons, 2013.
  • J. E. Guerrero, D. Maestro and A. Bottaro, Biomimetic spiroid winglets for lift and drag control. Comptes Rendus Mécanique, 340, 1–2, 67–80, Jan. 2012. https://doi.org/10.1016/J.CRME.2011.11.007.
  • I. Kroo, Nonplanar wing concepts for increased aircraft efficiency. VKI lecture series on innovative configurations and advanced concepts for future civil aircraft, Stanford University, USA, 2005.
  • I. Kroo, Drag Due to Lift: Concepts for prediction and reduction, Annual Review of Fluid Mechanics. Palo Alto, 33, 1, 587–617, 2001. https://doi.org/10.1146/annurev.fluid.33.1.587.
  • Air Force Studies Board, and National Research Council, Assessment of wingtip modifications to increase the fuel efficiency of air force aircraft. National Academies Press, Washington, DC, 2007.
  • R. Faye, R Laprete and M. Winter, Blended Winglets for Improved Airplane Performance, Aero, Boeing, (17), January 2002.
  • B. S. de Mattos, A. P. Macedo and D. H. da Silva Filho, Considerations about winglet design. 21st AIAA Applied Aerodynamics Conference, 2003. https://doi.org/10.2514/6.2003-3502.
  • R. T. Whitcomb, A design approach and selected wind tunnel results at high subsonic speeds for wing-tip mounted winglets, NASA Langley Research Center Hampton, Washington, NASA Technical Note TN D-8260, July 1976.
  • J. E. Guerrero, M. Sanguineti and K. Wittkowski, Variable cant angle winglets for improvement of aircraft flight performance. Meccanica, 55, 10, 1917–1947, 2020. https://doi.org/ 10.1007/S11012-020-01230-1.
  • D. Hartl, B. Volk, D. C. Lagoudas, F. Calkins and J. Mabe, Thermomechanical Characterization and Modeling of Ni60Ti40 SMA for Actuated Chevrons. American Society of Mechanical Engineers, Aerospace Division (Publication) AD, 281–290, 2007. https://doi.org/10.1115/IMECE2006-15029.
  • J. Chambers, Concept to reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s, 2003.
  • NASA, NASA Contribution: Winglets, 2015. http://www.nasa.gov/aero/nasa-contribution-winglets.html, Accessed: 15 November 2022.
  • E. Acar, Precipitation, orientation and composition effects on the shape memory properties of high strength NiTiHfPd alloys, Thesis, University of Kentucky, UK, 2014.
  • K. Otsuka and T. Kakeshita, Science and Technology of Shape-Memory Alloys: New Developments. MRS Bull, 27, 2, 91–100, 2002. https://doi.org/10.1557/MRS2002.43.
  • K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-based Shape Memory Alloys. Prog Mater Sci, 50, 5, 511–678, 2005. https://doi.org/10.1016/j.pmatsci.2004.10.001.
  • T.R. Meling, The effect of temperature on the elastic responses to longitudinal torsion of rectangular nickel titanium archwires. The Angle Orthodontist, 68(4), 357-368, 1998. https://doi.org/10.1043/0003-3219(1998)068<0357:TEOTOT>2.3.CO;2.
  • Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 8th Edition, Chapter 1 Introduction And Basic Concepts, 2015.
  • D. Reynaerts and H. Van Brussel, Design aspects of shape memory actuators. Mechatronics, 8, 6, 635–656, 1998. https://doi.org/10.1016/S0957-4158(98)00023-3.
  • J. B. Allen, Articulating winglets, U.S. Patent, US5988563A, 23 November 1999.
  • J. R. Veile, Wing fold push-pin locking assembly, U.S. Patent, US9469392B2, 19 April 1994.
  • R. M. Bray, Winglet, U.S. Patent, US7988099B2, 02 August 2011.
  • Boeing Commercial, Video: Boeing 777x folding wingtip. https://www.boeing.com/777x/reveal/video-777x-FoldingWingtip/, Accessed December 2022
  • B. Barriety, Wing load alleviation apparatus and method, U.S. Patent, US6827314B2, 07 December 2004.
  • P. Bourdin, A. Gatto and M. I. Friswell, Aircraft Control via Variable Cant-Angle Winglets, 45, 2, 414–423, 2012. https://doi.org/10.2514/1.27720.
  • P. Panagiotou, M. Efthymiadis, D. Mitridis and K. Yakinthos, “A CFD-aided investigation of the morphing winglet concept for the performance optimization of fixed-wing MALE UAVS,” Aerospace Research Central, 42, 2018. https://doi.org/10.2514/6.2018-4220.
  • P. Dees and M. Sankrithi, Wing load alleviation apparatus and method, U.S. Patent, US20070114327A1, 24 May 2007.
  • A. M. Pankonien, Smart Material Wing Morphing for Unmanned Aerial Vehicles. Thesis, Unıversıty Of Mıchıgan Library, USA, 2015.
  • P. Marks, ‘Morphing’ winglets to boost aircraft efficiency, New Scientist, 201, 2692, 22–23, 21 January 2009. https://doi.org/10.1016/S0262-4079(09)60208-6.
  • NASA, NASA Tests New Alloy to Fold Wings in Flight. https://www.nasa.gov/aeronautics/nasa-tests-new-alloy-to-fold-wings-in-flight/, Accessed: 25 December 2022.
  • A.P. Mouritz, Titanium alloys for aerospace structures and engines, Introduction to Aerospace Materials, Woodhead Publishing Limited, Sawston, U.K., pp. 202–223, 2012. https://doi.org/10.1533/9780857095152.202.
  • M. Kumar, S. Bal and B. Girish, Proceedings of First Joint International Conference on Advances in Mechanical and Aerospace Engineering, pp. 239, Alliance University, Bengaluru, India, December 2023.
  • E. S. Rutowski, Energy Approach to the General Aircraft Performance Problem, Aerospace Research Central, 21, 3, 187–195, 2012. https://doi.org/10.2514/8.2956.
  • Boeing, 737 Airplane Characterisitics for Airport Planing. https://www.slideshare.net/RenzoJoseJuradoRolon/737-66864457/, Accessed: 06 March 2024.
  • A. Thomas, W. Saric, A. Braslow and D. Bushnell, Aircraft Drag Prediction and Reduction. Defense Technical Information Center, France, Technical Report AGARD-R-723, 01 Jul 1985.

Bir yolcu uçağına şekil hafızalı alaşım malzemesi uygulanarak dönüşen kanatçık tasarımının ve etkilerinin araştırılması

Year 2024, Volume: 13 Issue: 2, 419 - 428, 15.04.2024
https://doi.org/10.28948/ngumuh.1396487

Abstract

Sürekli araştırma ve geliştirme, başlangıcından bu yana hava araçlarında kanat aerodinamiğini optimize etmeye ve yakıt tüketimini azaltmaya odaklanmıştır. Kanat uçlarındaki sabit kavisli yapılar olan kanatçıklar, havacılık endüstrisindeki yakıt tasarrufu potansiyeli nedeniyle petrol krizi sırasında büyük ilgi görmüştür. Bu çalışma, çeşitli koşullar altında gelişmiş aerodinamik verimlilik ve yakıt ekonomisi için şekil hafızalı alaşım (SMA) kullanan bir geçiş kanatçığı tasarlamaya odaklanmaktadır. XFLR5 yazılımı, farklı eğim açıları için farklı uçak aşamalarında (kalkış, seyir, iniş) kanadın kaldırma ve sürükleme oranlarını analiz eder. Sonuçlar, hareketli bir kanatçığın kaldırma/sürükleme oranını arttırdığını ve indüklenen sürüklemeyi azalttığını göstermektedir. Cant açısı ve hücum açısı (AOA) varyasyonları bu oranın arttırılmasında anahtar rol oynamaktadır. Kanatçıkların hareket ettirilmesine yönelik mevcut mekanizmaların yanı sıra, farklı uçak aşamaları için en uygun değerler belirlenmekte ve tartışılmaktadır. Literatürdeki önceki çalışmalardan elde edilen deneysel verilerin doğrulanması araştırmayı sonuçlandırmaktadır.

References

  • E. Torenbeek, Advanced aircraft design: conceptual design, analysis and optimization of subsonic civil airplanes. John Wiley & Sons, 2013.
  • J. E. Guerrero, D. Maestro and A. Bottaro, Biomimetic spiroid winglets for lift and drag control. Comptes Rendus Mécanique, 340, 1–2, 67–80, Jan. 2012. https://doi.org/10.1016/J.CRME.2011.11.007.
  • I. Kroo, Nonplanar wing concepts for increased aircraft efficiency. VKI lecture series on innovative configurations and advanced concepts for future civil aircraft, Stanford University, USA, 2005.
  • I. Kroo, Drag Due to Lift: Concepts for prediction and reduction, Annual Review of Fluid Mechanics. Palo Alto, 33, 1, 587–617, 2001. https://doi.org/10.1146/annurev.fluid.33.1.587.
  • Air Force Studies Board, and National Research Council, Assessment of wingtip modifications to increase the fuel efficiency of air force aircraft. National Academies Press, Washington, DC, 2007.
  • R. Faye, R Laprete and M. Winter, Blended Winglets for Improved Airplane Performance, Aero, Boeing, (17), January 2002.
  • B. S. de Mattos, A. P. Macedo and D. H. da Silva Filho, Considerations about winglet design. 21st AIAA Applied Aerodynamics Conference, 2003. https://doi.org/10.2514/6.2003-3502.
  • R. T. Whitcomb, A design approach and selected wind tunnel results at high subsonic speeds for wing-tip mounted winglets, NASA Langley Research Center Hampton, Washington, NASA Technical Note TN D-8260, July 1976.
  • J. E. Guerrero, M. Sanguineti and K. Wittkowski, Variable cant angle winglets for improvement of aircraft flight performance. Meccanica, 55, 10, 1917–1947, 2020. https://doi.org/ 10.1007/S11012-020-01230-1.
  • D. Hartl, B. Volk, D. C. Lagoudas, F. Calkins and J. Mabe, Thermomechanical Characterization and Modeling of Ni60Ti40 SMA for Actuated Chevrons. American Society of Mechanical Engineers, Aerospace Division (Publication) AD, 281–290, 2007. https://doi.org/10.1115/IMECE2006-15029.
  • J. Chambers, Concept to reality: Contributions of the Langley Research Center to US Civil Aircraft of the 1990s, 2003.
  • NASA, NASA Contribution: Winglets, 2015. http://www.nasa.gov/aero/nasa-contribution-winglets.html, Accessed: 15 November 2022.
  • E. Acar, Precipitation, orientation and composition effects on the shape memory properties of high strength NiTiHfPd alloys, Thesis, University of Kentucky, UK, 2014.
  • K. Otsuka and T. Kakeshita, Science and Technology of Shape-Memory Alloys: New Developments. MRS Bull, 27, 2, 91–100, 2002. https://doi.org/10.1557/MRS2002.43.
  • K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-based Shape Memory Alloys. Prog Mater Sci, 50, 5, 511–678, 2005. https://doi.org/10.1016/j.pmatsci.2004.10.001.
  • T.R. Meling, The effect of temperature on the elastic responses to longitudinal torsion of rectangular nickel titanium archwires. The Angle Orthodontist, 68(4), 357-368, 1998. https://doi.org/10.1043/0003-3219(1998)068<0357:TEOTOT>2.3.CO;2.
  • Y. A. Cengel and M. A. Boles, Thermodynamics: An Engineering Approach, 8th Edition, Chapter 1 Introduction And Basic Concepts, 2015.
  • D. Reynaerts and H. Van Brussel, Design aspects of shape memory actuators. Mechatronics, 8, 6, 635–656, 1998. https://doi.org/10.1016/S0957-4158(98)00023-3.
  • J. B. Allen, Articulating winglets, U.S. Patent, US5988563A, 23 November 1999.
  • J. R. Veile, Wing fold push-pin locking assembly, U.S. Patent, US9469392B2, 19 April 1994.
  • R. M. Bray, Winglet, U.S. Patent, US7988099B2, 02 August 2011.
  • Boeing Commercial, Video: Boeing 777x folding wingtip. https://www.boeing.com/777x/reveal/video-777x-FoldingWingtip/, Accessed December 2022
  • B. Barriety, Wing load alleviation apparatus and method, U.S. Patent, US6827314B2, 07 December 2004.
  • P. Bourdin, A. Gatto and M. I. Friswell, Aircraft Control via Variable Cant-Angle Winglets, 45, 2, 414–423, 2012. https://doi.org/10.2514/1.27720.
  • P. Panagiotou, M. Efthymiadis, D. Mitridis and K. Yakinthos, “A CFD-aided investigation of the morphing winglet concept for the performance optimization of fixed-wing MALE UAVS,” Aerospace Research Central, 42, 2018. https://doi.org/10.2514/6.2018-4220.
  • P. Dees and M. Sankrithi, Wing load alleviation apparatus and method, U.S. Patent, US20070114327A1, 24 May 2007.
  • A. M. Pankonien, Smart Material Wing Morphing for Unmanned Aerial Vehicles. Thesis, Unıversıty Of Mıchıgan Library, USA, 2015.
  • P. Marks, ‘Morphing’ winglets to boost aircraft efficiency, New Scientist, 201, 2692, 22–23, 21 January 2009. https://doi.org/10.1016/S0262-4079(09)60208-6.
  • NASA, NASA Tests New Alloy to Fold Wings in Flight. https://www.nasa.gov/aeronautics/nasa-tests-new-alloy-to-fold-wings-in-flight/, Accessed: 25 December 2022.
  • A.P. Mouritz, Titanium alloys for aerospace structures and engines, Introduction to Aerospace Materials, Woodhead Publishing Limited, Sawston, U.K., pp. 202–223, 2012. https://doi.org/10.1533/9780857095152.202.
  • M. Kumar, S. Bal and B. Girish, Proceedings of First Joint International Conference on Advances in Mechanical and Aerospace Engineering, pp. 239, Alliance University, Bengaluru, India, December 2023.
  • E. S. Rutowski, Energy Approach to the General Aircraft Performance Problem, Aerospace Research Central, 21, 3, 187–195, 2012. https://doi.org/10.2514/8.2956.
  • Boeing, 737 Airplane Characterisitics for Airport Planing. https://www.slideshare.net/RenzoJoseJuradoRolon/737-66864457/, Accessed: 06 March 2024.
  • A. Thomas, W. Saric, A. Braslow and D. Bushnell, Aircraft Drag Prediction and Reduction. Defense Technical Information Center, France, Technical Report AGARD-R-723, 01 Jul 1985.
There are 34 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Articles
Authors

Ahmet Kaplan 0009-0005-4322-9459

Sedat Nezih Karaal This is me 0009-0009-2966-4509

Rafet Bodur This is me 0009-0008-4432-9226

Hasan Bora This is me 0009-0007-5095-6800

Görkem Şakacı This is me 0009-0005-0443-9170

Furkan Datlı This is me 0009-0002-8542-8008

Fahrettin Öztürk 0000-0001-9517-7957

Early Pub Date March 11, 2024
Publication Date April 15, 2024
Submission Date December 11, 2023
Acceptance Date December 27, 2023
Published in Issue Year 2024 Volume: 13 Issue: 2

Cite

APA Kaplan, A., Karaal, S. N., Bodur, R., Bora, H., et al. (2024). Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(2), 419-428. https://doi.org/10.28948/ngumuh.1396487
AMA Kaplan A, Karaal SN, Bodur R, Bora H, Şakacı G, Datlı F, Öztürk F. Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft. NOHU J. Eng. Sci. April 2024;13(2):419-428. doi:10.28948/ngumuh.1396487
Chicago Kaplan, Ahmet, Sedat Nezih Karaal, Rafet Bodur, Hasan Bora, Görkem Şakacı, Furkan Datlı, and Fahrettin Öztürk. “Investigation of Design and Effects of a Morphing Winglet by Applying a Shape-Memory Alloy Material on a Passenger Aircraft”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13, no. 2 (April 2024): 419-28. https://doi.org/10.28948/ngumuh.1396487.
EndNote Kaplan A, Karaal SN, Bodur R, Bora H, Şakacı G, Datlı F, Öztürk F (April 1, 2024) Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13 2 419–428.
IEEE A. Kaplan, “Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft”, NOHU J. Eng. Sci., vol. 13, no. 2, pp. 419–428, 2024, doi: 10.28948/ngumuh.1396487.
ISNAD Kaplan, Ahmet et al. “Investigation of Design and Effects of a Morphing Winglet by Applying a Shape-Memory Alloy Material on a Passenger Aircraft”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 13/2 (April 2024), 419-428. https://doi.org/10.28948/ngumuh.1396487.
JAMA Kaplan A, Karaal SN, Bodur R, Bora H, Şakacı G, Datlı F, Öztürk F. Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft. NOHU J. Eng. Sci. 2024;13:419–428.
MLA Kaplan, Ahmet et al. “Investigation of Design and Effects of a Morphing Winglet by Applying a Shape-Memory Alloy Material on a Passenger Aircraft”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 13, no. 2, 2024, pp. 419-28, doi:10.28948/ngumuh.1396487.
Vancouver Kaplan A, Karaal SN, Bodur R, Bora H, Şakacı G, Datlı F, Öztürk F. Investigation of design and effects of a morphing winglet by applying a shape-memory alloy material on a passenger aircraft. NOHU J. Eng. Sci. 2024;13(2):419-28.

23135