Research Article
BibTex RIS Cite

Effect of high temperature on mechanical properties of fly ash, glass powder, and cement-based hybrid geopolymer mortars and life cycle assessment (LCA)

Year 2023, Volume: 12 Issue: 3, 835 - 843, 15.07.2023
https://doi.org/10.28948/ngumuh.1256043

Abstract

In this study, the effect of high temperature on the mechanical properties of air-cured fly ash (FA) and waste glass powder (GP) based geopolymer mortars and conventional and hybrid (FA+GP, GP+PC, FA+GP+PC) geopolymer mortars containing Portland cement (PC) were investigated. Flexural and compressive tests were applied to the mortar samples separately before high temperature and after 400 ºC, 600 ºC, and 800 ºC. In addition, the Global Warming Potential (GWP, equivalent CO2 emissions) values were calculated by applying the Life Cycle Assessment (LCA). Sodium silicate (SS) and sodium hydroxide (SH) were used as alkali activators in geopolymer and hybrid mortar mixtures. In the hybrid geopolymer mixture, in which FA, GP, and PC were used in equal amounts, higher strengths were obtained than that of the other hybrid geopolymer mortars in which these three materials were used together. The use of equal amounts of all three materials provided a synergistic effect regarding both the effective use of materials and performance. Compressive strength increases of up to 280% were determined at 800 ºC compared to before the test in hybrid geopolymer mortars. Compared to the control mixture containing 100% PC, reductions in CO2 emissions were obtained by up to 47.7% in geopolymer mortars containing only FA or GP, and up to 31% in hybrid geopolymer mortars in which FA, GP, and PC were used together.

References

  • C. Bataille, Low and zero emissions in the steel and cement industries: Barriers, technologies and policies. OECD Green Growth Papers, OECD Publishing, No. 2020/02, Paris, 2020. https://doi.org/10.1787/ 5ccf8e33-en.
  • C. Li, X.Z. Gong, S.P. Cui, Z.H. Wang, Y. Zheng, B.C. Chi, CO2 Emissions due to Cement Manufacture. Mater. Sci. Forum, 685, 181–187, 2011.https://doi.org/10.4028/www.scientific.net/MSF.685.181.
  • J. S. J. V. Deventer, J. L. Provis, P.Duxson, D. G. Brice, Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valorization, 1 (1), 145–155, 2010.https://doi.org/10.1007/s12649-010-9015-9.
  • L. N. Assi, K. Carter, E. Deaver, P. Ziehl, Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 263,121477,2020.https://doi.org/10.1016/j.jclepro.2020.121477.
  • Z. Ji, Y. Pei, Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review. J. Environ. Manag. 231,256–267,2019.https://doi.org/10.1016/j.jenvman.2018.10.041.
  • H. Y. Aruntaş, Uçucu küllerin inşaat sektöründe kullanım potansiyeli. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 21 (1), 193-203, 2006.
  • E. Worrel, N. Martin, L. Price, Potentials for energy efficiency improvement in the US cement industry. Energy, 25 (12), 1189-1214, 2000. https://doi.org/ 10.1016/S0360-5442(00)00042-6.
  • S. Li, D. M. Roy, Investigation of relations between porosity, pore structure, and C1− diffusion of fly ash and blended cement pastes. Cement and Concrete Research, 16 (5), 749-759, 1986. https://doi.org/ 10.1016/0008-8846(86)90049-9.
  • F. Canpolat, K. Yılmaz, Doğal zeolit ve uçucu kül katkılı ve katkısız harçların sülfat dayanıklılığı. Osmangazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2, 1- 15, 2002.
  • V. Saraswathy, S. Muralidharan, K. Thangavel, S. Srinivasan, Influence of activated fly ash on corrosion-resistance and strength of concrete. Cement and Concrete Composites, 25 (7), 673- 680, 2003. https://doi.org/10.1016/S0958-9465(02)00068-9
  • X. Fu, Y. Wang, S. Huang, X. Hou, W. Hou, The influences of siliceous waste on blended cement properties. Cement and Concrete Research, 33 (6), 851-856, 2003. https://doi.org/10.1016/S0008-8846(02)01095-5
  • X. Fu, Z. Wang, W. Tao, C. Yang, W. Hou, Y. Dong, X. Wu, Studies on blended cement with a large amount of fly ash. Cement and Concrete Research, 32 (7), 1153-1159, 2002. https://doi.org/10.1016/S0008-8846(02)00757-3
  • P. Chindaprasirt, S. Homwuttiwong, V. Sirivivatnanon, Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research, 34 (7), 1087-1092, 2004. https://doi.org/ 10.1016/j.cemconres.2003.11.021
  • I. B. Topçu and M. Canbaz, Properties of concrete containing waste glass. Cem. Concr. Res., 34(2), 267–274, 2004. https://doi.org/ 10.1016/j.cemconres.2003.07.003
  • Y. Jani and W. Hogland, Waste glass in the production of cement and concrete - A review. J. Environ. Chem. Eng., 2(3), 1767–1775, 2014. https://doi.org/10.1016/ j.jece.2014.03.016
  • M. Vafaei and A. Allahverdi, High strength geopolymer binder based on waste-glass powder. Adv. Powder Technol., 28(1), 215–222, 2017. https://doi.org/10.1016/j.apt.2016.09.034
  • T. M. Borhan, Properties of glass concrete reinforced with short basalt fibre. Mater. Des., 42, 265–271, 2012. https://doi.org/10.1016/j.matdes.2012.05.062.
  • V. Vaitkevičius, E. Šerelis, and H. Hilbig, The effect of glass powder on the microstructure of ultra high performance concrete. Constr. Build. Mater., 68, 102–109, 2014. https://doi.org/10.1016/ j.conbuildmat.2014.05.101
  • H. Du and K. H. Tan, Properties of high volume glass powder concrete. Cem. Concr. Compos., 75, 22–29, 2017.https://doi.org/10.1016/j.cemconcomp.2016.10.010
  • M. Mirzahosseini and K. A. Riding, Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM). Cem. Concr. Compos., 56, 95–105, 2015. https://doi.org/10.1016/j.cemconcomp.2014.10.004
  • X. Jiang, Y. Zhang, Y. Zhang, J. Ma, R. Xiao, F. Guo, Y. Bai, B. Huang, Influence of size effect on the properties of slag and waste glass-based geopolymer paste. Journal of Cleaner Production, 383, 2022. https://doi.org/10.1016/j.jclepro.2022.135428.
  • N. Schwarz, H. Cam, N. Neithalath, Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash. Cement and Concrete Composites, 30(6), 486-496, 2008. https://doi.org/10.1016/j.cemconcomp.2008.02.001
  • W. Duan, Y. Zhuge, C. W. Chow, A. Keegan, Y. Liu, R. Siddique, Mechanical performance and phase analysis of an eco-friendly alkali-activated binder made with sludge waste and blast-furnace slag. Journal of Cleaner Production, 374, 134024, 2022. https://doi.org/10.1016/j.jclepro.2022.134024
  • Y. Sun, Z. Liu, S. Ghorbani, G. Ye, G. De Schutter, Fresh and hardened properties of alkali-activated slag concrete: The effect of fly ash as a supplementary precursor. Journal of Cleaner Production, 370, 133362, 2022. https://doi.org/10.1016/j.jclepro.2022.133362
  • Q. Huang, Z. Tao, Z. Pan, R. Wuhrer, M. Rahme, Use of sodium/potassium citrate to enhance strength development in carbonate-activated hybrid cement. Construction and Building Materials, 350, 128913, 2022.https://doi.org/10.1016/j.conbuildmat.2022.128913
  • A. M. Onaizi, N. H. A. S. Lim, G. F. Huseien, M. Amran, C. K. Ma, Effect of the addition of nano glass powder on the compressive strength of high volume fly ash modified concrete. Materials Today, Proceedings, 48, 1789-1795, 2022. https://doi.org/ 10.1016/j.matpr.2021.08.347
  • T. Lan, Y. Meng, T. Ju, M. Song, Z. Chen, P. Shen, J. Jiang, Manufacture of alkali-activated and geopolymer hybrid binder (AGHB) by municipal waste incineration fly ash incorporating aluminosilicate supplementary cementitious materials (ASCM). Chemosphere, 134978, 2022. https://doi.org/10.1016/ j.chemosphere.2022.134978
  • T. Tho-In, V. Sata, K. Boonserm, P. Chindaprasirt, Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. Journal of cleaner production, 172, 2892-2898, 2018. https://doi.org/10.1016/j.jclepro.2017.11.125
  • S. M. Soares, T. O. G. Freitas, A. Oliveira Júnior, F. G. S. Ferreira, and J. A. A. Salvador Filho, Assessment of properties of ultrahigh performance cementitious composites with glass powder waste. Rev. IBRACON Estrut. Mater., 15(6), e15612, 2022. https://doi.org/10.1590/S1983-41952022000600012
  • İ. İ. Atabey, C. Ay, Kalsiyum Alüminat Çimentosunun Farklı Kür Koşullarında Atık Cam Tozu Esaslı Geopolimer Harçların Fiziksel ve Mekanik Özelliklerine Etkisi. Avrupa Bilim ve Teknoloji Dergisi, Ejosat Special Issue 2021 (ARACONF), 184-189, 2021. https://doi.org/10.31590/ejosat.899513
  • P. Turgut, Uçucu kül, kireç ve cam tozu kullanarak blok üretimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(3), 413-418, 2018. https://doi.org/10.5505/ pajes.2016.70048.
  • TS EN 196 -1, Çimento Deney Metotları - Bölüm 1: Dayanım Tayini. Türk Standartları Enstitüsü, Ankara, 2016
  • K.R. O’Brien, J. M´enach´e, L.M. O’Moore, Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int. J. Life Cycle Assess. 14 (7), 621–629, 2009. https://doi.org/10.1007/s11367-009-0105-5.
  • S. Çelikten, M. Sarıdemir, İ. Ö. Deneme, Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50-61, 2019. https://doi.org/10.1016/j.conbuildmat.2019.05.055.
  • A. Buchwald, M. Vicent, R. Kriegel, C. Kaps, M. Monzó, A. Barba, Geopolymeric binders with different fine fillers—Phase transformations at high temperatures. Applied Clay Science, 46(2), 190-195, 2009. https://doi.org/10.1016/j.clay.2009.08.002.
  • M. W. Hussin, M. A. R. Bhutta, M. Azreen, P. J. Ramadhansyah, J. Mirza, Performance of blended ash geopolymer concrete at elevated temperatures. Materials and Structures, 48(3), 709-720, 2015. https://doi.org/10.1617/s11527-014-0251-5.
  • A. Gultekin, K. Ramyar, Investigation of high-temperature resistance of natural pozzolan-based geopolymers produced with oven and microwave curing. Construction and Building Materials, 365, 130059, 2023. https://doi.org/10.1016/ j.conbuildmat.2022.130059
  • M. Guerrieri, J. G. Sanjayan, Behavior of combined fly ash/slag‐based geopolymers when exposed to high temperatures. Fire and Materials: An International Journal, 34(4), 163-175, 2010. https://doi.org/ 10.1002/fam.1014
  • Z. Pan, J. G. Sanjayan, B. V. Rangan, An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature.Journal of Materials Science, 44, 1873-1880, 2009. https://doi.org/10.1007/s10853-009-3243-z.
  • S. Celikten, M. Sarıdemir, K. Akçaözoğlu, Effect of calcined perlite content on elevated temperature behaviour of alkali activated slag mortars. Journal of Building Engineering, 32, 101717, 2020. https://doi.org/10.1016/j.jobe.2020.101717.
  • L. John, S. Provis, A. Bernal, Geopolymers and related alkali-related materials. Annu. Rev. Mater. Res., 44, 2014. https://doi.org/10.1146/annurev-matsci-070813-113515.
  • Y. Deng, C. Yan, J. Zhang, L. Yin, S. Liu, Y. Yan, Preparation and mechanical characterization of engineered cementitious composites with high-volume fly ash and waste glass powder. Journal of Cleaner Production, 333, 13022, 2022. https://doi.org/10.1016/j.jclepro.2021.130222.
  • M.H. Samarakoon, P.G. Ranjith, W.H. Duan, V.R.S. De Silva, Properties of onepart fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: a comparative study. Cement Concr. Compos. 103679, 2020. https://doi.org/ 10.1016/j.cemconcomp.2020.103679
  • V. Shobeiri, B. Bennett, T. Xie, P. Visintin, Mix design optimization of concrete containing fly ash and slag for global warming potential and cost reduction. Case Studies in Construction Materials, e01832, 2023. https://doi.org/10.1016/j.cscm.2023.e01832
  • B. Chiaia, A.P. Fantilli, A. Guerini, G. Volpatti, D. Zampini, Eco-mechanical index for structural concrete. Construct. Build. Mater. 67, 386–392, 2014. https://doi.org/10.1016/j.conbuildmat.2013.12.090
  • M. Sandanayake, C. Gunasekara, D. Law, G. Zhang, S. Setunge, Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction. Journal of Cleaner Production,204, 399-408, 2018. https://doi.org/10.1016/j.jclepro.2018.08.311
  • P. Perez-Cortes, J. I. Escalante-Garcia, Alkali activated metakaolin with high limestone contents–Statistical modeling of strength and environmental and cost analyses. Cement and Concrete Composites, 106, 103450, 2020. https://doi.org/10.1016/ j.cemconcomp.2019.103450

Uçucu kül, cam tozu ve çimento esaslı hibrit geopolimer harçların mekanik özelliklerine yüksek sıcaklığın etkisi ve yaşam döngüsü analizi (YDA)

Year 2023, Volume: 12 Issue: 3, 835 - 843, 15.07.2023
https://doi.org/10.28948/ngumuh.1256043

Abstract

Bu çalışmada, havada kür edilen uçucu kül (UK) ve atık cam tozu (CT) esaslı geopolimer harçlar ile Portland çimentosu (PÇ) içeren geleneksel ve hibrit (UK+PÇ, CT+PÇ, UK+CT+PÇ) geopolimer harçların mekanik özelliklerine yüksek sıcaklığın etkisi araştırılmıştır. Harç numunelerine yüksek sıcaklık öncesi ve 400 ºC, 600 ºC ve 800 ºC sonrası ayrı ayrı eğilme ve basınç deneyleri uygulanmıştır. Ayrıca üretilen harçlara Yaşam Döngüsü Analizi (YDA) uygulanarak karışımların Küresel Isınma Potansiyeli (KIP, eşdeğer CO2 emisyonları) değerleri hesaplanmıştır. Geopolimer ve hibrit harç karışımlarında alkali aktivatör olarak sodyum silikat (SS) ve sodyum hidroksit (SH) kullanılmıştır. UK, CT ve PÇ’nin eşit miktarda kullanıldığı hibrit geopolimer karışımda, bu üç malzemenin bir arada kullanıldığı diğer hibrit geopolimer harçlara göre daha yüksek dayanımlar elde edilmiştir. Üç malzemenin de eşit miktarda kullanılması hem malzemelerin etkin kullanımı hem de performans açısından sinerjik bir etki görülmesini sağlamıştır. Hibrit geopolimer harçlarda 800 ºC’de deney öncesine göre %280’e varan dayanım artışları tespit edilmiştir. %100 PÇ içeren kontrol karışımına göre CO2 emisyonlarında, sadece UK veya CT içeren geopolimer harçlarda % 47.7’ye, UK, CT ve PÇ’nin beraber kullanıldığı hibrit geopolimer harçlarda ise %31’e varan azalmalar kaydedilmiştir.

References

  • C. Bataille, Low and zero emissions in the steel and cement industries: Barriers, technologies and policies. OECD Green Growth Papers, OECD Publishing, No. 2020/02, Paris, 2020. https://doi.org/10.1787/ 5ccf8e33-en.
  • C. Li, X.Z. Gong, S.P. Cui, Z.H. Wang, Y. Zheng, B.C. Chi, CO2 Emissions due to Cement Manufacture. Mater. Sci. Forum, 685, 181–187, 2011.https://doi.org/10.4028/www.scientific.net/MSF.685.181.
  • J. S. J. V. Deventer, J. L. Provis, P.Duxson, D. G. Brice, Chemical research and climate change as drivers in the commercial adoption of alkali activated materials. Waste Biomass Valorization, 1 (1), 145–155, 2010.https://doi.org/10.1007/s12649-010-9015-9.
  • L. N. Assi, K. Carter, E. Deaver, P. Ziehl, Review of availability of source materials for geopolymer/sustainable concrete. J. Clean. Prod. 263,121477,2020.https://doi.org/10.1016/j.jclepro.2020.121477.
  • Z. Ji, Y. Pei, Bibliographic and visualized analysis of geopolymer research and its application in heavy metal immobilization: a review. J. Environ. Manag. 231,256–267,2019.https://doi.org/10.1016/j.jenvman.2018.10.041.
  • H. Y. Aruntaş, Uçucu küllerin inşaat sektöründe kullanım potansiyeli. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 21 (1), 193-203, 2006.
  • E. Worrel, N. Martin, L. Price, Potentials for energy efficiency improvement in the US cement industry. Energy, 25 (12), 1189-1214, 2000. https://doi.org/ 10.1016/S0360-5442(00)00042-6.
  • S. Li, D. M. Roy, Investigation of relations between porosity, pore structure, and C1− diffusion of fly ash and blended cement pastes. Cement and Concrete Research, 16 (5), 749-759, 1986. https://doi.org/ 10.1016/0008-8846(86)90049-9.
  • F. Canpolat, K. Yılmaz, Doğal zeolit ve uçucu kül katkılı ve katkısız harçların sülfat dayanıklılığı. Osmangazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 2, 1- 15, 2002.
  • V. Saraswathy, S. Muralidharan, K. Thangavel, S. Srinivasan, Influence of activated fly ash on corrosion-resistance and strength of concrete. Cement and Concrete Composites, 25 (7), 673- 680, 2003. https://doi.org/10.1016/S0958-9465(02)00068-9
  • X. Fu, Y. Wang, S. Huang, X. Hou, W. Hou, The influences of siliceous waste on blended cement properties. Cement and Concrete Research, 33 (6), 851-856, 2003. https://doi.org/10.1016/S0008-8846(02)01095-5
  • X. Fu, Z. Wang, W. Tao, C. Yang, W. Hou, Y. Dong, X. Wu, Studies on blended cement with a large amount of fly ash. Cement and Concrete Research, 32 (7), 1153-1159, 2002. https://doi.org/10.1016/S0008-8846(02)00757-3
  • P. Chindaprasirt, S. Homwuttiwong, V. Sirivivatnanon, Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cement and Concrete Research, 34 (7), 1087-1092, 2004. https://doi.org/ 10.1016/j.cemconres.2003.11.021
  • I. B. Topçu and M. Canbaz, Properties of concrete containing waste glass. Cem. Concr. Res., 34(2), 267–274, 2004. https://doi.org/ 10.1016/j.cemconres.2003.07.003
  • Y. Jani and W. Hogland, Waste glass in the production of cement and concrete - A review. J. Environ. Chem. Eng., 2(3), 1767–1775, 2014. https://doi.org/10.1016/ j.jece.2014.03.016
  • M. Vafaei and A. Allahverdi, High strength geopolymer binder based on waste-glass powder. Adv. Powder Technol., 28(1), 215–222, 2017. https://doi.org/10.1016/j.apt.2016.09.034
  • T. M. Borhan, Properties of glass concrete reinforced with short basalt fibre. Mater. Des., 42, 265–271, 2012. https://doi.org/10.1016/j.matdes.2012.05.062.
  • V. Vaitkevičius, E. Šerelis, and H. Hilbig, The effect of glass powder on the microstructure of ultra high performance concrete. Constr. Build. Mater., 68, 102–109, 2014. https://doi.org/10.1016/ j.conbuildmat.2014.05.101
  • H. Du and K. H. Tan, Properties of high volume glass powder concrete. Cem. Concr. Compos., 75, 22–29, 2017.https://doi.org/10.1016/j.cemconcomp.2016.10.010
  • M. Mirzahosseini and K. A. Riding, Influence of different particle sizes on reactivity of finely ground glass as supplementary cementitious material (SCM). Cem. Concr. Compos., 56, 95–105, 2015. https://doi.org/10.1016/j.cemconcomp.2014.10.004
  • X. Jiang, Y. Zhang, Y. Zhang, J. Ma, R. Xiao, F. Guo, Y. Bai, B. Huang, Influence of size effect on the properties of slag and waste glass-based geopolymer paste. Journal of Cleaner Production, 383, 2022. https://doi.org/10.1016/j.jclepro.2022.135428.
  • N. Schwarz, H. Cam, N. Neithalath, Influence of a fine glass powder on the durability characteristics of concrete and its comparison to fly ash. Cement and Concrete Composites, 30(6), 486-496, 2008. https://doi.org/10.1016/j.cemconcomp.2008.02.001
  • W. Duan, Y. Zhuge, C. W. Chow, A. Keegan, Y. Liu, R. Siddique, Mechanical performance and phase analysis of an eco-friendly alkali-activated binder made with sludge waste and blast-furnace slag. Journal of Cleaner Production, 374, 134024, 2022. https://doi.org/10.1016/j.jclepro.2022.134024
  • Y. Sun, Z. Liu, S. Ghorbani, G. Ye, G. De Schutter, Fresh and hardened properties of alkali-activated slag concrete: The effect of fly ash as a supplementary precursor. Journal of Cleaner Production, 370, 133362, 2022. https://doi.org/10.1016/j.jclepro.2022.133362
  • Q. Huang, Z. Tao, Z. Pan, R. Wuhrer, M. Rahme, Use of sodium/potassium citrate to enhance strength development in carbonate-activated hybrid cement. Construction and Building Materials, 350, 128913, 2022.https://doi.org/10.1016/j.conbuildmat.2022.128913
  • A. M. Onaizi, N. H. A. S. Lim, G. F. Huseien, M. Amran, C. K. Ma, Effect of the addition of nano glass powder on the compressive strength of high volume fly ash modified concrete. Materials Today, Proceedings, 48, 1789-1795, 2022. https://doi.org/ 10.1016/j.matpr.2021.08.347
  • T. Lan, Y. Meng, T. Ju, M. Song, Z. Chen, P. Shen, J. Jiang, Manufacture of alkali-activated and geopolymer hybrid binder (AGHB) by municipal waste incineration fly ash incorporating aluminosilicate supplementary cementitious materials (ASCM). Chemosphere, 134978, 2022. https://doi.org/10.1016/ j.chemosphere.2022.134978
  • T. Tho-In, V. Sata, K. Boonserm, P. Chindaprasirt, Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash. Journal of cleaner production, 172, 2892-2898, 2018. https://doi.org/10.1016/j.jclepro.2017.11.125
  • S. M. Soares, T. O. G. Freitas, A. Oliveira Júnior, F. G. S. Ferreira, and J. A. A. Salvador Filho, Assessment of properties of ultrahigh performance cementitious composites with glass powder waste. Rev. IBRACON Estrut. Mater., 15(6), e15612, 2022. https://doi.org/10.1590/S1983-41952022000600012
  • İ. İ. Atabey, C. Ay, Kalsiyum Alüminat Çimentosunun Farklı Kür Koşullarında Atık Cam Tozu Esaslı Geopolimer Harçların Fiziksel ve Mekanik Özelliklerine Etkisi. Avrupa Bilim ve Teknoloji Dergisi, Ejosat Special Issue 2021 (ARACONF), 184-189, 2021. https://doi.org/10.31590/ejosat.899513
  • P. Turgut, Uçucu kül, kireç ve cam tozu kullanarak blok üretimi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(3), 413-418, 2018. https://doi.org/10.5505/ pajes.2016.70048.
  • TS EN 196 -1, Çimento Deney Metotları - Bölüm 1: Dayanım Tayini. Türk Standartları Enstitüsü, Ankara, 2016
  • K.R. O’Brien, J. M´enach´e, L.M. O’Moore, Impact of fly ash content and fly ash transportation distance on embodied greenhouse gas emissions and water consumption in concrete. Int. J. Life Cycle Assess. 14 (7), 621–629, 2009. https://doi.org/10.1007/s11367-009-0105-5.
  • S. Çelikten, M. Sarıdemir, İ. Ö. Deneme, Mechanical and microstructural properties of alkali-activated slag and slag+ fly ash mortars exposed to high temperature. Construction and Building Materials, 217, 50-61, 2019. https://doi.org/10.1016/j.conbuildmat.2019.05.055.
  • A. Buchwald, M. Vicent, R. Kriegel, C. Kaps, M. Monzó, A. Barba, Geopolymeric binders with different fine fillers—Phase transformations at high temperatures. Applied Clay Science, 46(2), 190-195, 2009. https://doi.org/10.1016/j.clay.2009.08.002.
  • M. W. Hussin, M. A. R. Bhutta, M. Azreen, P. J. Ramadhansyah, J. Mirza, Performance of blended ash geopolymer concrete at elevated temperatures. Materials and Structures, 48(3), 709-720, 2015. https://doi.org/10.1617/s11527-014-0251-5.
  • A. Gultekin, K. Ramyar, Investigation of high-temperature resistance of natural pozzolan-based geopolymers produced with oven and microwave curing. Construction and Building Materials, 365, 130059, 2023. https://doi.org/10.1016/ j.conbuildmat.2022.130059
  • M. Guerrieri, J. G. Sanjayan, Behavior of combined fly ash/slag‐based geopolymers when exposed to high temperatures. Fire and Materials: An International Journal, 34(4), 163-175, 2010. https://doi.org/ 10.1002/fam.1014
  • Z. Pan, J. G. Sanjayan, B. V. Rangan, An investigation of the mechanisms for strength gain or loss of geopolymer mortar after exposure to elevated temperature.Journal of Materials Science, 44, 1873-1880, 2009. https://doi.org/10.1007/s10853-009-3243-z.
  • S. Celikten, M. Sarıdemir, K. Akçaözoğlu, Effect of calcined perlite content on elevated temperature behaviour of alkali activated slag mortars. Journal of Building Engineering, 32, 101717, 2020. https://doi.org/10.1016/j.jobe.2020.101717.
  • L. John, S. Provis, A. Bernal, Geopolymers and related alkali-related materials. Annu. Rev. Mater. Res., 44, 2014. https://doi.org/10.1146/annurev-matsci-070813-113515.
  • Y. Deng, C. Yan, J. Zhang, L. Yin, S. Liu, Y. Yan, Preparation and mechanical characterization of engineered cementitious composites with high-volume fly ash and waste glass powder. Journal of Cleaner Production, 333, 13022, 2022. https://doi.org/10.1016/j.jclepro.2021.130222.
  • M.H. Samarakoon, P.G. Ranjith, W.H. Duan, V.R.S. De Silva, Properties of onepart fly ash/slag-based binders activated by thermally-treated waste glass/NaOH blends: a comparative study. Cement Concr. Compos. 103679, 2020. https://doi.org/ 10.1016/j.cemconcomp.2020.103679
  • V. Shobeiri, B. Bennett, T. Xie, P. Visintin, Mix design optimization of concrete containing fly ash and slag for global warming potential and cost reduction. Case Studies in Construction Materials, e01832, 2023. https://doi.org/10.1016/j.cscm.2023.e01832
  • B. Chiaia, A.P. Fantilli, A. Guerini, G. Volpatti, D. Zampini, Eco-mechanical index for structural concrete. Construct. Build. Mater. 67, 386–392, 2014. https://doi.org/10.1016/j.conbuildmat.2013.12.090
  • M. Sandanayake, C. Gunasekara, D. Law, G. Zhang, S. Setunge, Greenhouse gas emissions of different fly ash based geopolymer concretes in building construction. Journal of Cleaner Production,204, 399-408, 2018. https://doi.org/10.1016/j.jclepro.2018.08.311
  • P. Perez-Cortes, J. I. Escalante-Garcia, Alkali activated metakaolin with high limestone contents–Statistical modeling of strength and environmental and cost analyses. Cement and Concrete Composites, 106, 103450, 2020. https://doi.org/10.1016/ j.cemconcomp.2019.103450
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Civil Engineering
Journal Section Civil Engineering
Authors

Bilal Baran 0000-0002-2568-7035

Serhat Çelikten 0000-0001-8154-7590

İsmail İsa Atabey 0000-0002-7026-5579

Early Pub Date May 31, 2023
Publication Date July 15, 2023
Submission Date February 24, 2023
Acceptance Date May 16, 2023
Published in Issue Year 2023 Volume: 12 Issue: 3

Cite

APA Baran, B., Çelikten, S., & Atabey, İ. İ. (2023). Uçucu kül, cam tozu ve çimento esaslı hibrit geopolimer harçların mekanik özelliklerine yüksek sıcaklığın etkisi ve yaşam döngüsü analizi (YDA). Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(3), 835-843. https://doi.org/10.28948/ngumuh.1256043
AMA Baran B, Çelikten S, Atabey İİ. Uçucu kül, cam tozu ve çimento esaslı hibrit geopolimer harçların mekanik özelliklerine yüksek sıcaklığın etkisi ve yaşam döngüsü analizi (YDA). NOHU J. Eng. Sci. July 2023;12(3):835-843. doi:10.28948/ngumuh.1256043
Chicago Baran, Bilal, Serhat Çelikten, and İsmail İsa Atabey. “Uçucu kül, Cam Tozu Ve çimento Esaslı Hibrit Geopolimer harçların Mekanik özelliklerine yüksek sıcaklığın Etkisi Ve yaşam döngüsü Analizi (YDA)”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 3 (July 2023): 835-43. https://doi.org/10.28948/ngumuh.1256043.
EndNote Baran B, Çelikten S, Atabey İİ (July 1, 2023) Uçucu kül, cam tozu ve çimento esaslı hibrit geopolimer harçların mekanik özelliklerine yüksek sıcaklığın etkisi ve yaşam döngüsü analizi (YDA). Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 3 835–843.
IEEE B. Baran, S. Çelikten, and İ. İ. Atabey, “Uçucu kül, cam tozu ve çimento esaslı hibrit geopolimer harçların mekanik özelliklerine yüksek sıcaklığın etkisi ve yaşam döngüsü analizi (YDA)”, NOHU J. Eng. Sci., vol. 12, no. 3, pp. 835–843, 2023, doi: 10.28948/ngumuh.1256043.
ISNAD Baran, Bilal et al. “Uçucu kül, Cam Tozu Ve çimento Esaslı Hibrit Geopolimer harçların Mekanik özelliklerine yüksek sıcaklığın Etkisi Ve yaşam döngüsü Analizi (YDA)”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/3 (July 2023), 835-843. https://doi.org/10.28948/ngumuh.1256043.
JAMA Baran B, Çelikten S, Atabey İİ. Uçucu kül, cam tozu ve çimento esaslı hibrit geopolimer harçların mekanik özelliklerine yüksek sıcaklığın etkisi ve yaşam döngüsü analizi (YDA). NOHU J. Eng. Sci. 2023;12:835–843.
MLA Baran, Bilal et al. “Uçucu kül, Cam Tozu Ve çimento Esaslı Hibrit Geopolimer harçların Mekanik özelliklerine yüksek sıcaklığın Etkisi Ve yaşam döngüsü Analizi (YDA)”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 3, 2023, pp. 835-43, doi:10.28948/ngumuh.1256043.
Vancouver Baran B, Çelikten S, Atabey İİ. Uçucu kül, cam tozu ve çimento esaslı hibrit geopolimer harçların mekanik özelliklerine yüksek sıcaklığın etkisi ve yaşam döngüsü analizi (YDA). NOHU J. Eng. Sci. 2023;12(3):835-43.

23135