Research Article
BibTex RIS Cite

Reçine atıksuyu karakterizasyonu

Year 2023, Volume: 12 Issue: 1, 88 - 95, 15.01.2023
https://doi.org/10.28948/ngumuh.1164511

Abstract

Endüstriyel atık suların neden olduğu su kirliliği problemleri günümüzde oldukça yaygındır. Bu çalışmada, halihazırda tehlikeli atık olarak bertarafı pahalı bir şekilde gerçekleştirilen reçine atık sularının tekno-ekonomik olarak arıtımına ışık tutacak karakterizasyon çalışmaları gerçekleştirilmiştir. Endüstriyel atık suların karakterizasyonuna esas olan klasik parametreler ile yapılan ölçüm sonuçları atık suyun üretim proseslerinden kaynaklanan yüksek derecede organik kirlilik içerdiğini (KOİ=19875 mg/L, TOK=6143 mg/L, BOİ5=5879 mg/L) göstermiştir. Yapılan genel toksisite testleri atık suyun hacimsel olarak Daphnia sp. (24 saat) organizmaları dikkate alındığında tatlı sularda LC50=%1.25, anaerobik ve aerobik karışık kültürler dikkate alındığında sırasıyla 24 saatlik IC50=%16.1, ve 48 saatlik IC50=%15.0 toksik ve inhibe edici seviyeler tespit edilmiştir. Halihazırda yakılarak çok yüksek maliyetle bertarafı yapılan bu atıksuyun, belli seviyelerde biyolojik olarak arıtımının mümkün, alıcı ortam deşarj standartlarını sağlayacak ölçüde arıtımının ise daha ileri teknojilerle mümkün olabileceği sonucuna varılmıştır.

Supporting Institution

ASÜ BAP

Project Number

2022-018

Thanks

2022-018 Nolu ASÜ BAP projesi tarafından desteklenmiştir.

References

  • M. Eiroa, A. Vilar, C. Kennes and M. C. Veiga, Technical note Biological treatment of industrial wastewater containing formaldehyde and formic acid, Water SA, 32, 115-118, 2006. doi: 10.4314/wsa.v32i1.5232.
  • S. R. Popuri, C. Y. Chang and J. Xu, A study on different addition approach of Fenton's reagent for DCOD removal from ABS wastewater, Desalination, 277, 141-146, 2011. DOI: 10.1016/j.desal.2011.04.017
  • J. Garrido, R. Méndez ve J. Lema, Treatment of wastewaters from a formaldehyde-urea adhesives factory, Water Science and Technology, 42, 293-300, 2000. https://doi.org/10.2166/wst.2000.0527
  • S. B. Kausley, K. S. Desai, S. Shrivastava, P. R. Shah, B. R. Patil and A. B. Pandit, Mineralization of alkyd resin wastewater: feasibility of different advanced oxidation processes, Journal of Environmental Chemical Engineering, 6, 3690-3701, 2018. https://doi.org/10.1016/j.jece.2017.04.001
  • H. Aghaie, A. Ilkhani and S. S. Choobeh, Utilization Soya bean fatty acid for synthesis of alkyd resin and comparation of properties with other vegetable oils, Journal of Nano Chemical Agriculture (JNCA), Islamic Azad University, Saveh Branch, 69-73, 2012.
  • F. El-Dars, M. Bakr ve A. M. Gabre, Reduction of COD in resin production wastewater using three types of activated carbon, Journal of Environmental Treatment Techniques, 1, 126-136, 2013. doi:10.1080/19443994 .2013.804456
  • M. Aparicio, M. Eiroa, C. Kennes ve M. C. Veiga, Combined post-ozonation and biological treatment of recalcitrant wastewater from a resin-producing factory, Journal of Hazardous Materials, 143, 285-290, 2007. DOI: 10.1016/j.jhazmat.2006.09.025
  • I. S. de Oliveira, L. Viana, C. Verona, V. L. Fallavena, C. M. Azevedo ve M. Pires, Alkydic resin wastewaters treatment by fenton and photo-Fenton processes, J Hazard Mater, 146, 564-8, Jul 31 2007. doi: 10.1016/j.jhazmat.2007.04.057.
  • U. Durán, O. Monroy, J. Gómez ve F. Ramírez, Biological wastewater treatment for removal of polymeric resins in UASB reactor: influence of oxygen, Water science and technology, 57, 1047-1052, 2008. DOI: 10.2166/wst.2008.058
  • V. V. Ranade ve V. M. Bhandari, Industrial wastewater treatment, recycling and reuse. Butterworth-Heinemann, 2014.
  • M. Işık, Nickel inhibition of calcium precipitation by ureolytic mixed microorganisms under batch conditions, Separation and purification technology, 62, 337-341, 2008. https://doi.org/10.1016/j.seppur.2008. 02.002
  • OECD 301F, Manometric Respirometry Test. Organisation for Economic C-operation and Development Chemicals Testing-Guidelines. Adopted 17.07.1992, 1992.
  • I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, L. Campos, A. Guwy, P. Jenicek, S. Kalyuzhnui and J. Van Lier, Anaerobic Biodegradation, Activity and Inhibition (ABAI) Task Group Meeting 9th to 10th october 2006, in Prague., 2007.
  • M. Işik and D. T. Sponza, A batch study for assessing the inhibition effect of Direct Yellow 12 in a mixed methanogenic culture, Process Biochemistry, 40, 1053-1062, 2005. https://doi.org/10.1016/j.procbio. 2004.03.011
  • W. Owen, D. Stuckey, J. Healy Jr, L. Young and P. McCarty, Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Research, 13, 485-492, 1979. https://doi.org/ 10.1016/0043-1354(79)90043-5
  • R. E. Speece, Anaerobic Biotechnology for Industrial Wastewaters, Nasville, Tennesse, USA, 1996.
  • APHA/AWWA/WEF, American Public Health Association/American Water Works Association/Water Environment Federation, Rodger B. Baird, Andrew D. Eaton, Eugene W. Rice (Editors), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, Washington, D.C., American Public Health Association (APHA), 2017.
  • WTW, Respirometric BOD5 determination of waste water polluted with organic or inorganic toxins or inhibitors, Application Report., vol. 42., 2010.
  • Metcalf&Eddy, Wastewater Engineering Treatment and Resource Recovery, Fifth ed. McGraw-Hill Education, 2014.
  • K. Z. Abdalla ve G. Hammam, Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices, International Journal of Sciences: Basic and Applied Research, 13, 42-48, 2014.
  • A. Amat, A. Arques, A. García-Ripoll, L. Santos-Juanes, R. Vicente, I. Oller, M. Maldonado ve S. Malato, A reliable monitoring of the biocompatibility of an effluent along an oxidative pre-treatment by sequential bioassays and chemical analyses, Water research, 43, 784-792, 2009. https://doi.org/ 10.1016/j.watres.2008.11.017
  • B. Zhang, D. Ning, Y. Yang, J. D. Van Nostrand, J. Zhou ve X. Wen, Biodegradability of wastewater determines microbial assembly mechanisms in full-scale wastewater treatment plants, Water research, 169, 115276, 2020. https://doi.org/10.1016/ j.watres.2019.115276
  • N. A. Gengec, E. Gengec, O. T. Can and M. Kobya, Electrooxidation of alkyd resin production wastewater by boren doped diamond electrode, Academic Perspective Procedia, 1, 1026-1033, 2018. DOI: 10.33793/acperpro.01.01.168
  • O. Tünay, D. Çakır and I. Kabdașlı, Characterization and treatability of alkyd resin production wastewater, Desalination and Water Treatment, 101, 151-156, 2018. DOI: 10.5004/dwt.2018.21761
  • W. G. Landis, R. M. Sofield and M.-H. Yu, Introduction to environmental toxicology: Molecular substructures to ecological landscapes. CRC Press, 2017.
  • S. S. Sağlam, Ö. S.Y. ve M. Işık, Pesifik metanojenik aktivite testinin optimizasyonu (poster bildiri), in İTÜ 11. Endüstriyel Kirlenme Kontrolü Sempozyumu, 11-13 Haziran 2008, İstanbul, 2008, pp. 485-490.
  • K. Roppola, Environmental applications of manometric respirometric methods, 2009.
  • M. Langone, G. Sabia, L. Petta, L. Zanetti, P. Leoni ve D. Basso, Evaluation of the aerobic biodegradability of process water produced by hydrothermal carbonization and inhibition effects on the heterotrophic biomass of an activated sludge system, Journal of Environmental Management, 299, 113561, 2021. DOI: 10.1016/j.jenvman.2021.113561
  • WTW, Manometric respiration tests according to OECD 301F with the OxiTop® Control measuring system under GLP conditions, vol. 42, 2010. scale wastewater treatment plants, Water research, vol. 169, p. 115276, 2020.

Resin wastewater characterization

Year 2023, Volume: 12 Issue: 1, 88 - 95, 15.01.2023
https://doi.org/10.28948/ngumuh.1164511

Abstract

Water pollution problems caused by industrial wastewater are quite common today. In this study, characterization studies were carried out to shed light on the techno-economic treatment of resin wastewater, which is currently expensive to dispose of as hazardous waste. The measurement results with the classical parameters, which are the basis for the characterization of industrial wastewater, showed that the wastewater contains a high degree of organic pollution (COD=19875 mg/L, TOC=6143 mg/L, BOD5=5879 mg/L) originating from the production processes. The general toxicity tests carried out show that Daphnia sp. with considering the organisms, the wastewater by volume LC50=1,25% with 24 hour in fresh water, IC50=16.1% with 24 hour, and IC50=15.0% with 48 hour, respectively, when anaerobic and aerobic mixed cultures are taken into account, toxic and inhibitory levels were determined. It has been concluded that this wastewater, which is currently disposed of at a very high cost by incineration, can be biologically treated at certain levels, and that it can be treated with more advanced technologies to meet the receiving environment discharge standards.

Project Number

2022-018

References

  • M. Eiroa, A. Vilar, C. Kennes and M. C. Veiga, Technical note Biological treatment of industrial wastewater containing formaldehyde and formic acid, Water SA, 32, 115-118, 2006. doi: 10.4314/wsa.v32i1.5232.
  • S. R. Popuri, C. Y. Chang and J. Xu, A study on different addition approach of Fenton's reagent for DCOD removal from ABS wastewater, Desalination, 277, 141-146, 2011. DOI: 10.1016/j.desal.2011.04.017
  • J. Garrido, R. Méndez ve J. Lema, Treatment of wastewaters from a formaldehyde-urea adhesives factory, Water Science and Technology, 42, 293-300, 2000. https://doi.org/10.2166/wst.2000.0527
  • S. B. Kausley, K. S. Desai, S. Shrivastava, P. R. Shah, B. R. Patil and A. B. Pandit, Mineralization of alkyd resin wastewater: feasibility of different advanced oxidation processes, Journal of Environmental Chemical Engineering, 6, 3690-3701, 2018. https://doi.org/10.1016/j.jece.2017.04.001
  • H. Aghaie, A. Ilkhani and S. S. Choobeh, Utilization Soya bean fatty acid for synthesis of alkyd resin and comparation of properties with other vegetable oils, Journal of Nano Chemical Agriculture (JNCA), Islamic Azad University, Saveh Branch, 69-73, 2012.
  • F. El-Dars, M. Bakr ve A. M. Gabre, Reduction of COD in resin production wastewater using three types of activated carbon, Journal of Environmental Treatment Techniques, 1, 126-136, 2013. doi:10.1080/19443994 .2013.804456
  • M. Aparicio, M. Eiroa, C. Kennes ve M. C. Veiga, Combined post-ozonation and biological treatment of recalcitrant wastewater from a resin-producing factory, Journal of Hazardous Materials, 143, 285-290, 2007. DOI: 10.1016/j.jhazmat.2006.09.025
  • I. S. de Oliveira, L. Viana, C. Verona, V. L. Fallavena, C. M. Azevedo ve M. Pires, Alkydic resin wastewaters treatment by fenton and photo-Fenton processes, J Hazard Mater, 146, 564-8, Jul 31 2007. doi: 10.1016/j.jhazmat.2007.04.057.
  • U. Durán, O. Monroy, J. Gómez ve F. Ramírez, Biological wastewater treatment for removal of polymeric resins in UASB reactor: influence of oxygen, Water science and technology, 57, 1047-1052, 2008. DOI: 10.2166/wst.2008.058
  • V. V. Ranade ve V. M. Bhandari, Industrial wastewater treatment, recycling and reuse. Butterworth-Heinemann, 2014.
  • M. Işık, Nickel inhibition of calcium precipitation by ureolytic mixed microorganisms under batch conditions, Separation and purification technology, 62, 337-341, 2008. https://doi.org/10.1016/j.seppur.2008. 02.002
  • OECD 301F, Manometric Respirometry Test. Organisation for Economic C-operation and Development Chemicals Testing-Guidelines. Adopted 17.07.1992, 1992.
  • I. Angelidaki, M. Alves, D. Bolzonella, L. Borzacconi, L. Campos, A. Guwy, P. Jenicek, S. Kalyuzhnui and J. Van Lier, Anaerobic Biodegradation, Activity and Inhibition (ABAI) Task Group Meeting 9th to 10th october 2006, in Prague., 2007.
  • M. Işik and D. T. Sponza, A batch study for assessing the inhibition effect of Direct Yellow 12 in a mixed methanogenic culture, Process Biochemistry, 40, 1053-1062, 2005. https://doi.org/10.1016/j.procbio. 2004.03.011
  • W. Owen, D. Stuckey, J. Healy Jr, L. Young and P. McCarty, Bioassay for monitoring biochemical methane potential and anaerobic toxicity, Water Research, 13, 485-492, 1979. https://doi.org/ 10.1016/0043-1354(79)90043-5
  • R. E. Speece, Anaerobic Biotechnology for Industrial Wastewaters, Nasville, Tennesse, USA, 1996.
  • APHA/AWWA/WEF, American Public Health Association/American Water Works Association/Water Environment Federation, Rodger B. Baird, Andrew D. Eaton, Eugene W. Rice (Editors), Standard Methods for the Examination of Water and Wastewater, 23rd Edition, Washington, D.C., American Public Health Association (APHA), 2017.
  • WTW, Respirometric BOD5 determination of waste water polluted with organic or inorganic toxins or inhibitors, Application Report., vol. 42., 2010.
  • Metcalf&Eddy, Wastewater Engineering Treatment and Resource Recovery, Fifth ed. McGraw-Hill Education, 2014.
  • K. Z. Abdalla ve G. Hammam, Correlation between biochemical oxygen demand and chemical oxygen demand for various wastewater treatment plants in Egypt to obtain the biodegradability indices, International Journal of Sciences: Basic and Applied Research, 13, 42-48, 2014.
  • A. Amat, A. Arques, A. García-Ripoll, L. Santos-Juanes, R. Vicente, I. Oller, M. Maldonado ve S. Malato, A reliable monitoring of the biocompatibility of an effluent along an oxidative pre-treatment by sequential bioassays and chemical analyses, Water research, 43, 784-792, 2009. https://doi.org/ 10.1016/j.watres.2008.11.017
  • B. Zhang, D. Ning, Y. Yang, J. D. Van Nostrand, J. Zhou ve X. Wen, Biodegradability of wastewater determines microbial assembly mechanisms in full-scale wastewater treatment plants, Water research, 169, 115276, 2020. https://doi.org/10.1016/ j.watres.2019.115276
  • N. A. Gengec, E. Gengec, O. T. Can and M. Kobya, Electrooxidation of alkyd resin production wastewater by boren doped diamond electrode, Academic Perspective Procedia, 1, 1026-1033, 2018. DOI: 10.33793/acperpro.01.01.168
  • O. Tünay, D. Çakır and I. Kabdașlı, Characterization and treatability of alkyd resin production wastewater, Desalination and Water Treatment, 101, 151-156, 2018. DOI: 10.5004/dwt.2018.21761
  • W. G. Landis, R. M. Sofield and M.-H. Yu, Introduction to environmental toxicology: Molecular substructures to ecological landscapes. CRC Press, 2017.
  • S. S. Sağlam, Ö. S.Y. ve M. Işık, Pesifik metanojenik aktivite testinin optimizasyonu (poster bildiri), in İTÜ 11. Endüstriyel Kirlenme Kontrolü Sempozyumu, 11-13 Haziran 2008, İstanbul, 2008, pp. 485-490.
  • K. Roppola, Environmental applications of manometric respirometric methods, 2009.
  • M. Langone, G. Sabia, L. Petta, L. Zanetti, P. Leoni ve D. Basso, Evaluation of the aerobic biodegradability of process water produced by hydrothermal carbonization and inhibition effects on the heterotrophic biomass of an activated sludge system, Journal of Environmental Management, 299, 113561, 2021. DOI: 10.1016/j.jenvman.2021.113561
  • WTW, Manometric respiration tests according to OECD 301F with the OxiTop® Control measuring system under GLP conditions, vol. 42, 2010. scale wastewater treatment plants, Water research, vol. 169, p. 115276, 2020.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Environmental Engineering
Journal Section Environmental Engineering
Authors

Zeynep Özcan 0000-0002-3942-2433

Gamze Sönmez 0000-0003-3597-1942

Mustafa Işık 0000-0002-8440-2546

Project Number 2022-018
Publication Date January 15, 2023
Submission Date August 19, 2022
Acceptance Date December 9, 2022
Published in Issue Year 2023 Volume: 12 Issue: 1

Cite

APA Özcan, Z., Sönmez, G., & Işık, M. (2023). Reçine atıksuyu karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 88-95. https://doi.org/10.28948/ngumuh.1164511
AMA Özcan Z, Sönmez G, Işık M. Reçine atıksuyu karakterizasyonu. NOHU J. Eng. Sci. January 2023;12(1):88-95. doi:10.28948/ngumuh.1164511
Chicago Özcan, Zeynep, Gamze Sönmez, and Mustafa Işık. “Reçine atıksuyu Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12, no. 1 (January 2023): 88-95. https://doi.org/10.28948/ngumuh.1164511.
EndNote Özcan Z, Sönmez G, Işık M (January 1, 2023) Reçine atıksuyu karakterizasyonu. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12 1 88–95.
IEEE Z. Özcan, G. Sönmez, and M. Işık, “Reçine atıksuyu karakterizasyonu”, NOHU J. Eng. Sci., vol. 12, no. 1, pp. 88–95, 2023, doi: 10.28948/ngumuh.1164511.
ISNAD Özcan, Zeynep et al. “Reçine atıksuyu Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 12/1 (January 2023), 88-95. https://doi.org/10.28948/ngumuh.1164511.
JAMA Özcan Z, Sönmez G, Işık M. Reçine atıksuyu karakterizasyonu. NOHU J. Eng. Sci. 2023;12:88–95.
MLA Özcan, Zeynep et al. “Reçine atıksuyu Karakterizasyonu”. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol. 12, no. 1, 2023, pp. 88-95, doi:10.28948/ngumuh.1164511.
Vancouver Özcan Z, Sönmez G, Işık M. Reçine atıksuyu karakterizasyonu. NOHU J. Eng. Sci. 2023;12(1):88-95.

23135