Research Article
BibTex RIS Cite

TÜBÜLER FOTOBİYOREAKTÖRDE Chlorella sp. KÜLTÜRÜNÜN İÇ MEKANDA BÜYÜME PERFORMANSI

Year 2021, Volume: 7 Issue: 2, 90 - 95, 29.12.2021

Abstract

Microalgae are known as a source of valuable biomolecules which are used in various industrial fields such as aquaculture, food, feed, pharmaceuticals, bio-fertilizers and bioenergy. Chlorella sp. is one of the common microalgae, cultured in the world. In this study, it was examined that growth and pigments of Chlorella sp. in lab-scale tubular photobioreactor at indoor conditions.
Highest cell number and highest specific growth rate were determined as 155 x 106 cells.mL-1 and 0.79, respectively. Highest dry weight was measured as 4.19±0.059 g.L-1 and mean dry weight was found as 3.56±0.079 g.L-1. Highest chlorophyll a amount was found at 40th day as 106.7±0.079 µg.mL-1. Highest carotenoids was 15.87±0.033 µg.mL-1 at the day 22. Also, 983.8 gram of total biomass was collected in last 45 days, after the exponential phase. Study shows that indoor production of Chlorella sp. provided more reliable sustainability. As a results, Chlorella sp. is photoautotrophically producible at high amounts throughout the year.

References

  • Chang, H., Quan, X., Zhong, N., Zhang, Z., Lu, C., Li, G., ... & Yang, L. (2018). High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production. Bioresource technology, 266, 374-381.
  • Durmaz, Y., Kilicli, M., Toker, O. S., Konar, N., Palabiyik, I., & Tamtürk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research, 47, 101811.
  • Gao, F., Cui, W., Xu, J. P., Li, C., Jin, W. H., & Yang, H. L. (2019). Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant. Renewable energy, 136, 671-676.
  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of industrial microbiology and biotechnology, 36(2), 269-274.
  • Lakaniemi, A. M., Intihar, V. M., Tuovinen, O. H., & Puhakka, J. A. (2012). Growth of Chlorella vulgaris and associated bacteria in photobioreactors. Microbial biotechnology, 5(1), 69-78.
  • Liao, Q., Sun, Y., Huang, Y., Xia, A., Fu, Q., & Zhu, X. (2017). Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor. Bioresource technology, 243, 528-538.
  • Mourelle, M. L., Gómez, C. P., & Legido, J. L. (2017). The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics, 4(4), 46.
  • Olaizola, M. (2003). Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular engineering, 20(4-6), 459-466.
  • Palabiyik, I., Durmaz, Y., Öner, B. et al. Using spray-dried microalgae as a natural coloring agent in chewing gum: effects on color, sensory, and textural properties. J Appl Phycol 30, 1031–1039 (2018).
  • Ruiz, J., Olivieri, G., De Vree, J., Bosma, R., Willems, P., Reith, J. H., ... & Barbosa, M. J. (2016). Towards industrial products from microalgae. Energy & Environmental Science, 9(10), 3036-3043.
  • Sánchez, M. D., Mantell, C., Rodrıguez, M., de La Ossa, E. M., Lubián, L. M., & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66(2), 245-251.
  • Sirakov, I., Velichkova, K., Stoyanova, S., & Staykov, Y. (2015). The importance of microalgae for aquaculture industry. Review. International Journal of Fisheries and Aquatic Studies, 2(4), 81-84.
  • Wong, Y. K., Ho, K. C., Tsang, Y. F., Wang, L., & Yung, K. K. L. (2016). Cultivation of Chlorella vulgaris in column photobioreactor for biomass production and lipid accumulation. Water Environment Research, 88(1), 40-46.
  • Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., & Takriff, M. S. (2014). An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki, 21(1), 1-10.
  • Ziganshina, E. E., Bulynina, S. S., & Ziganshin, A. M. (2020). Comparison of the photoautotrophic growth regimens of Chlorella sorokiniana in a photobioreactor for enhanced biomass productivity. Biology, 9(7), 169.
  • Zou, N., & Richmond, A. (1999). Effect of light-path length in outdoor fiat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. In Progress in Industrial Microbiology (Vol. 35, pp. 351-356). Elsevier.
  • Zou, N., & Richmond, A. (2000). Light-path length and population density in photoacclimation of Nannochloropsis sp.(Eustigmatophyceae). Journal of Applied Phycology, 12(3), 349-354.

INDOOR GROWTH PERFORMANCE OF Chlorella sp. PRODUCTION AT TUBULAR PHOTOBIOREACTOR

Year 2021, Volume: 7 Issue: 2, 90 - 95, 29.12.2021

Abstract

References

  • Chang, H., Quan, X., Zhong, N., Zhang, Z., Lu, C., Li, G., ... & Yang, L. (2018). High-efficiency nutrients reclamation from landfill leachate by microalgae Chlorella vulgaris in membrane photobioreactor for bio-lipid production. Bioresource technology, 266, 374-381.
  • Durmaz, Y., Kilicli, M., Toker, O. S., Konar, N., Palabiyik, I., & Tamtürk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research, 47, 101811.
  • Gao, F., Cui, W., Xu, J. P., Li, C., Jin, W. H., & Yang, H. L. (2019). Lipid accumulation properties of Chlorella vulgaris and Scenedesmus obliquus in membrane photobioreactor (MPBR) fed with secondary effluent from municipal wastewater treatment plant. Renewable energy, 136, 671-676.
  • Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of industrial microbiology and biotechnology, 36(2), 269-274.
  • Lakaniemi, A. M., Intihar, V. M., Tuovinen, O. H., & Puhakka, J. A. (2012). Growth of Chlorella vulgaris and associated bacteria in photobioreactors. Microbial biotechnology, 5(1), 69-78.
  • Liao, Q., Sun, Y., Huang, Y., Xia, A., Fu, Q., & Zhu, X. (2017). Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor. Bioresource technology, 243, 528-538.
  • Mourelle, M. L., Gómez, C. P., & Legido, J. L. (2017). The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics, 4(4), 46.
  • Olaizola, M. (2003). Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular engineering, 20(4-6), 459-466.
  • Palabiyik, I., Durmaz, Y., Öner, B. et al. Using spray-dried microalgae as a natural coloring agent in chewing gum: effects on color, sensory, and textural properties. J Appl Phycol 30, 1031–1039 (2018).
  • Ruiz, J., Olivieri, G., De Vree, J., Bosma, R., Willems, P., Reith, J. H., ... & Barbosa, M. J. (2016). Towards industrial products from microalgae. Energy & Environmental Science, 9(10), 3036-3043.
  • Sánchez, M. D., Mantell, C., Rodrıguez, M., de La Ossa, E. M., Lubián, L. M., & Montero, O. (2005). Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. Journal of Food Engineering, 66(2), 245-251.
  • Sirakov, I., Velichkova, K., Stoyanova, S., & Staykov, Y. (2015). The importance of microalgae for aquaculture industry. Review. International Journal of Fisheries and Aquatic Studies, 2(4), 81-84.
  • Wong, Y. K., Ho, K. C., Tsang, Y. F., Wang, L., & Yung, K. K. L. (2016). Cultivation of Chlorella vulgaris in column photobioreactor for biomass production and lipid accumulation. Water Environment Research, 88(1), 40-46.
  • Yaakob, Z., Ali, E., Zainal, A., Mohamad, M., & Takriff, M. S. (2014). An overview: biomolecules from microalgae for animal feed and aquaculture. Journal of Biological Research-Thessaloniki, 21(1), 1-10.
  • Ziganshina, E. E., Bulynina, S. S., & Ziganshin, A. M. (2020). Comparison of the photoautotrophic growth regimens of Chlorella sorokiniana in a photobioreactor for enhanced biomass productivity. Biology, 9(7), 169.
  • Zou, N., & Richmond, A. (1999). Effect of light-path length in outdoor fiat plate reactors on output rate of cell mass and of EPA in Nannochloropsis sp. In Progress in Industrial Microbiology (Vol. 35, pp. 351-356). Elsevier.
  • Zou, N., & Richmond, A. (2000). Light-path length and population density in photoacclimation of Nannochloropsis sp.(Eustigmatophyceae). Journal of Applied Phycology, 12(3), 349-354.
There are 17 citations in total.

Details

Primary Language English
Subjects Hydrobiology
Journal Section Araştırmalar
Authors

Gökhun Çağatay Erbil 0000-0002-6704-5073

Yaşar Durmaz 0000-0002-1858-5882

Mahmut Elp

Publication Date December 29, 2021
Acceptance Date December 22, 2021
Published in Issue Year 2021 Volume: 7 Issue: 2

Cite

APA Erbil, G. Ç., Durmaz, Y., & Elp, M. (2021). INDOOR GROWTH PERFORMANCE OF Chlorella sp. PRODUCTION AT TUBULAR PHOTOBIOREACTOR. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, 7(2), 90-95.
AMA Erbil GÇ, Durmaz Y, Elp M. INDOOR GROWTH PERFORMANCE OF Chlorella sp. PRODUCTION AT TUBULAR PHOTOBIOREACTOR. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. December 2021;7(2):90-95.
Chicago Erbil, Gökhun Çağatay, Yaşar Durmaz, and Mahmut Elp. “INDOOR GROWTH PERFORMANCE OF Chlorella Sp. PRODUCTION AT TUBULAR PHOTOBIOREACTOR”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 7, no. 2 (December 2021): 90-95.
EndNote Erbil GÇ, Durmaz Y, Elp M (December 1, 2021) INDOOR GROWTH PERFORMANCE OF Chlorella sp. PRODUCTION AT TUBULAR PHOTOBIOREACTOR. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 7 2 90–95.
IEEE G. Ç. Erbil, Y. Durmaz, and M. Elp, “INDOOR GROWTH PERFORMANCE OF Chlorella sp. PRODUCTION AT TUBULAR PHOTOBIOREACTOR”, Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, vol. 7, no. 2, pp. 90–95, 2021.
ISNAD Erbil, Gökhun Çağatay et al. “INDOOR GROWTH PERFORMANCE OF Chlorella Sp. PRODUCTION AT TUBULAR PHOTOBIOREACTOR”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi 7/2 (December 2021), 90-95.
JAMA Erbil GÇ, Durmaz Y, Elp M. INDOOR GROWTH PERFORMANCE OF Chlorella sp. PRODUCTION AT TUBULAR PHOTOBIOREACTOR. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2021;7:90–95.
MLA Erbil, Gökhun Çağatay et al. “INDOOR GROWTH PERFORMANCE OF Chlorella Sp. PRODUCTION AT TUBULAR PHOTOBIOREACTOR”. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi, vol. 7, no. 2, 2021, pp. 90-95.
Vancouver Erbil GÇ, Durmaz Y, Elp M. INDOOR GROWTH PERFORMANCE OF Chlorella sp. PRODUCTION AT TUBULAR PHOTOBIOREACTOR. Menba Kastamonu Üniversitesi Su Ürünleri Fakültesi Dergisi. 2021;7(2):90-5.