Review
BibTex RIS Cite
Year 2021, Volume: 1 Issue: 2, 39 - 47, 30.09.2021

Abstract

References

  • Agostini, A., Colauzzi, M., Amaducci, S., 2021. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Applied Energy, 281, 116102.
  • Al-Agele, H. A., Proctor, K., Murthy, G., Higgins, C., 2021. A case study of tomato (Solanum lycopersicon var. Legend) production and water productivity in Agrivoltaic Systems. Sustainability, 13(5), 2850.
  • Amaducci, S., Yin, X., Colauzzi, M., 2018. Agrivoltaic systems to optimise land use for electric energy production. Applied energy, 220, 545-561.
  • Andrew, A. C., 2020. Lamb growth and pasture production in agrivoltaic production system. Baccalaureate Thesis, Oregon State University.
  • Andrew, A. C., Higgins, C. W., Smallman, M. A., Graham, M., Ates, S., 2021. Herbage yield, lamb growth and foraging behavior in agrivoltaic production system. Frontiers in Sustainable Food Systems, 5, 126.
  • Anonymus, 2016. www.dw.com/en/solar-energy-from-the-farm/a-19570822 Anonymus, (2020).http://eng.envelops.com/energynews/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5c GUiO3M6MzoiYWxsIjt9&bmode=view&idx=3827634&t=board
  • Dinesh, H., Pearce, J. M., 2016. The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299-308.
  • Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., Ferard, Y., 2011. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable energy, 36(10), 2725-2732.
  • Elamri, Y., Cheviron, B., Lopez, J. M., Dejean, C., Belaud, G., 2018. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agricultural water management, 208, 440-453.
  • Graham, M., Ates, S., Melathopoulos, A. P., Moldenke, A. R., DeBano, S. J., Best, L. R., Higgins, C. W., 2021. Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Scientific reports, 11(1), 1-13.
  • Hassanpour Adeh, E., Selker, J. S., Higgins, C. W., 2018. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PloS one, 13(11), e0203256.
  • Hau, T. C., 2019. Simulation Approach to Estimate Rice Yield and Energy Generation under Agrivoltaic System (Doctoral dissertation, The University of Tokyo).
  • Higgins, C. W., Hassanpour Adeh, E., Good, S. P., 2018. The Case for Agrivoltaic Systems. In AGU Fall Meeting Abstracts (Vol. 2018, pp. H13M-1939).
  • Leon, A., Ishihara, K. N., 2018. Assessment of new functional units for agrivoltaic systems. Journal of environmental management, 226, 493-498.
  • Leon, A., Ishihara, K. N., 2018. Influence of allocation methods on the LC-CO2 emission of an agrivoltaic system. Resources, Conservation and Recycling, 138, 110-117.
  • Makhijani, A. (2021). Exploring Farming and Solar Synergies. Institute For Energy and Environmental Research. P.O. Box 5324, Takoma Park, MD.
  • Malu, P. R., Sharma, U. S., Pearce, J. M., 2017. Agrivoltaic potential on grape farms in India. Sustainable Energy Technologies and Assessments, 23, 104-110.
  • Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., Wéry, J., 2013. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology, 177, 117-132.
  • Metsolar, 2018. https://metsolar.eu/blog/what-is-agrivoltaics-how-can-solar-energy-and- agriculture-work-together/#!
  • Nam, C. H., Park, M. H., Yun, A. A., Ji, H. J., Sun, S. S., 2021. Study on Forage Production under Agrivoltaic System. Journal of The Korean Society of Grassland and Forage Science, 41(1), 1-9.
  • Riaz, M. H., Imran, H., Younas, R., Alam, M. A., Butt, N. Z., 2021. Module technology for agrivoltaics: vertical bifacial versus tilted monofacial farms. IEEE Journal of Photovoltaics, 11(2), 469-477.
  • Trommsdorff, M., Kang, J., Reise, C., Schindele, S., Bopp, G., Ehmann, A., Obergfell, T., 2021. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renewable and Sustainable Energy Reviews, 140, 110694.
  • Younas, R., Imran, H., Riaz, M. H., Butt, N. Z., 2019. Agrivoltaic farm design: Vertical bifacial vs. tilted monofacial photovoltaic panels. arXiv preprint arXiv:1910.01076.

Agrivoltaics and their effects on crops: A review

Year 2021, Volume: 1 Issue: 2, 39 - 47, 30.09.2021

Abstract

Agrivoltaic systems are combined systems of agriculture and photovoltaics. This systems g enerally reduce yields of crops but increase land equivalent ratio, sunlight share during biological and synthetic energy harvesting, PVs efficiency and yield by cooling the surrounding microclimate, humidify the environment by drops, reduce water consumption of plants, decrease gas exchange and short-term stomatal conductance by shadow. Agrivoltaics are very suitable for rainfed, hot and arid climatic conditions, deserts, temperate zone grasslands, fields crop production, production of pollinating insects, pasture-fed rabbit and sheep farming. Pasture establishment in deserts under solar panels may prevent mid-day solar shock on crops. Extremely infertile natural pastures under erosion in Turkey may be covered with these panels to decrease the impact of erosion by reducing the raindrop speed to reach the ground. System also may provide shelters to animals.

References

  • Agostini, A., Colauzzi, M., Amaducci, S., 2021. Innovative agrivoltaic systems to produce sustainable energy: An economic and environmental assessment. Applied Energy, 281, 116102.
  • Al-Agele, H. A., Proctor, K., Murthy, G., Higgins, C., 2021. A case study of tomato (Solanum lycopersicon var. Legend) production and water productivity in Agrivoltaic Systems. Sustainability, 13(5), 2850.
  • Amaducci, S., Yin, X., Colauzzi, M., 2018. Agrivoltaic systems to optimise land use for electric energy production. Applied energy, 220, 545-561.
  • Andrew, A. C., 2020. Lamb growth and pasture production in agrivoltaic production system. Baccalaureate Thesis, Oregon State University.
  • Andrew, A. C., Higgins, C. W., Smallman, M. A., Graham, M., Ates, S., 2021. Herbage yield, lamb growth and foraging behavior in agrivoltaic production system. Frontiers in Sustainable Food Systems, 5, 126.
  • Anonymus, 2016. www.dw.com/en/solar-energy-from-the-farm/a-19570822 Anonymus, (2020).http://eng.envelops.com/energynews/?q=YToxOntzOjEyOiJrZXl3b3JkX3R5c GUiO3M6MzoiYWxsIjt9&bmode=view&idx=3827634&t=board
  • Dinesh, H., Pearce, J. M., 2016. The potential of agrivoltaic systems. Renewable and Sustainable Energy Reviews, 54, 299-308.
  • Dupraz, C., Marrou, H., Talbot, G., Dufour, L., Nogier, A., Ferard, Y., 2011. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renewable energy, 36(10), 2725-2732.
  • Elamri, Y., Cheviron, B., Lopez, J. M., Dejean, C., Belaud, G., 2018. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agricultural water management, 208, 440-453.
  • Graham, M., Ates, S., Melathopoulos, A. P., Moldenke, A. R., DeBano, S. J., Best, L. R., Higgins, C. W., 2021. Partial shading by solar panels delays bloom, increases floral abundance during the late-season for pollinators in a dryland, agrivoltaic ecosystem. Scientific reports, 11(1), 1-13.
  • Hassanpour Adeh, E., Selker, J. S., Higgins, C. W., 2018. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency. PloS one, 13(11), e0203256.
  • Hau, T. C., 2019. Simulation Approach to Estimate Rice Yield and Energy Generation under Agrivoltaic System (Doctoral dissertation, The University of Tokyo).
  • Higgins, C. W., Hassanpour Adeh, E., Good, S. P., 2018. The Case for Agrivoltaic Systems. In AGU Fall Meeting Abstracts (Vol. 2018, pp. H13M-1939).
  • Leon, A., Ishihara, K. N., 2018. Assessment of new functional units for agrivoltaic systems. Journal of environmental management, 226, 493-498.
  • Leon, A., Ishihara, K. N., 2018. Influence of allocation methods on the LC-CO2 emission of an agrivoltaic system. Resources, Conservation and Recycling, 138, 110-117.
  • Makhijani, A. (2021). Exploring Farming and Solar Synergies. Institute For Energy and Environmental Research. P.O. Box 5324, Takoma Park, MD.
  • Malu, P. R., Sharma, U. S., Pearce, J. M., 2017. Agrivoltaic potential on grape farms in India. Sustainable Energy Technologies and Assessments, 23, 104-110.
  • Marrou, H., Guilioni, L., Dufour, L., Dupraz, C., Wéry, J., 2013. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agricultural and Forest Meteorology, 177, 117-132.
  • Metsolar, 2018. https://metsolar.eu/blog/what-is-agrivoltaics-how-can-solar-energy-and- agriculture-work-together/#!
  • Nam, C. H., Park, M. H., Yun, A. A., Ji, H. J., Sun, S. S., 2021. Study on Forage Production under Agrivoltaic System. Journal of The Korean Society of Grassland and Forage Science, 41(1), 1-9.
  • Riaz, M. H., Imran, H., Younas, R., Alam, M. A., Butt, N. Z., 2021. Module technology for agrivoltaics: vertical bifacial versus tilted monofacial farms. IEEE Journal of Photovoltaics, 11(2), 469-477.
  • Trommsdorff, M., Kang, J., Reise, C., Schindele, S., Bopp, G., Ehmann, A., Obergfell, T., 2021. Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany. Renewable and Sustainable Energy Reviews, 140, 110694.
  • Younas, R., Imran, H., Riaz, M. H., Butt, N. Z., 2019. Agrivoltaic farm design: Vertical bifacial vs. tilted monofacial photovoltaic panels. arXiv preprint arXiv:1910.01076.
There are 23 citations in total.

Details

Primary Language English
Subjects Agricultural Policy
Journal Section Reviews
Authors

Nizamettin Turan 0000-0002-4026-6781

Publication Date September 30, 2021
Submission Date July 6, 2021
Published in Issue Year 2021 Volume: 1 Issue: 2

Cite

APA Turan, N. (2021). Agrivoltaics and their effects on crops: A review. Muş Alparslan University Journal of Agriculture and Nature, 1(2), 39-47.
AMA Turan N. Agrivoltaics and their effects on crops: A review. MAU J Agr Nat. September 2021;1(2):39-47.
Chicago Turan, Nizamettin. “Agrivoltaics and Their Effects on Crops: A Review”. Muş Alparslan University Journal of Agriculture and Nature 1, no. 2 (September 2021): 39-47.
EndNote Turan N (September 1, 2021) Agrivoltaics and their effects on crops: A review. Muş Alparslan University Journal of Agriculture and Nature 1 2 39–47.
IEEE N. Turan, “Agrivoltaics and their effects on crops: A review”, MAU J Agr Nat, vol. 1, no. 2, pp. 39–47, 2021.
ISNAD Turan, Nizamettin. “Agrivoltaics and Their Effects on Crops: A Review”. Muş Alparslan University Journal of Agriculture and Nature 1/2 (September 2021), 39-47.
JAMA Turan N. Agrivoltaics and their effects on crops: A review. MAU J Agr Nat. 2021;1:39–47.
MLA Turan, Nizamettin. “Agrivoltaics and Their Effects on Crops: A Review”. Muş Alparslan University Journal of Agriculture and Nature, vol. 1, no. 2, 2021, pp. 39-47.
Vancouver Turan N. Agrivoltaics and their effects on crops: A review. MAU J Agr Nat. 2021;1(2):39-47.


Flag Counter

Creative Commons Lisansı

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.