BibTex RIS Cite

Streptozotosin ile Tip-1 diyabet oluşturulan sıçanlarda acı badem yağının serum ve eritrositlerdeki bazı biyokimyasal parametrelere etkisi

Year 2014, Volume: 18 Issue: 1, 13 - 21, 16.01.2014

Abstract

ÖZET: Bu çalışma, Tip–1 diyabet oluşturulan sıçanlarda acı badem yağının serum ve eritrositlerdeki
bazı biyokimyasal parametreler üzerine etkisinin araştırılması için tasarlandı. Sıçanlar
kontrol (K), diyabet (STZ) ve diyabet+acı badem yağı (STZ+ABY) olmak üzere üç
grubu ayrıldı. Diyabet gruplarına intraperitoneal enjeksiyonla streptozotosin (65 mg/kg) verilerek
diyabet oluşturuldu. Acı badem yağı grubundaki sıçanlara haftada iki gün 1ml/kg dozunda
intraperitoneal enjeksiyonla acı badem yağı, ayrıca deney boyunca toz haline getirilmiş
2 gr acı badem çekirdeği, 500 ml içme suyuna eklenerek verildi. Kontrol grubuna göre,
STZ grubunda postprandial kan glukoz düzeyinin anlamlı olarak arttığı (p<0.001), STZ grubu
ile karşılaştırıldığında ise, STZ+ABY grubunda postprandial kan glukoz düzeyinin anlamlı
olarak azaldığı (p<0.001) belirlendi. Kontrol grubuna göre, STZ grubunun serum ve eritrositlerinde
malondialdehit (MDA) düzeyinin anlamlı olarak arttığı (p<0.001), eritrositlerde ise
glutatyon (GSH) düzeyinin anlamlı olarak azaldığı (p<0.001) belirlendi. STZ grubuna göre,
STZ+ABY grubunun serum ve eritrositlerinde MDA düzeyinin anlamlı olarak azaldığı
(p<0.001), eritrositlerde ise GSH düzeyinin anlamlı olarak arttığı (p<0.001) saptandı. STZ
grubuna göre, STZ+ABY grubunun serumunda palmitik ve linoleik asit değerlerinin, eritrositlerinde
ise; palmitik, palmitoleik, stearik, araşidonik ve dokosaheksaenoik asit değerlerinin
kontrol grubu değerlerine yaklaştığı belirlendi. STZ+ABY grubunda ayrıca serum
-tokoferol asetat ve -sitosterol düzeylerinin ve eritrositlerde ise -tokoferol düzeyinin
kontrol gurubu değerlerine yaklaştığı tespit edildi. Serumda STZ grubuna göre, STZ+ABY
grubunda -tokoferol düzeyinin arttığı belirlendi. Sonuç olarak, diyabetik sıçanlara uyguladığımız
acı badem yağının serum ve eritrositlerde, lipid peroksidasyon, glutatyon, yağ asidi ve
-tokoferol düzeyleri üzerinde olumlu etkileri bulunmaktadır. Elde ettiğimiz verilere göre, acı
bademin diyabet tedavisinde kullanılmasının iyi bir diyet stratejisi olabileceğini fakat bu çalışma
verilerinin kapsamlı çalışma verileri ile desteklenmesi gerektiğini düşünmekteyiz.
ANAHTAR KELİMELER: Diyabet, streptozotosin, acı badem yağı, lipid peroksidasyon,
 tokoferol, yağ asidi kompozisyonu

References

  • Jakus V. The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease. Bratislava Med 2000; 101(10): 541-551.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Cir Res 2010; 107: 1058-70.
  • Karatug A, Bolkent S. The potential role of combined antioxidant treatment on pancreas of STZ-diabetic mice. Exp Toxicol Pathol 2013; 65: 255-62.
  • Prabakaran D, Ashokkumar N. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie 2013; 95:366-73.
  • El-Moselhy MA, Taye A, Sharkawi SS, El-Sisi SF, Ahmed AF. The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food Chem Toxicol 2011; 49:1129-40.
  • Prabhakar PK, Prasad R, Ali S, Doble M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine 2013; 20:488-94.
  • Ahmad Z. The uses and properties of almond oil. Complemen Ther Clin Pract 2010; 16:10-12.
  • Tuzlacı E, Şenkardeş İ. Turkish folk medicinal plants, X: Ürgüp (Nevşehir). Marmara Pharm J 2011; 15:58-68.
  • Pandeya KB, Tripathi IP, Mishra MK, Dwivedi N, Pardhi Y, Kamal A, Gupta P, Dwivedi N, Mishra C. A critical review on traditional herbal drugs: An emerging alternative drug for diabetes. Int J Org Chem 2013; 3:1-22.
  • Jia XY, Zhang QA, Zhang ZQ, Wang Y, Yuan JF, Wang HY, Zhao D. Hepatoprotective effects of almond oil against carbon tetrachloride induced liver injury in rats. Food Chem 2011; 125:673–8.
  • Miraliakbari H, Shahidi F. Antioxidant activity of minor components of tree nut oils. Food Chem 2008; 111:421–7.
  • Esfahlan AJ, Jamei R. Properties of biological activity of ten wild almond (Prunus amygdalus L.) species. Turkish J Biol 2012; 36:201-9.
  • Liu CT, Hsu TW, Chen KM, Tan YP, Lii CK, Sheen LY. The antidiabetic effect of garlic oil is associated with ameliorated oxidative stress but not ameliorated level of pro-inflammatory cytokines in skeletal muscle of streptozotocin-induced diabetic rats. J Traditional Complem Med 2012; 2:135-44.
  • Movahedian A, Zolfaghari B, Sajjadi SE, Moknatjou R. Antihyperlipidemic effect of Peucedanum pastinacifolium extract in streptozotocin-induced diabetic rats. Clinics 2010; 65:629-33.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-75.
  • Ohkawa H, Oshishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbuturic acid reaction. Analytical Biochemistry 1979; 95: 351–8.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophy 1959; 82: 70–7.
  • Hara A, Radin NS. Lipid extraction of tissues with a lowtoxicity solvent. Anal Biochem 1978; 90: 420–6.
  • Christie WW. Gas Chromatography and Lipids. The Oil Press, Glaskow. 1992.
  • Sánchez-Machado DI, López-Hernández J, PaseiroLosada P, López-Cervantes J. An HPLC method for the quantification of sterols in edible seaweeds. Biomed Chromatog 2004; 18: 183–90.
  • Katsanidis E, Addis PB. Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radic Biol Med 1999; 27: 1137-1140.
  • Bozkurt M, Kayataş K, Uslu İ, Saraçoğlu S, Taştan EZ, Erhan N. Tip 2 diabetes mellitusta koroner arter hastalığı risk faktörü olarak postprandial kan şekeri. Haseki Tıp Bülteni 2005; 43: 1-6.
  • Ejike CE, Awazie SO, Nwangozi PA, Godwin CD. Synergistic postprandial blood glucose modulatory properties of Vernonia amygdalina (Del.), Gongronema latifolium (Benth.) and Occimum gratissimum (Linn.) aqueous decoctions. J Ethnopharmacol 2013; 149: 111-6.
  • Amarowicz R, Troszyńska A, Shahidi F. Antioxidant activity of almond seed extract and its fractions. J Food Lipids 2005; 12: 344-58.
  • Milbury PE, Chen CY, Dolnikowski GG, Blumberg JB. Determination of flavonoids and phenolics and their distribution in almonds. J Agric Food Chem 2006; 54: 5027Schäfer A, Högger P. Oligomeric procyanidins of French maritime pine bark extract (Pycnogenol) effectively inhibit alpha-glucosidase. Diabetes Clin Pract 2007; 77: 41-6.
  • Kim MJ, Ryu GR, Chung JS, Sim SS, Min DS, Rhie DJ, Yoon SH, Hahn SJ, Kim MS, Jo YH. Protective effects of epicatechin against the toxic effects of streptozotocin on rat pancreatic islets: in vivo and in vitro. Pancreas 2003; 26: 292-9.
  • Shimizu M, Kobayashi Y, Suzuki M, Satsu H, Miyamoto Y. Miyamoto, Regulation of intestinal glucose transport by tea catechins. Biofactors 2000; 13: 61-5.
  • Adisakwattana S, Yibchok-Anun S, Charoenlertkul P, Wongsasiripat N. Adisakwattana S, Yibchok-Anun S, Charoenlertkul P, Wongsasiripat N. Cyanidin-3rutinoside alleviates postprandial hyperglycemia and its synergism with acarbose by inhibition of intestinal α-glucosidase. J Clin Biochem Nutr 2011; 49: 36-41.
  • Akkarachiyasit S, Yibchok-Anun S, Wacharasindhu S, Adisakwattana S. In vitro inhibitory effects of cyandin3-rutinoside on pancreatic α-amylase and its combined effect with acarbose. Molecules 2011;16: 2075-2083.
  • Shah KH, Patel JB, Shrma VJ, Shrma RM, Patel RP, Chaunhan UM. Evaluation of antidiabetic activity of Prunus amygdalus batsch in streptozotocin induced diabetic mice. Res J Pharm Biol Chem Sci 2011; 2: 429-34.
  • Ramesh B. Dietary management of pancreatic beta-cell homeostasis and control of diabetes. Medical Hypotheses 1996; 46: 357-61.
  • Ugarte M, Brown M, Hollywood KA, Cooper GJ, Bishop PN, Dunn WB. Metabolomic analysis of rat serum in streptozotocin-induced diabetes and after treatment with oral triethylenetetramine (TETA). Genome Med 2012; 4:1-15.
  • Moussa SA. Oxidative stress in diabetes mellitus. Romanian J Biophys 2008; 18: 225–36.
  • Melo SS, Meirelles MS, Jordão Jşnior AA, Vannucchi H. Lipid peroxidation in nicotinamide-deficient and nicotinamidesupplemented rats. Acta Diabetol 2000; 37: 33-39.
  • Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008; 26:77-82.
  • Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 2003; 26:1589-96.
  • Şekeroğlu MR, Şahin H, Dülger H, Algün E. The effect of dietary treatment on erythrocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase, and serum lipid peroxidation in patients with type 2 diabetes mellitus. Clin Biochem 2000; 33:669-74.
  • Murugan P, Pari L. Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats. J Ethnopharmacol 2007; 113:479–86.
  • Teotia S, Singh M. Hypoglycemic effect of Prunus amygdalus seeds in albino rabbits. Indian J Exp Biol 1997; 35:295-6.
  • Pari L, Saravanan R. Beneficial effect of succinic acid monoethyl ester on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin– nicotinamide induced type 2 diabetes. Chem Biol Interac 2007; 169: 15–24.
  • Ramesh B. Beneficial effect of substitution of sesame oil on hepatic redox status and lipid parameters in streptozotocin diabetic rats. I.J.S.N. 2011; 2:488-93.
  • Ramesh B, Pugalendi KV. Antioxidant role of Umbelliferone in STZ-diabetic rats. Life Sci 2006; 79:306–10.
  • Karthikesan K, Pari L, Menon VP. Protective effect of tetrahydrocurcumin and chlorogenic acid against streptozotocin–nicotinamide generated oxidative stress induced diabetes. J Funct Foods 2010; 2:134-42.
  • Aslan M, Deliorman OD, Orhan N, Sezik E, Yesilada E. In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats. J Ethnopharmacol 2007; 109: 54–9.
  • Pelikanova T, Kohout M, Valek J, Base J, Stefka Z. Fatty acid composition of serum lipids and erythrocyte membranes in type 2 (non-insulindependent) diabetic men. Metabolism 1991; 40:175–80.
  • Huang YS, Horrobin DF, Manku MS, Mitchell J, Ryan MA. Tissue phospholipid fatty acid composition in the diabetic rat. Lipids 1984; 19:367-70.
  • Bohov P, Gelienová K, Seböková E, Klimes I. Abnormal serum fatty acid composition in non-insulin-dependent diabetes mellitus. Ann NY Acad Sci 1993; 683:367-70.
  • Albutt EC, Chance GW. Plasma and adipose tissue fatty acids of diabetic children on long-term corn oil diets. J Clin Invest 1969; 48:139-45.
  • Murugan P, Pari L. Protective role of tetrahydrocurcumin on changes in the fatty acid composition in streptozotocinnicotinamide induced type 2 diabetic rats. J App Biomed 2007; 5:31–8.
  • Yada S, Lapsley K, Huang G. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J Food Compos Analysis 2011; 24:469–80.
  • Vessby B, Uusitupa M, Hermansen K, Riccardi G, Rivellese AA, Tapsell LC, Nälsén C, Berglund L, Louheranta A, Rasmussen BM, Calvert GD, Maffetone A, Pedersen E, Gustafsson IB, Storlien LH. Substituting dietary saturated for monounsaturated fat impairs insülin sensitivity in healthy men and women: the KANWU study. Diabetologia 2001; 44:312–9.
  • Igal A, de Gómez Dumm NT. Influence of dietary n-3 fatty acids on the biosynthesis of polyunsaturated fatty acids in STZ-diabetic rats. J Nutr Biochem 1995; 6:269-74.
  • Giacometti J, Tomljanovic AB, Milin C, Cuk M, Stasic BR. Olive and corn oil enriched diets changed the phospholipid fatty acid composition in mice liver after one-thirds hepatectomy. Food Nutr Sci 2012; 3:240-8.
  • Worcester NA, Bruckdorfer KR, Hallinan T, Wilkins AJ, Mann JA, Yudkins J. The influence of diet and diabetes on stearoyl Coenzyme A desaturase (EC 1.14.99.5) activity and fatty acid composition in rat tissues. B J Nutr 1979; 41:239-52.
  • Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 1999; 40:1549–58.
  • Attie AD, Flowers MT, Flowers JB, Groen AK, Kuipers F, Ntambi JM. Stearoyl-CoA desaturase deficiency, hypercholesterolemia, cholestasis, and diabetes. Nutr Rev 2007; 65:35-8.
  • Raz A, Belsky NK, Przedecki F, Obukowicz M. Dietary fish oil inhibits Δ6-desaturase activity in vivo. J Am Oil Chem Soc 1998; 75:241-5.
  • Rimoldi OJ, Finarelli GS, Brenner RR. Effects of diabetes and insulin on hepatic delta 6 desaturase gene expression. Biochem Biophy Res Comm 2001; 283:323-6.
  • Chen XJ, Mao HL, Ma XM, Liu JX. Effects of dietary corn oil and vitamin E supplementation on fatty acid profiles and expression of acetyl CoA carboxylase and stearoyl-CoA desaturase gene in Hu sheep. Animal Sci J 2010; 81: 165-71.
  • Frenkel AL, Canetti L, Halpern Z. Effects of nutritional lipids on diabetic manifestations and Δ6 desaturase mRNA level in streptozotocin treated mice. Nutr Res 2004; 24: 303–12.
  • Comin D, Gazarini L, Zanoni JN, Milani H, de Oliveira RM. Vitamin E improves learning performance and changes the expression of nitric oxide-producing neurons in the brains of diabetic rats. Behav Brain Res 2010; 210: 38-45.
  • Jain AB, Jain VA. Vitamin E, its beneficial role in diabetes mellitus (DM) and its complications. J Clin Diagn Res 2012; 6:1624-8.
  • Opara E.C. Oxidative stress, micronutrients, diabetes mellitus and its complications. J R Soc Promot Health 2002; 122: 28-34.
  • Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature 2005; 438: 612–21.
  • Noyan T, Balahoroğlu R, Kömöroğlu U. Diyabetik sıçanlarda insülinle kombine edilmiş A, E, ve C vitamini tedavisinin antioksidan enzimler üzerine etkileri. Türk Klinik Biyokimya Dergisi 2004; 2: 113-9.
  • Shin S, Ku Y, Babu N, Singh M. Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol 2007; 45:121-8.
  • Vahalkar GS, Haldankar VA. RBC membrane composition in insulin dependent diabetes mellitus in context of oxidative stress. Indian J Clin Biochem 2008; 23:223-6.
  • O’Meara NM, Devery RA, Owens D, Collins PB, Johnson AH, Tomkin GH. Cholesterol metabolism in alloxaninduced diabetic rabbits. Diabetes 1990; 39: 626-33.
  • Lovejoy JC, Most MM, Lefevre M, Greenway FL, Rood JC. Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am J Clin Nutr 2002; 76:1000-6.
  • Alhazzaa R, Oen JJJ, Sinclair AJ. Dietary phytosterols modify the sterols and fatty acid profile in a tissuespecific pattern. J Func Foods 2013; 5:829-37.
Year 2014, Volume: 18 Issue: 1, 13 - 21, 16.01.2014

Abstract

References

  • Jakus V. The role of free radicals, oxidative stress and antioxidant systems in diabetic vascular disease. Bratislava Med 2000; 101(10): 541-551.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Cir Res 2010; 107: 1058-70.
  • Karatug A, Bolkent S. The potential role of combined antioxidant treatment on pancreas of STZ-diabetic mice. Exp Toxicol Pathol 2013; 65: 255-62.
  • Prabakaran D, Ashokkumar N. Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie 2013; 95:366-73.
  • El-Moselhy MA, Taye A, Sharkawi SS, El-Sisi SF, Ahmed AF. The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food Chem Toxicol 2011; 49:1129-40.
  • Prabhakar PK, Prasad R, Ali S, Doble M. Synergistic interaction of ferulic acid with commercial hypoglycemic drugs in streptozotocin induced diabetic rats. Phytomedicine 2013; 20:488-94.
  • Ahmad Z. The uses and properties of almond oil. Complemen Ther Clin Pract 2010; 16:10-12.
  • Tuzlacı E, Şenkardeş İ. Turkish folk medicinal plants, X: Ürgüp (Nevşehir). Marmara Pharm J 2011; 15:58-68.
  • Pandeya KB, Tripathi IP, Mishra MK, Dwivedi N, Pardhi Y, Kamal A, Gupta P, Dwivedi N, Mishra C. A critical review on traditional herbal drugs: An emerging alternative drug for diabetes. Int J Org Chem 2013; 3:1-22.
  • Jia XY, Zhang QA, Zhang ZQ, Wang Y, Yuan JF, Wang HY, Zhao D. Hepatoprotective effects of almond oil against carbon tetrachloride induced liver injury in rats. Food Chem 2011; 125:673–8.
  • Miraliakbari H, Shahidi F. Antioxidant activity of minor components of tree nut oils. Food Chem 2008; 111:421–7.
  • Esfahlan AJ, Jamei R. Properties of biological activity of ten wild almond (Prunus amygdalus L.) species. Turkish J Biol 2012; 36:201-9.
  • Liu CT, Hsu TW, Chen KM, Tan YP, Lii CK, Sheen LY. The antidiabetic effect of garlic oil is associated with ameliorated oxidative stress but not ameliorated level of pro-inflammatory cytokines in skeletal muscle of streptozotocin-induced diabetic rats. J Traditional Complem Med 2012; 2:135-44.
  • Movahedian A, Zolfaghari B, Sajjadi SE, Moknatjou R. Antihyperlipidemic effect of Peucedanum pastinacifolium extract in streptozotocin-induced diabetic rats. Clinics 2010; 65:629-33.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265-75.
  • Ohkawa H, Oshishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbuturic acid reaction. Analytical Biochemistry 1979; 95: 351–8.
  • Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophy 1959; 82: 70–7.
  • Hara A, Radin NS. Lipid extraction of tissues with a lowtoxicity solvent. Anal Biochem 1978; 90: 420–6.
  • Christie WW. Gas Chromatography and Lipids. The Oil Press, Glaskow. 1992.
  • Sánchez-Machado DI, López-Hernández J, PaseiroLosada P, López-Cervantes J. An HPLC method for the quantification of sterols in edible seaweeds. Biomed Chromatog 2004; 18: 183–90.
  • Katsanidis E, Addis PB. Novel HPLC analysis of tocopherols, tocotrienols, and cholesterol in tissue. Free Radic Biol Med 1999; 27: 1137-1140.
  • Bozkurt M, Kayataş K, Uslu İ, Saraçoğlu S, Taştan EZ, Erhan N. Tip 2 diabetes mellitusta koroner arter hastalığı risk faktörü olarak postprandial kan şekeri. Haseki Tıp Bülteni 2005; 43: 1-6.
  • Ejike CE, Awazie SO, Nwangozi PA, Godwin CD. Synergistic postprandial blood glucose modulatory properties of Vernonia amygdalina (Del.), Gongronema latifolium (Benth.) and Occimum gratissimum (Linn.) aqueous decoctions. J Ethnopharmacol 2013; 149: 111-6.
  • Amarowicz R, Troszyńska A, Shahidi F. Antioxidant activity of almond seed extract and its fractions. J Food Lipids 2005; 12: 344-58.
  • Milbury PE, Chen CY, Dolnikowski GG, Blumberg JB. Determination of flavonoids and phenolics and their distribution in almonds. J Agric Food Chem 2006; 54: 5027Schäfer A, Högger P. Oligomeric procyanidins of French maritime pine bark extract (Pycnogenol) effectively inhibit alpha-glucosidase. Diabetes Clin Pract 2007; 77: 41-6.
  • Kim MJ, Ryu GR, Chung JS, Sim SS, Min DS, Rhie DJ, Yoon SH, Hahn SJ, Kim MS, Jo YH. Protective effects of epicatechin against the toxic effects of streptozotocin on rat pancreatic islets: in vivo and in vitro. Pancreas 2003; 26: 292-9.
  • Shimizu M, Kobayashi Y, Suzuki M, Satsu H, Miyamoto Y. Miyamoto, Regulation of intestinal glucose transport by tea catechins. Biofactors 2000; 13: 61-5.
  • Adisakwattana S, Yibchok-Anun S, Charoenlertkul P, Wongsasiripat N. Adisakwattana S, Yibchok-Anun S, Charoenlertkul P, Wongsasiripat N. Cyanidin-3rutinoside alleviates postprandial hyperglycemia and its synergism with acarbose by inhibition of intestinal α-glucosidase. J Clin Biochem Nutr 2011; 49: 36-41.
  • Akkarachiyasit S, Yibchok-Anun S, Wacharasindhu S, Adisakwattana S. In vitro inhibitory effects of cyandin3-rutinoside on pancreatic α-amylase and its combined effect with acarbose. Molecules 2011;16: 2075-2083.
  • Shah KH, Patel JB, Shrma VJ, Shrma RM, Patel RP, Chaunhan UM. Evaluation of antidiabetic activity of Prunus amygdalus batsch in streptozotocin induced diabetic mice. Res J Pharm Biol Chem Sci 2011; 2: 429-34.
  • Ramesh B. Dietary management of pancreatic beta-cell homeostasis and control of diabetes. Medical Hypotheses 1996; 46: 357-61.
  • Ugarte M, Brown M, Hollywood KA, Cooper GJ, Bishop PN, Dunn WB. Metabolomic analysis of rat serum in streptozotocin-induced diabetes and after treatment with oral triethylenetetramine (TETA). Genome Med 2012; 4:1-15.
  • Moussa SA. Oxidative stress in diabetes mellitus. Romanian J Biophys 2008; 18: 225–36.
  • Melo SS, Meirelles MS, Jordão Jşnior AA, Vannucchi H. Lipid peroxidation in nicotinamide-deficient and nicotinamidesupplemented rats. Acta Diabetol 2000; 37: 33-39.
  • Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008; 26:77-82.
  • Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care 2003; 26:1589-96.
  • Şekeroğlu MR, Şahin H, Dülger H, Algün E. The effect of dietary treatment on erythrocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase, and serum lipid peroxidation in patients with type 2 diabetes mellitus. Clin Biochem 2000; 33:669-74.
  • Murugan P, Pari L. Influence of tetrahydrocurcumin on erythrocyte membrane bound enzymes and antioxidant status in experimental type 2 diabetic rats. J Ethnopharmacol 2007; 113:479–86.
  • Teotia S, Singh M. Hypoglycemic effect of Prunus amygdalus seeds in albino rabbits. Indian J Exp Biol 1997; 35:295-6.
  • Pari L, Saravanan R. Beneficial effect of succinic acid monoethyl ester on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin– nicotinamide induced type 2 diabetes. Chem Biol Interac 2007; 169: 15–24.
  • Ramesh B. Beneficial effect of substitution of sesame oil on hepatic redox status and lipid parameters in streptozotocin diabetic rats. I.J.S.N. 2011; 2:488-93.
  • Ramesh B, Pugalendi KV. Antioxidant role of Umbelliferone in STZ-diabetic rats. Life Sci 2006; 79:306–10.
  • Karthikesan K, Pari L, Menon VP. Protective effect of tetrahydrocurcumin and chlorogenic acid against streptozotocin–nicotinamide generated oxidative stress induced diabetes. J Funct Foods 2010; 2:134-42.
  • Aslan M, Deliorman OD, Orhan N, Sezik E, Yesilada E. In vivo antidiabetic and antioxidant potential of Helichrysum plicatum ssp. plicatum capitulums in streptozotocin-induced-diabetic rats. J Ethnopharmacol 2007; 109: 54–9.
  • Pelikanova T, Kohout M, Valek J, Base J, Stefka Z. Fatty acid composition of serum lipids and erythrocyte membranes in type 2 (non-insulindependent) diabetic men. Metabolism 1991; 40:175–80.
  • Huang YS, Horrobin DF, Manku MS, Mitchell J, Ryan MA. Tissue phospholipid fatty acid composition in the diabetic rat. Lipids 1984; 19:367-70.
  • Bohov P, Gelienová K, Seböková E, Klimes I. Abnormal serum fatty acid composition in non-insulin-dependent diabetes mellitus. Ann NY Acad Sci 1993; 683:367-70.
  • Albutt EC, Chance GW. Plasma and adipose tissue fatty acids of diabetic children on long-term corn oil diets. J Clin Invest 1969; 48:139-45.
  • Murugan P, Pari L. Protective role of tetrahydrocurcumin on changes in the fatty acid composition in streptozotocinnicotinamide induced type 2 diabetic rats. J App Biomed 2007; 5:31–8.
  • Yada S, Lapsley K, Huang G. A review of composition studies of cultivated almonds: Macronutrients and micronutrients. J Food Compos Analysis 2011; 24:469–80.
  • Vessby B, Uusitupa M, Hermansen K, Riccardi G, Rivellese AA, Tapsell LC, Nälsén C, Berglund L, Louheranta A, Rasmussen BM, Calvert GD, Maffetone A, Pedersen E, Gustafsson IB, Storlien LH. Substituting dietary saturated for monounsaturated fat impairs insülin sensitivity in healthy men and women: the KANWU study. Diabetologia 2001; 44:312–9.
  • Igal A, de Gómez Dumm NT. Influence of dietary n-3 fatty acids on the biosynthesis of polyunsaturated fatty acids in STZ-diabetic rats. J Nutr Biochem 1995; 6:269-74.
  • Giacometti J, Tomljanovic AB, Milin C, Cuk M, Stasic BR. Olive and corn oil enriched diets changed the phospholipid fatty acid composition in mice liver after one-thirds hepatectomy. Food Nutr Sci 2012; 3:240-8.
  • Worcester NA, Bruckdorfer KR, Hallinan T, Wilkins AJ, Mann JA, Yudkins J. The influence of diet and diabetes on stearoyl Coenzyme A desaturase (EC 1.14.99.5) activity and fatty acid composition in rat tissues. B J Nutr 1979; 41:239-52.
  • Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 1999; 40:1549–58.
  • Attie AD, Flowers MT, Flowers JB, Groen AK, Kuipers F, Ntambi JM. Stearoyl-CoA desaturase deficiency, hypercholesterolemia, cholestasis, and diabetes. Nutr Rev 2007; 65:35-8.
  • Raz A, Belsky NK, Przedecki F, Obukowicz M. Dietary fish oil inhibits Δ6-desaturase activity in vivo. J Am Oil Chem Soc 1998; 75:241-5.
  • Rimoldi OJ, Finarelli GS, Brenner RR. Effects of diabetes and insulin on hepatic delta 6 desaturase gene expression. Biochem Biophy Res Comm 2001; 283:323-6.
  • Chen XJ, Mao HL, Ma XM, Liu JX. Effects of dietary corn oil and vitamin E supplementation on fatty acid profiles and expression of acetyl CoA carboxylase and stearoyl-CoA desaturase gene in Hu sheep. Animal Sci J 2010; 81: 165-71.
  • Frenkel AL, Canetti L, Halpern Z. Effects of nutritional lipids on diabetic manifestations and Δ6 desaturase mRNA level in streptozotocin treated mice. Nutr Res 2004; 24: 303–12.
  • Comin D, Gazarini L, Zanoni JN, Milani H, de Oliveira RM. Vitamin E improves learning performance and changes the expression of nitric oxide-producing neurons in the brains of diabetic rats. Behav Brain Res 2010; 210: 38-45.
  • Jain AB, Jain VA. Vitamin E, its beneficial role in diabetes mellitus (DM) and its complications. J Clin Diagn Res 2012; 6:1624-8.
  • Opara E.C. Oxidative stress, micronutrients, diabetes mellitus and its complications. J R Soc Promot Health 2002; 122: 28-34.
  • Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature 2005; 438: 612–21.
  • Noyan T, Balahoroğlu R, Kömöroğlu U. Diyabetik sıçanlarda insülinle kombine edilmiş A, E, ve C vitamini tedavisinin antioksidan enzimler üzerine etkileri. Türk Klinik Biyokimya Dergisi 2004; 2: 113-9.
  • Shin S, Ku Y, Babu N, Singh M. Erythrocyte deformability and its variation in diabetes mellitus. Indian J Exp Biol 2007; 45:121-8.
  • Vahalkar GS, Haldankar VA. RBC membrane composition in insulin dependent diabetes mellitus in context of oxidative stress. Indian J Clin Biochem 2008; 23:223-6.
  • O’Meara NM, Devery RA, Owens D, Collins PB, Johnson AH, Tomkin GH. Cholesterol metabolism in alloxaninduced diabetic rabbits. Diabetes 1990; 39: 626-33.
  • Lovejoy JC, Most MM, Lefevre M, Greenway FL, Rood JC. Effect of diets enriched in almonds on insulin action and serum lipids in adults with normal glucose tolerance or type 2 diabetes. Am J Clin Nutr 2002; 76:1000-6.
  • Alhazzaa R, Oen JJJ, Sinclair AJ. Dietary phytosterols modify the sterols and fatty acid profile in a tissuespecific pattern. J Func Foods 2013; 5:829-37.
There are 70 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ersin Demir

Ökkeş Yılmaz This is me

Publication Date January 16, 2014
Published in Issue Year 2014 Volume: 18 Issue: 1

Cite

APA Demir, E., & Yılmaz, Ö. (2014). Streptozotosin ile Tip-1 diyabet oluşturulan sıçanlarda acı badem yağının serum ve eritrositlerdeki bazı biyokimyasal parametrelere etkisi. Marmara Pharmaceutical Journal, 18(1), 13-21. https://doi.org/10.12991/201414121
AMA Demir E, Yılmaz Ö. Streptozotosin ile Tip-1 diyabet oluşturulan sıçanlarda acı badem yağının serum ve eritrositlerdeki bazı biyokimyasal parametrelere etkisi. Marmara Pharm J. April 2014;18(1):13-21. doi:10.12991/201414121
Chicago Demir, Ersin, and Ökkeş Yılmaz. “Streptozotosin Ile Tip-1 Diyabet oluşturulan sıçanlarda Acı Badem yağının Serum Ve Eritrositlerdeki Bazı Biyokimyasal Parametrelere Etkisi”. Marmara Pharmaceutical Journal 18, no. 1 (April 2014): 13-21. https://doi.org/10.12991/201414121.
EndNote Demir E, Yılmaz Ö (April 1, 2014) Streptozotosin ile Tip-1 diyabet oluşturulan sıçanlarda acı badem yağının serum ve eritrositlerdeki bazı biyokimyasal parametrelere etkisi. Marmara Pharmaceutical Journal 18 1 13–21.
IEEE E. Demir and Ö. Yılmaz, “Streptozotosin ile Tip-1 diyabet oluşturulan sıçanlarda acı badem yağının serum ve eritrositlerdeki bazı biyokimyasal parametrelere etkisi”, Marmara Pharm J, vol. 18, no. 1, pp. 13–21, 2014, doi: 10.12991/201414121.
ISNAD Demir, Ersin - Yılmaz, Ökkeş. “Streptozotosin Ile Tip-1 Diyabet oluşturulan sıçanlarda Acı Badem yağının Serum Ve Eritrositlerdeki Bazı Biyokimyasal Parametrelere Etkisi”. Marmara Pharmaceutical Journal 18/1 (April 2014), 13-21. https://doi.org/10.12991/201414121.
JAMA Demir E, Yılmaz Ö. Streptozotosin ile Tip-1 diyabet oluşturulan sıçanlarda acı badem yağının serum ve eritrositlerdeki bazı biyokimyasal parametrelere etkisi. Marmara Pharm J. 2014;18:13–21.
MLA Demir, Ersin and Ökkeş Yılmaz. “Streptozotosin Ile Tip-1 Diyabet oluşturulan sıçanlarda Acı Badem yağının Serum Ve Eritrositlerdeki Bazı Biyokimyasal Parametrelere Etkisi”. Marmara Pharmaceutical Journal, vol. 18, no. 1, 2014, pp. 13-21, doi:10.12991/201414121.
Vancouver Demir E, Yılmaz Ö. Streptozotosin ile Tip-1 diyabet oluşturulan sıçanlarda acı badem yağının serum ve eritrositlerdeki bazı biyokimyasal parametrelere etkisi. Marmara Pharm J. 2014;18(1):13-21.