Research Article
BibTex RIS Cite

A Biochemical Study on the Development of Actinidia deliciosa Callus by Combinations of Naphthalene Acetic Acid, 6-Benzylaminopurine and Indole-3-Butyric Acid

Year 2024, Volume: 27 Issue: 2, 249 - 260, 01.04.2024
https://doi.org/10.18016/ksutarimdoga.vi.1281016

Abstract

In this study, different concentrations and combinations of auxin derivative naphthalene acetic acid (NAA), cytokinin derivative 6-Benzylaminopurine (BAP) and indole-3-butyric acid (IBA) were applied to cotyledon explants of kiwifruit (Actinidia deliciosa). Phenolic compound, antioxidant activity, fatty acid composition and lipophilic molecule contents of callus cells were investigated. When the shoots of Actinidia deliciosa grown in a culture medium reached 5 cm, their cotyledons were used as explant source. Callus induction was achieved in culture media containing plant growth regulators (BBD) in different doses and combinations. According to the results of the analysis made with calli, the total phenolic content of the F group containing 0.5 mg L-1 NAA + 1 mg L-1 BAP + 0.5 mg L-1 IBA combination was decreased compared to the control group (p<0.05), but it was significantly higher in the other groups. (p<0.001). Although DPPH and ABTS antioxidant capacity values were higher in the groups given NAA and BAP combination, it was determined that they were lower in the groups with NAA+BAP+IBA combination. The level of α-tocopherol, an antioxidant- effective lipophilic molecule, was higher in NAA and BAP groups applied at different concentrations (p<0.001), but decreased in NAA and BAP and NAA+BAP+IBA combination groups used in different concentrations (p<0.001). It was observed that phytosterol levels such as ergosterol, stigmasterol and betasitosterol decreased at different rates in the combination groups in which plant growth regulators (BBD) were applied. Although the palmitic acid ratio increased in most of the BBD groups compared to the control group in the fatty acid combination (p<0.01), no statistical difference was found in some BBD groups. While a decrease was observed in palmitoleic, stearic and linoleic acid ratios in the fatty acid composition of the groups in which different combinations of BBD were given, an increase was observed in linolenic acid ratios (p<0.05, p<0.01, p<0.001). As a result, it was determined that the auxin and cytokinin derivatives used at different rates on the callus formation of the kiwi plant had different effects on the biochemical metabolites of the callus tissue.

References

  • Açıkgöz, M.A., Kara, Ş.M., Aygün, A., Özcan M.M, & Ay, E.B. (2019). Effects of methyl jasmonate and salicylic acid on the production of camphor and phenolic compounds in cell suspension culture of endemic Turkish yarrow (Achillea gypsicola) species. Turkish Journal of Agriculture and Forestry, 43(3), 351-359.
  • Ali, H., Khan, M.A., Ullah, N., & Khan, R.S. (2018). Impacts of hormonal elicitors and photoperiod regimes on elicitation of bioactive secondary volatiles in cell cultures of Ajuga bracteosa. Journal of Photochemistry and Photobiology B: Biology, 183, 242-250.
  • Aly, M. A., Amer, E. A., Al-Zayadneh, W. A., & Eldin, A. E. N. (2008). Growth regulators influence the fatty acid profiles of in vitro induced jojoba somatic embryos. Plant cell, tissue and organ culture, 93, 107-114.
  • Barber, M. S., McConnell, V. S., & DeCaux, B. S. (2000). Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry, 54(1), 53-56.
  • Baskar, R., Lavanya, R., Mayilvizhi, S., & Rajasekaran, P. (2008). Free radical scavenging activity of antitumour polysaccharide fractions isolated from Ganoderma lucidum (Fr.) P. karst.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
  • Brewer, M. S. (2011). Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Comprehensive reviews in food science and food safety, 10(4), 221-247.
  • Chawla, H.S. & Wenzel G. (1987). Regeneration potential of callus from wheat and barley. Archiv fur Zuchtungsforschung. 17(6), 337-343.
  • Christie, W.W. (1990). Gas chromatography and lipids, The Oiyl Press, 1-184.
  • Clouse, S. D. (2002). Arabidopsis mutants reveal multiple roles for sterols in plant development. The Plant Cell, 14(9), 1995-2000.
  • Çetin, E. S., Uzunlar, F., & Baydar, N. G. (2011). UV-C uygulamasının Gamay üzüm çeşidine ait kalluslarda sekonder metabolit üretimi üzerine etkileri. Gıda, 36(6), 335-342.
  • Das, N. P., & Pereira, T. A. (1990). Effects of flavonoids on thermal autoxidation of palm oil: Structure‐activity relationships. Journal of the American Oil Chemists' Society, 67(4), 255-258.
  • Del Pozo, J. C., Lopez‐Matas, M. A., Ramirez‐Parra, E., & Gutierrez, C. (2005). Hormonal control of the plant cell cycle. Physiologia Plantarum, 123(2), 173-183.
  • Demir, E. (2018). Aksenik jüvenil sakız ağacı (Pistacia lentiscus L.) eksplantlarından kallus kültürlerinin başlatılması ve optimizasyonu (Master's thesis, Batman Üniversitesi Fen Bilimleri Enstitüsü).
  • Dufourc, E. J. (2008). The role of phytosterols in plant adaptation to temperature. Plant signaling & behavior, 3(2), 133-134.
  • Ekşi, A. & Özen, İ. T. (2012). Kivi meyvesinin kimyasal bileşenleri ve fonksiyonel özellikleri. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 2(2), 54-67.
  • Fukumoto, L. R., & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of agricultural and food chemistry, 48(8), 3597-3604.
  • George, E. F., Hall, M. A., & Klerk, G. J. D. (2008). Plant growth regulators I: introduction; auxins, their analogues and inhibitors. Plant Propagation by Tissue Culture: Volume 1. The Background, 175-204. Dordrecht: Springer Netherlands.
  • Giangrieco, I., Proietti, S., Moscatello, S., Tuppo, L., Battistelli, A., La Cara, F., ... & Ciardiello, M. A. (2016). Influence of geographical location of orchards on green kiwifruit bioactive components. Journal of Agricultural and food chemistry, 64(48), 9172-9179.
  • Giri, L., Dhyani, P., Rawat, S., Bhatt, I. D., Nandi, S. K., Rawal, R. S., & Pande, V. (2012). In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: A rare Himalayan medicinal orchid. Industrial Crops and Products, 39, 1-6.
  • Grossmann, K. (2010). Auxin herbicides: current status of mechanism and mode of action. Pest Management Science: formerly Pesticide Science, 66(2), 113-120.
  • Guo, J., Yuan, Y., Dou, P., & Yue, T. (2017). Multivariate statistical analysis of the polyphenolic constituents in kiwifruit juices to trace fruit varieties and geographical origins. Food chemistry, 232, 552-559.
  • Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?. Archives of biochemistry and biophysics, 476(2), 107-112.
  • Hartmann, M. A. (1998). Plant sterols and the membrane environment. Trends in plant science, 3(5), 170-175.
  • Hata, M., Ishii, Y., Watanabe, E., Uoto, K., Kobayashi, S., Yoshida, K. I., ... & Ando, A. (2010). Inhibition of ergosterol synthesis by novel antifungal compounds targeting C-14 reductase. Medical mycology, 48(4), 613-621.
  • Hatano, T., Edamatsu, R., Hiramatsu, M., MORI, A., Fujita, Y., Yasuhara, T., & OKUDA, T. (1989). Effects of the interaction of tannins with co-existing substances. VI.: effects of tannins and related polyphenols on superoxide anion radical, and on 1, 1-Diphenyl-2-picrylhydrazyl radical. Chemical and pharmaceutical bulletin, 37(8), 2016-2021.
  • He, M., & Ding, N. Z. (2020). Plant unsaturated fatty acids: multiple roles in stress response. Frontiers in plant science, 11, 562785.
  • He, M., Qin, C. X., Wang, X., & Ding, N. Z. (2020). Plant unsaturated fatty acids: biosynthesis and regulation. Frontiers in Plant Science, 11, 390.
  • Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: mechanisms of induction and repression. The plant cell, 25(9), 3159-3173.
  • Jayasinghe, C., Gotoh, N., Aoki, T., & Wada, S. (2003). Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food chemistry, 51(15), 4442-4449.
  • Karpińska, J., Mikołuć, B., Motkowski, R., & Piotrowska-Jastrzębska, J. (2006). HPLC method for simultaneous determination of retinol, α-tocopherol and coenzyme Q10 in human plasma. Journal of pharmaceutical and biomedical analysis, 42(2), 232-236.
  • Katsanidis, E. & Addis, P.B. (1999). Novel HPLC analysis of tocopherols and cholesterol in tissue. Free Radical Biology and Medicine. 27, 1137-1140.
  • Keskin, N., & Kunter, B. (2007). Ercis üzüm çeşidinin kallus kültürlerinde UV ışını etkisiyle resveratrol üretiminin uyarılması. Journal of Agricultural Sciences, 13(04), 379-384.
  • Khoo, L. W., Mediani, A., Zolkeflee, N. K. Z., Leong, S. W., Ismail, I. S., Khatib, A., ... & Abas, F. (2015). Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity correlations elucidated by NMR based metabolomics. Phytochemistry Letters, 14, 123-133.
  • Kim, D. O., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry. 81(3), 321-326.
  • Kousalya, L., & Bai, V. N. (2016). Effect of growth regulators on rapid micropropagation and antioxidant activity of Canscora decussata (Roxb.) Roem. & Schult.–A threatened medicinal plant. Asian Pacific Journal of Reproduction, 5(2), 161-170.
  • Kumar, S. S., Arya, M., Mahadevappa, P., & Giridhar, P. (2020). Influence of photoperiod on growth, bioactive compounds and antioxidant activity in callus cultures of Basella rubra L. Journal of Photochemistry and Photobiology B: Biology, 209, 111937.
  • Kumar, S., & Sharma, D. R. (2002). Review Article In vitro propagation of kiwifruit. The Journal of Horticultural Science and Biotechnology, 77(5), 503-508.
  • Kumlay, A. M., & Ercisli, S. (2015). Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions. Biotechnology & Biotechnological Equipment, 29(6), 1075-1084.
  • Lichtenthaler, H. K., Schwender, J., Disch, A., & Rohmer, M. (1997). Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS letters, 400(3), 271-274.
  • López-Cervantes J, Sánchez-Machado DI, Ríos-Vázquez NJ. (2005). High-performance liquid chromatography method for the simultaneous quantification of retinol, alpha-tocopherol, and cholesterol in shrimp waste hydrolysate. Chromatography, 10;1105(1-2), 135-9.
  • Maharik, N., Elgengaihi, S., & Taha, H. (2009). Anthocyanin production in callus cultures of Crataegus sinaica boiss. Int J Acad Res, 1(1), 30-34.
  • Mantell, S. H., & Smith, H. (1983). Cultural factors that influence secondary metabolite accumulations in plant cell and tissue cultures. In Seminar series-society for experimental biology.
  • Mohammed S., Suresh M. (2020). Antifungal efficacy and mechanism of flavonoids Antibiotics, Basel, Switzerland, 9 pp. 1-58.
  • Mok, M. C., Gabelman, W. H., & Skoog, F. (1976). Carotenoid Synthesis in Tissue Cultures of Daucus carota L. 1. Journal of the American Society for Horticultural Science, 101(4), 442-449.
  • Mulabagal, V., & Tsay, H. S. (2004). Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. International journal of applied science and engineering, 2(1), 29-48.
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.
  • Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., & Brighenti, F. (2003). Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. The Journal of nutrition, 133(9), 2812-2819.
  • Pinelli, P., Romani, A., Fierini, E., Remorini, D., & Agati, G. (2013). Characterisation of the Polyphenol Content in the Kiwifruit (Actinidia deliciosa) Exocarp for the Calibration of a Fruit‐sorting Optical Sensor. Phytochemical Analysis, 24(5), 460-466.
  • Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513-523.
  • Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusidó, R. M., & Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21(2), 182.
  • Rout, G. R., Samantaray, S., & Das, P. (2000). In vitro manipulation and propagation of medicinal plants. Biotechnology advances, 18(2), 91-120.
  • Schaller, G. E., Street, I. H., & Kieber, J. J. (2014). Cytokinin and the cell cycle. Current opinion in plant biology, 21, 7-15.
  • Schaller, H. (2004). New aspects of sterol biosynthesis in growth and development of higher plants. Plant physiology and biochemistry, 42(6), 465-476.
  • Sengul, M., Yildiz, H., Gungor, N., Cetin, B., Eser, Z., & Ercisli, S. (2009). Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Sciences, 22(1), 102-106.
  • Shinde, A. N., Malpathak, N., & Fulzele, D. P. (2010). Determination of isoflavone content and antioxidant activity in Psoralea corylifolia L. callus cultures. Food Chemistry, 118(1), 128-132.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology. 299, 152-178.
  • Smetanska, I. (2018). Sustainable production of polyphenols and antioxidants by plant in vitro cultures. In Bioprocessing of plant in vitro systems (pp. 225-269). Springer, Cham.
  • Tufarelli, V. (2014). Enhancing egg quality by dietary vitamin E and selenium supplementation. Vitamins and Minerals, 3, e131.
  • Vasil, I. K., Constabel, F., & Schell, J. (Eds.). (1984). Cell culture and somatic cell genetics of plants (Vol. 1, pp. 645-p). New York: Academic Press.
  • Verpoorte, R., Contin, A., & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry reviews, 1, 13-25.
  • Wang, K., Li, M., Han, Q., Fu, R., & Ni, Y. (2021). Inhibition of α-amylase activity by insoluble and soluble dietary fibers from kiwifruit (Actinidia deliciosa). Food Bioscience, 42, 101057.
  • Yavaş, İ., & Emek, Y (2021). Bitkilerin Abiyotik Stres Koşullarıyla Başa Çıkmasına Yardımcı Strigolaktonlar. Avrupa Bilim ve Teknoloji Dergisi, (31), 686-690.
  • Yesil-Celiktas, O., Nartop, P., Gurel, A., Bedir, E., & Vardar-Sukan, F. (2007). Determination of phenolic content and antioxidant activity of extracts obtained from Rosmarinus officinalis’ calli. Journal of plant physiology, 164(11), 1536-1542.

Naftalin Asetik Asit, 6-Benzilaminopürin ve İndol-3-Bütirik Asit Kombinasyonlarının Actinidia deliciosa Kallus Gelişimi Üzerine Biyokimyasal Bir Araştırma

Year 2024, Volume: 27 Issue: 2, 249 - 260, 01.04.2024
https://doi.org/10.18016/ksutarimdoga.vi.1281016

Abstract

Bu çalışmada oksin türevi olan naftalin asetik asit (NAA), sitokinin türevi 6-Benzilaminopürin (BAP) ile indol-3-butirik asit (IBA)’in farklı konsantrasyonları ve kombinasyonları kivi bitkisinin (Actinidia deliciosa) kotiledon eksplantlarına uygulandı. Kallus hücrelerinin fenolik bileşik, antioksidan aktivite, yağ asidi bileşimi ve lipofilik molekül içerikleri incelendi. Kültür ortamında yetiştirilen Actinidia deliciosa sürgünleri 5 santimetreye ulaşınca kotiledonları eksplant kaynağı olarak kullanıldı. Farklı doz ve kombinasyonlarda bitki büyüme düzenleyicileri (BBD) içeren kültür ortamlarında kallus indüksiyonu sağlandı. Kalluslar ile yapılan analiz sonuçlarına göre total fenolik içeriği 0.5 mg L-1 NAA + 1 mg L-1 BAP + 0.5 mg L-1 IBA kombinasyonu içeren F grubunda kontrol grubuna göre azaldığı halde (p<0.05), diğer gruplarda belirgin düzeyde yüksek bulundu (p<0.001). DPPH ve ABTS antioksidan kapasite değerleri NAA ve BAP kombinasyonu verilen gruplarda yüksek olduğu halde, NAA+BAP+IBA kombinasyonun bulunduğu gruplarda düşük olduğu belirlendi. Antioksidan etkili lipofilik moleküllerden α-tokoferol düzeyi farklı konsantrasyon uygulanan NAA ve BAP gruplarında yüksek (p<0.001), farklı konsantrasyon kullanılan NAA ile BAP ve NAA+BAP+IBA kombinasyon gruplarında ise azaldığı saptandı (p<0.001). Ergosterol, stigmasterol ve betasitosterol gibi fitosterol düzeylerinin bitki büyüme düzenleyilecilerinin (BBD) uygulandığı kombinasyon gruplarında farklı oranlarda azaldığı gözlendi. Yağ asidi kombinasyonu içinde kontrol grubuna göre BBD gruplarının çoğunda palmitik asit oranı arttığı halde (p<0.01), bazı BBD gruplarında istatistik farklılık bulunmadı. BBD’nin farklı kombinasyonlarının verildiği grupların yağ asidi bileşimi içinde palmitoleik, stearik ve linoleik asit oranlarında azalma gözlenirken, linolenik asit oranlarında yükselme belirlendi (p<0.05, p<0.01, p<0.001). Sonuç olarak kivi bitkisinin kallus oluşumu üzerinde farklı oranlarda kullanılan oksin ve sitokinin türevlerinin kallus dokusunun biyokimyasal metabolitleri üzerinde farklı etkilere sahip olduğu belirlendi.

References

  • Açıkgöz, M.A., Kara, Ş.M., Aygün, A., Özcan M.M, & Ay, E.B. (2019). Effects of methyl jasmonate and salicylic acid on the production of camphor and phenolic compounds in cell suspension culture of endemic Turkish yarrow (Achillea gypsicola) species. Turkish Journal of Agriculture and Forestry, 43(3), 351-359.
  • Ali, H., Khan, M.A., Ullah, N., & Khan, R.S. (2018). Impacts of hormonal elicitors and photoperiod regimes on elicitation of bioactive secondary volatiles in cell cultures of Ajuga bracteosa. Journal of Photochemistry and Photobiology B: Biology, 183, 242-250.
  • Aly, M. A., Amer, E. A., Al-Zayadneh, W. A., & Eldin, A. E. N. (2008). Growth regulators influence the fatty acid profiles of in vitro induced jojoba somatic embryos. Plant cell, tissue and organ culture, 93, 107-114.
  • Barber, M. S., McConnell, V. S., & DeCaux, B. S. (2000). Antimicrobial intermediates of the general phenylpropanoid and lignin specific pathways. Phytochemistry, 54(1), 53-56.
  • Baskar, R., Lavanya, R., Mayilvizhi, S., & Rajasekaran, P. (2008). Free radical scavenging activity of antitumour polysaccharide fractions isolated from Ganoderma lucidum (Fr.) P. karst.
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. L. W. T. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.
  • Brewer, M. S. (2011). Natural antioxidants: sources, compounds, mechanisms of action, and potential applications. Comprehensive reviews in food science and food safety, 10(4), 221-247.
  • Chawla, H.S. & Wenzel G. (1987). Regeneration potential of callus from wheat and barley. Archiv fur Zuchtungsforschung. 17(6), 337-343.
  • Christie, W.W. (1990). Gas chromatography and lipids, The Oiyl Press, 1-184.
  • Clouse, S. D. (2002). Arabidopsis mutants reveal multiple roles for sterols in plant development. The Plant Cell, 14(9), 1995-2000.
  • Çetin, E. S., Uzunlar, F., & Baydar, N. G. (2011). UV-C uygulamasının Gamay üzüm çeşidine ait kalluslarda sekonder metabolit üretimi üzerine etkileri. Gıda, 36(6), 335-342.
  • Das, N. P., & Pereira, T. A. (1990). Effects of flavonoids on thermal autoxidation of palm oil: Structure‐activity relationships. Journal of the American Oil Chemists' Society, 67(4), 255-258.
  • Del Pozo, J. C., Lopez‐Matas, M. A., Ramirez‐Parra, E., & Gutierrez, C. (2005). Hormonal control of the plant cell cycle. Physiologia Plantarum, 123(2), 173-183.
  • Demir, E. (2018). Aksenik jüvenil sakız ağacı (Pistacia lentiscus L.) eksplantlarından kallus kültürlerinin başlatılması ve optimizasyonu (Master's thesis, Batman Üniversitesi Fen Bilimleri Enstitüsü).
  • Dufourc, E. J. (2008). The role of phytosterols in plant adaptation to temperature. Plant signaling & behavior, 3(2), 133-134.
  • Ekşi, A. & Özen, İ. T. (2012). Kivi meyvesinin kimyasal bileşenleri ve fonksiyonel özellikleri. Ordu Üniversitesi Bilim ve Teknoloji Dergisi, 2(2), 54-67.
  • Fukumoto, L. R., & Mazza, G. (2000). Assessing antioxidant and prooxidant activities of phenolic compounds. Journal of agricultural and food chemistry, 48(8), 3597-3604.
  • George, E. F., Hall, M. A., & Klerk, G. J. D. (2008). Plant growth regulators I: introduction; auxins, their analogues and inhibitors. Plant Propagation by Tissue Culture: Volume 1. The Background, 175-204. Dordrecht: Springer Netherlands.
  • Giangrieco, I., Proietti, S., Moscatello, S., Tuppo, L., Battistelli, A., La Cara, F., ... & Ciardiello, M. A. (2016). Influence of geographical location of orchards on green kiwifruit bioactive components. Journal of Agricultural and food chemistry, 64(48), 9172-9179.
  • Giri, L., Dhyani, P., Rawat, S., Bhatt, I. D., Nandi, S. K., Rawal, R. S., & Pande, V. (2012). In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: A rare Himalayan medicinal orchid. Industrial Crops and Products, 39, 1-6.
  • Grossmann, K. (2010). Auxin herbicides: current status of mechanism and mode of action. Pest Management Science: formerly Pesticide Science, 66(2), 113-120.
  • Guo, J., Yuan, Y., Dou, P., & Yue, T. (2017). Multivariate statistical analysis of the polyphenolic constituents in kiwifruit juices to trace fruit varieties and geographical origins. Food chemistry, 232, 552-559.
  • Halliwell, B. (2008). Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies?. Archives of biochemistry and biophysics, 476(2), 107-112.
  • Hartmann, M. A. (1998). Plant sterols and the membrane environment. Trends in plant science, 3(5), 170-175.
  • Hata, M., Ishii, Y., Watanabe, E., Uoto, K., Kobayashi, S., Yoshida, K. I., ... & Ando, A. (2010). Inhibition of ergosterol synthesis by novel antifungal compounds targeting C-14 reductase. Medical mycology, 48(4), 613-621.
  • Hatano, T., Edamatsu, R., Hiramatsu, M., MORI, A., Fujita, Y., Yasuhara, T., & OKUDA, T. (1989). Effects of the interaction of tannins with co-existing substances. VI.: effects of tannins and related polyphenols on superoxide anion radical, and on 1, 1-Diphenyl-2-picrylhydrazyl radical. Chemical and pharmaceutical bulletin, 37(8), 2016-2021.
  • He, M., & Ding, N. Z. (2020). Plant unsaturated fatty acids: multiple roles in stress response. Frontiers in plant science, 11, 562785.
  • He, M., Qin, C. X., Wang, X., & Ding, N. Z. (2020). Plant unsaturated fatty acids: biosynthesis and regulation. Frontiers in Plant Science, 11, 390.
  • Ikeuchi, M., Sugimoto, K., & Iwase, A. (2013). Plant callus: mechanisms of induction and repression. The plant cell, 25(9), 3159-3173.
  • Jayasinghe, C., Gotoh, N., Aoki, T., & Wada, S. (2003). Phenolics composition and antioxidant activity of sweet basil (Ocimum basilicum L.). Journal of Agricultural and Food chemistry, 51(15), 4442-4449.
  • Karpińska, J., Mikołuć, B., Motkowski, R., & Piotrowska-Jastrzębska, J. (2006). HPLC method for simultaneous determination of retinol, α-tocopherol and coenzyme Q10 in human plasma. Journal of pharmaceutical and biomedical analysis, 42(2), 232-236.
  • Katsanidis, E. & Addis, P.B. (1999). Novel HPLC analysis of tocopherols and cholesterol in tissue. Free Radical Biology and Medicine. 27, 1137-1140.
  • Keskin, N., & Kunter, B. (2007). Ercis üzüm çeşidinin kallus kültürlerinde UV ışını etkisiyle resveratrol üretiminin uyarılması. Journal of Agricultural Sciences, 13(04), 379-384.
  • Khoo, L. W., Mediani, A., Zolkeflee, N. K. Z., Leong, S. W., Ismail, I. S., Khatib, A., ... & Abas, F. (2015). Phytochemical diversity of Clinacanthus nutans extracts and their bioactivity correlations elucidated by NMR based metabolomics. Phytochemistry Letters, 14, 123-133.
  • Kim, D. O., Jeong, S. W., & Lee, C. Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry. 81(3), 321-326.
  • Kousalya, L., & Bai, V. N. (2016). Effect of growth regulators on rapid micropropagation and antioxidant activity of Canscora decussata (Roxb.) Roem. & Schult.–A threatened medicinal plant. Asian Pacific Journal of Reproduction, 5(2), 161-170.
  • Kumar, S. S., Arya, M., Mahadevappa, P., & Giridhar, P. (2020). Influence of photoperiod on growth, bioactive compounds and antioxidant activity in callus cultures of Basella rubra L. Journal of Photochemistry and Photobiology B: Biology, 209, 111937.
  • Kumar, S., & Sharma, D. R. (2002). Review Article In vitro propagation of kiwifruit. The Journal of Horticultural Science and Biotechnology, 77(5), 503-508.
  • Kumlay, A. M., & Ercisli, S. (2015). Callus induction, shoot proliferation and root regeneration of potato (Solanum tuberosum L.) stem node and leaf explants under long-day conditions. Biotechnology & Biotechnological Equipment, 29(6), 1075-1084.
  • Lichtenthaler, H. K., Schwender, J., Disch, A., & Rohmer, M. (1997). Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS letters, 400(3), 271-274.
  • López-Cervantes J, Sánchez-Machado DI, Ríos-Vázquez NJ. (2005). High-performance liquid chromatography method for the simultaneous quantification of retinol, alpha-tocopherol, and cholesterol in shrimp waste hydrolysate. Chromatography, 10;1105(1-2), 135-9.
  • Maharik, N., Elgengaihi, S., & Taha, H. (2009). Anthocyanin production in callus cultures of Crataegus sinaica boiss. Int J Acad Res, 1(1), 30-34.
  • Mantell, S. H., & Smith, H. (1983). Cultural factors that influence secondary metabolite accumulations in plant cell and tissue cultures. In Seminar series-society for experimental biology.
  • Mohammed S., Suresh M. (2020). Antifungal efficacy and mechanism of flavonoids Antibiotics, Basel, Switzerland, 9 pp. 1-58.
  • Mok, M. C., Gabelman, W. H., & Skoog, F. (1976). Carotenoid Synthesis in Tissue Cultures of Daucus carota L. 1. Journal of the American Society for Horticultural Science, 101(4), 442-449.
  • Mulabagal, V., & Tsay, H. S. (2004). Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. International journal of applied science and engineering, 2(1), 29-48.
  • Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia plantarum, 15(3), 473-497.
  • Pellegrini, N., Serafini, M., Colombi, B., Del Rio, D., Salvatore, S., Bianchi, M., & Brighenti, F. (2003). Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. The Journal of nutrition, 133(9), 2812-2819.
  • Pinelli, P., Romani, A., Fierini, E., Remorini, D., & Agati, G. (2013). Characterisation of the Polyphenol Content in the Kiwifruit (Actinidia deliciosa) Exocarp for the Calibration of a Fruit‐sorting Optical Sensor. Phytochemical Analysis, 24(5), 460-466.
  • Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties of flavonoids. Fitoterapia, 82(4), 513-523.
  • Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusidó, R. M., & Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules, 21(2), 182.
  • Rout, G. R., Samantaray, S., & Das, P. (2000). In vitro manipulation and propagation of medicinal plants. Biotechnology advances, 18(2), 91-120.
  • Schaller, G. E., Street, I. H., & Kieber, J. J. (2014). Cytokinin and the cell cycle. Current opinion in plant biology, 21, 7-15.
  • Schaller, H. (2004). New aspects of sterol biosynthesis in growth and development of higher plants. Plant physiology and biochemistry, 42(6), 465-476.
  • Sengul, M., Yildiz, H., Gungor, N., Cetin, B., Eser, Z., & Ercisli, S. (2009). Total phenolic content, antioxidant and antimicrobial activities of some medicinal plants. Pakistan Journal of Pharmaceutical Sciences, 22(1), 102-106.
  • Shinde, A. N., Malpathak, N., & Fulzele, D. P. (2010). Determination of isoflavone content and antioxidant activity in Psoralea corylifolia L. callus cultures. Food Chemistry, 118(1), 128-132.
  • Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in enzymology. 299, 152-178.
  • Smetanska, I. (2018). Sustainable production of polyphenols and antioxidants by plant in vitro cultures. In Bioprocessing of plant in vitro systems (pp. 225-269). Springer, Cham.
  • Tufarelli, V. (2014). Enhancing egg quality by dietary vitamin E and selenium supplementation. Vitamins and Minerals, 3, e131.
  • Vasil, I. K., Constabel, F., & Schell, J. (Eds.). (1984). Cell culture and somatic cell genetics of plants (Vol. 1, pp. 645-p). New York: Academic Press.
  • Verpoorte, R., Contin, A., & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry reviews, 1, 13-25.
  • Wang, K., Li, M., Han, Q., Fu, R., & Ni, Y. (2021). Inhibition of α-amylase activity by insoluble and soluble dietary fibers from kiwifruit (Actinidia deliciosa). Food Bioscience, 42, 101057.
  • Yavaş, İ., & Emek, Y (2021). Bitkilerin Abiyotik Stres Koşullarıyla Başa Çıkmasına Yardımcı Strigolaktonlar. Avrupa Bilim ve Teknoloji Dergisi, (31), 686-690.
  • Yesil-Celiktas, O., Nartop, P., Gurel, A., Bedir, E., & Vardar-Sukan, F. (2007). Determination of phenolic content and antioxidant activity of extracts obtained from Rosmarinus officinalis’ calli. Journal of plant physiology, 164(11), 1536-1542.
There are 64 citations in total.

Details

Primary Language Turkish
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Aykut Topdemir 0000-0002-9112-4767

Tuba Okutan 0000-0001-8745-0343

Görkem Kırmızıkaya 0000-0001-8516-4933

Prof. Dr. Ökkeş Yılmaz 0000-0002-8276-4498

Early Pub Date January 21, 2024
Publication Date April 1, 2024
Submission Date April 12, 2023
Acceptance Date August 25, 2023
Published in Issue Year 2024Volume: 27 Issue: 2

Cite

APA Topdemir, A., Okutan, T., Kırmızıkaya, G., Yılmaz, P. D. . Ö. (2024). Naftalin Asetik Asit, 6-Benzilaminopürin ve İndol-3-Bütirik Asit Kombinasyonlarının Actinidia deliciosa Kallus Gelişimi Üzerine Biyokimyasal Bir Araştırma. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 27(2), 249-260. https://doi.org/10.18016/ksutarimdoga.vi.1281016


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149