Research Article
BibTex RIS Cite

The Effects of Fipronil on Glutathione and Histology of Freshwater Snails

Year 2023, Volume: 26 Issue: 6, 1436 - 1442, 31.12.2023
https://doi.org/10.18016/ksutarimdoga.vi.1224789

Abstract

Fipronil (C12H4Cl2F6N4OS, CAS No: 120068-37-3) is frequently used in agricultural fields and veterinary medicine as an insecticide and acaricide. It is known to contaminate aquatic ecosystems by mixing with surface waters and to accumulate in abiotic matrices. In this study, the effects of fipronil are investigated using freshwater snails Viviparus contectus (Millet, 1813). After exposure of snails to 1, 10 and 100 mg L-1 fipronil for 7 days, all body tissues were taken. As a result of the study of glutathione, one of the tissue antioxidant parameters, a significant increase was observed in the control group, which was administered 1 mg L-1 fipronil, compared to the other dose groups (P<0.05). Exposure to different concentrations of fipronil resulted with degenerations and necrosis of the digestive gland tubules of snails, histologically. The damages in the digestive gland tissue were increased with increasing of the concentration. Since snails are an important species for freshwater ecosystems, it can be emphasized that pesticides such as fipronil pose a potential risk to these organisms.

Thanks

The results of glutathione exposed to fipronil in this present study were presented as oral presentation at ESENIAS & DIAS Conference 2022.

References

  • Adeyeye, E. I., Ibigbami, O.A., Adesina, A. J., Azeez, M. A., Olaleye, A. A., Olatoye, R. A., & Gbolagade, Y. A. (2021). Assessment of pesticides residues in water, sediment and fish parts: case study of fish pond in Ado-Ekiti, Nigeria. Asian Journal of Microbiology Biotechniology Environmental Science, 23(1), 42-50.
  • Al-Abdan, M. A., Bin-Jumah, M. N., Ali, D., & Alarifi, S. (2021). Investigation of biological accumulation and eco-genotoxicity of bismuth oxide nanoparticle in fresh water snail Lymnaea luteola. Journal of King Saud University-Science, 33(2), 101355.
  • Ali, D., Ibrahim, K. E., Hussain, S. A., & Abdel-Daim, M. M. (2021). Role of ROS generation in acute genotoxicity of azoxystrobin fungicide on freshwater snail Lymnaea luteola L. Environmental Science and Pollution Research, 28(5), 5566-5574.
  • Ali, S. S., Ahsan, H., Zia, M. K., Siddiqui, T., & Khan, F. H. (2020). Understanding oxidants and antioxidants: Classical team with new players. Journal of Food Biochemistry, 44(3), e13145.
  • Arisekar, U., Shakila, R. J., Jeyasekaran, G., Shalini, R., Kumar, P., Malani, A. H., & Rani, V. (2019). Accumulation of organochlorine and pyrethroid pesticide residues in fish, water, and sediments in the Thamirabarani river system of southern peninsular India. Environmental Nanotechnology, Monitoring & Management, 11, 100194.
  • Arslan, P., Ozeren, S.C. (2022). Physiological and histopathological alterations in Capoeta baliki and Squalius pursakensis after caused by some environmental pollutants. Environmental Monitoring and Assessment, 194, 183.
  • Arslan, P., Gül, G. & Günal, A.Ç. (2022). The effects of invasive epibiont Dreissena polymorpha on the narrow-clawed crayfish (Astacus leptodactylus, Astacidae) in Eğirdir Lake, Turkey: a case study. Environmental Monitoring and Assessment, 194, 590.
  • Arslan, P., Günal, A.Ç. (2023). Does fipronil affect on aquatic organisms? Physiological, biochemical, and histopathological alterations of non-target freshwater mussel species. Water, 15, 334.
  • Balamurugan, S., Subramanian, P. (2021) Histopathology of the Foot, Gill, and Digestive Gland Tissues of Freshwater Mussel, Lamellidens marginalis Exposed to Oil Effluent. Austin Journal of Environmental Toxicology, 7(1), 1033.
  • Benli, A.C.K., Köksal, B., Özkul, A. (2008) Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere, 72(9), 1355-1358.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
  • Cengiz, E.I., Yildirim, M.Z., Otludil, B., Ünlü, E. (2005) Histopathological effects of Thiodan® on the freshwater snail, Galba truncatula (Gastropoda, Pulmonata). Journal of Applied Toxicology, 25(6), 464–469.
  • Dash, M. K., & Rahman, M. S. (2022). Molecular and biochemical responses to tributyltin (TBT) exposure in the American oyster: Triggers of stress-induced oxidative DNA damage and prooxidant-antioxidant imbalance in tissues by TBT. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 109523.
  • Ellman, G.l. (1959). Tissue sulfhydryl groups. Archieves of Biochemistry and Biophysiology, 82(1), 70-77.
  • Faggio, C., Tsarpali, V., Dailianis, S. (2018) Mussel digestive gland as a model tissue for assessing xenobiotics: an overview. Science of the Total Environment, 636, 220-229.
  • Farhan, M., Wajid, A., Hussain, T., Jabeen, F., Ishaque, U., Iftikhar, M., ... & Noureen, A. (2021). Investigation of oxidative stress enzymes and histological alterations in tilapia exposed to chlorpyrifos. Environmental Science and Pollution Research, 28(11), 13105-13111.
  • Ghaffar, A., Hussain, R., Abbas, G., Kalim, M., Khan, A., Ferrando, S., ... & Ahmed, Z. (2018). Fipronil (Phenylpyrazole) induces hemato-biochemical, histological and genetic damage at low doses in common carp, Cyprinus carpio (Linnaeus, 1758). Ecotoxicology, 27(9), 1261-1271.
  • Graf, D. L., & Cummings, K. S. (2021). A ‘big data’approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species. Journal of Molluscan Studies, 87(1), eyaa034.
  • Gostyukhina, O. L., Andreyeva, A. Y., Chelebieva, E. S., Vodiasova, E. A., Lantushenko, A. O., & Kladchenko, E. S. (2022). Adaptive potential of the Mediterranean mussel Mytilus galloprovincialis to short-term environmental hypoxia. Fish & Shellfish Immunology, 131, 654-661.
  • Karakaş, S.B. & Otludil, B. (2020) Accumulation and histopathological effects of cadmium on the great pond snail Lymnaea stagnalis Linnaeus, 1758 (Gastropoda: Pulmonata). Environmental Toxicology and Pharmacology, 78, 103403.
  • Kaur, N., Singh, P., Bedi, J. S., & Gupta, A. (2019). Studies on persistent organic pollutants residue in water, sediment and fish tissues of River Sutlej, India. Journal of Environmental Biology, 40(2), 258-264.
  • Kartheek, R.M., David, M. (2018) Assessment of fipronil toxicity on wistar rats: A hepatotoxic perspective. Toxicology Reports, 5, 448-456.
  • Klobucar G.I., Lajtner J., Erben R. (2001) Increase in number and size of kidney concretions as a result of PCP exposure in the freshwater snail Planorbarius corneus (Gastropoda, Pulmonata). Diseases of Aquatic Organisms, 44(2), 149-54.
  • Kocabaş, F. K., Kocabaş, M., & Akça, A. (2022). Morphometric Parameters Comparison of Viviparus contectus (Millet, 1813) in Demirköprü Dam Lake, Turkey using multivariate statistical methods: Morphometric Parameters Comparison. Sustainable Aquatic Research, 1(2), 126-132.
  • Kutluyer, F., & Kocabaş, M. (2022). Demirköprü Baraj Gölü’nde İlk Viviparus contectus (Millet, 1813) Kaydı ve Bazı Biyometrik Parametrelerinin Değerlendirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(Ek Sayı 1), 263-269.
  • Luna, L.G., 1968. Manual of histologic staining methods of the Armed Forces Institute of Pathology. New York: Blackiston Division, McGraw-Hill.
  • Merola, C., Fabrello, J., Matozzo, V., Faggio, C., Iannetta, A., Tinelli, A., ... & Perugini, M. (2022). Dinitroaniline herbicide pendimethalin affects development and induces biochemical and histological alterations in zebrafish early-life stages. Science of The Total Environment, 828, 154414.
  • Michel, N., Freese, M., Brinkmann, M., Pohlmann, J. D., Hollert, H., Kammann, U., ... & Hanel, R. (2016). Fipronil and two of its transformation products in water and European eel from the river Elbe. Science of The Total Environment, 568, 171-179.
  • Nillos, M. G., Lin, K., Gan, J., Bondarenko, S., & Schlenk, D. (2009). Enantioselectivity in fipronil aquatic toxicity and degradation. Environmental Toxicology and Chemistry: An International Journal, 28(9), 1825-1833.
  • Perkins, R., Whitehead, M., Civil, W., & Goulson, D. (2021). Potential role of veterinary flea products in widespread pesticide contamination of English rivers. Science of The Total Environment, 755, 143560.
  • Qian, Y., Wang, C., Wang, J., Zhang, X., Zhou, Z., Zhao, M., & Lu, C. (2017). Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation. Scientific Reports, 7(1), 1-11.
  • Qu, H., Wang, P., Ma, R. X., Qiu, X. X., Xu, P., Zhou, Z. Q., & Liu, D. H. (2014). Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida). Science of The Total Environment, 485, 415-420.
  • Qureshi,Z.I., Bibi, A., Shahid, S., Ghazanfar, M. (2016) Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.). Aquatic Toxicology, 179, 103-114.
  • Shen, C., Pan, X., Wu, X., Xu, J., Dong, F., & Zheng, Y. (2022). Predicting and assessing the toxicity and ecological risk of seven widely used neonicotinoid insecticides and their aerobic transformation products to aquatic organisms. Science of The Total Environment, 847, 157670.
  • Srikanth, K., Raju, N. V., Pamanji, R., & Nutalapati, V. (2021). Pila virens as sentinel of silica nanoparticles toxicity induced oxidative stress. Materials Letters, 300, 130185.
  • Stara, A., Pagano, M., Albano, M., Savoca, S., Di Bella, G., Albergamo, A., ... & Faggio, C. (2021). Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. Environmental Pollution, 289, 117892.
  • Sule, R. O., Condon, L., & Gomes, A. V. (2022). A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide-induced toxicity. Oxidative Medicine and Cellular Longevity, 5563759.
  • Şimşek, İ., & Bilgili, A. (2022). Investigation of monthly residues of polycyclic aromatic hydrocarbons in water and sediment samples from Kirikkale Kizilirmak River Basin. Environmental Monitoring and Assessment, 194(683), 1–11.
  • Tang, F. H., Lenzen, M., McBratney, A., & Maggi, F. (2021a). Risk of pesticide pollution at the global scale. Nature Geoscience, 14(4), 206-210.
  • Tang, J., Wang, W., Jiang, Y., & Chu, W. (2021b). Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio). Environmental Pollution, 269, 116129.
  • Tongo, I., Onokpasa, A., Emerure, F., Balogun, P. T., Enuneku, A. A., Erhunmwunse, N., ... & Ezemonye, L. (2022). Levels, bioaccumulation and biomagnification of pesticide residues in a tropical freshwater food web. International Journal of Environmental Science and Technology, 19(3), 1467-1482.
  • Třešňáková, N., Günal, A.Ç., Başaran Kankılıç, G., Paçal, E., Uyar, R., Erkoç, F. (2020) Sub-lethal toxicities of zinc pyrithione, copper pyrithione alone and in combination to the indicator mussel species Unio crassus Philipsson, 1788 (Bivalvia, Unionidae). Chemistry and Ecology, 36(4), 292-308.
  • Tyohemba, R. L., Pillay, L., & Humphries, M. S. (2021). Bioaccumulation of current-use herbicides in fish from a global biodiversity hotspot: Lake St Lucia, South Africa. Chemosphere, 284, 131407.
  • Wirth, E. F., Pennington, P. L., Lawton, J. C., DeLorenzo, M. E., Bearden, D., Shaddrix, B., ... & Fulton, M. H. (2004). The effects of the contemporary-use insecticide (fipronil) in an estuarine mesocosm. Environmental Pollution, 131(3), 365-371.

Tatlı Su Salyangozlarında Fipronilin Glutatyon ve Histolojisine Etkileri

Year 2023, Volume: 26 Issue: 6, 1436 - 1442, 31.12.2023
https://doi.org/10.18016/ksutarimdoga.vi.1224789

Abstract

Fipronil (C12H4Cl2F6N4OS, CAS No: 120068-37-3) insektisit ve akarisit olarak tarımsal alanlarda ve veteriner hekimlikte sıklıkla kullanılmaktadır. Sucul ekosistemler, yüzey sularına karışması yolu ile kontamine ettiği ve abiyotik matrikslerde birikim gösterdiği bilinmektedir. Bu çalışmada, fipronilin etkileri tatlı su salyangozları Viviparus contectus (Millet, 1813) kullanılarak incelenmektedir. Salyangozların 7 gün süreyle 1, 10 ve 100 mg L-1 fipronile maruz kalmasını takiben tüm vücut dokuları alınmıştır. Doku antioksidan parametrelerinden glutatyon incelemesi sonucunda 1 mg L-1 fipronil uygulanan grupta kontrol de diğer doz gruplarına göre önemli bir artış gözlenmiştir (P<0.05). Farklı fipronil konsantrasyonlarına maruz kalmak, salyangozların histolojik olarak sindirim bezi tübüllerinin dejenerasyonuna ve nekroza neden olmuştur. Konsantrasyonun artmasıyla sindirim bezi dokusundaki hasarlar artmıştır. Salyangozların tatlı su ekosistemleri için önemli bir tür olması nedeniyle fipronil gibi pestisitlerin bu canlılara karşı potansiyel bir risk oluşturduğu vurgulanabilir.

References

  • Adeyeye, E. I., Ibigbami, O.A., Adesina, A. J., Azeez, M. A., Olaleye, A. A., Olatoye, R. A., & Gbolagade, Y. A. (2021). Assessment of pesticides residues in water, sediment and fish parts: case study of fish pond in Ado-Ekiti, Nigeria. Asian Journal of Microbiology Biotechniology Environmental Science, 23(1), 42-50.
  • Al-Abdan, M. A., Bin-Jumah, M. N., Ali, D., & Alarifi, S. (2021). Investigation of biological accumulation and eco-genotoxicity of bismuth oxide nanoparticle in fresh water snail Lymnaea luteola. Journal of King Saud University-Science, 33(2), 101355.
  • Ali, D., Ibrahim, K. E., Hussain, S. A., & Abdel-Daim, M. M. (2021). Role of ROS generation in acute genotoxicity of azoxystrobin fungicide on freshwater snail Lymnaea luteola L. Environmental Science and Pollution Research, 28(5), 5566-5574.
  • Ali, S. S., Ahsan, H., Zia, M. K., Siddiqui, T., & Khan, F. H. (2020). Understanding oxidants and antioxidants: Classical team with new players. Journal of Food Biochemistry, 44(3), e13145.
  • Arisekar, U., Shakila, R. J., Jeyasekaran, G., Shalini, R., Kumar, P., Malani, A. H., & Rani, V. (2019). Accumulation of organochlorine and pyrethroid pesticide residues in fish, water, and sediments in the Thamirabarani river system of southern peninsular India. Environmental Nanotechnology, Monitoring & Management, 11, 100194.
  • Arslan, P., Ozeren, S.C. (2022). Physiological and histopathological alterations in Capoeta baliki and Squalius pursakensis after caused by some environmental pollutants. Environmental Monitoring and Assessment, 194, 183.
  • Arslan, P., Gül, G. & Günal, A.Ç. (2022). The effects of invasive epibiont Dreissena polymorpha on the narrow-clawed crayfish (Astacus leptodactylus, Astacidae) in Eğirdir Lake, Turkey: a case study. Environmental Monitoring and Assessment, 194, 590.
  • Arslan, P., Günal, A.Ç. (2023). Does fipronil affect on aquatic organisms? Physiological, biochemical, and histopathological alterations of non-target freshwater mussel species. Water, 15, 334.
  • Balamurugan, S., Subramanian, P. (2021) Histopathology of the Foot, Gill, and Digestive Gland Tissues of Freshwater Mussel, Lamellidens marginalis Exposed to Oil Effluent. Austin Journal of Environmental Toxicology, 7(1), 1033.
  • Benli, A.C.K., Köksal, B., Özkul, A. (2008) Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere, 72(9), 1355-1358.
  • Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.
  • Cengiz, E.I., Yildirim, M.Z., Otludil, B., Ünlü, E. (2005) Histopathological effects of Thiodan® on the freshwater snail, Galba truncatula (Gastropoda, Pulmonata). Journal of Applied Toxicology, 25(6), 464–469.
  • Dash, M. K., & Rahman, M. S. (2022). Molecular and biochemical responses to tributyltin (TBT) exposure in the American oyster: Triggers of stress-induced oxidative DNA damage and prooxidant-antioxidant imbalance in tissues by TBT. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 109523.
  • Ellman, G.l. (1959). Tissue sulfhydryl groups. Archieves of Biochemistry and Biophysiology, 82(1), 70-77.
  • Faggio, C., Tsarpali, V., Dailianis, S. (2018) Mussel digestive gland as a model tissue for assessing xenobiotics: an overview. Science of the Total Environment, 636, 220-229.
  • Farhan, M., Wajid, A., Hussain, T., Jabeen, F., Ishaque, U., Iftikhar, M., ... & Noureen, A. (2021). Investigation of oxidative stress enzymes and histological alterations in tilapia exposed to chlorpyrifos. Environmental Science and Pollution Research, 28(11), 13105-13111.
  • Ghaffar, A., Hussain, R., Abbas, G., Kalim, M., Khan, A., Ferrando, S., ... & Ahmed, Z. (2018). Fipronil (Phenylpyrazole) induces hemato-biochemical, histological and genetic damage at low doses in common carp, Cyprinus carpio (Linnaeus, 1758). Ecotoxicology, 27(9), 1261-1271.
  • Graf, D. L., & Cummings, K. S. (2021). A ‘big data’approach to global freshwater mussel diversity (Bivalvia: Unionoida), with an updated checklist of genera and species. Journal of Molluscan Studies, 87(1), eyaa034.
  • Gostyukhina, O. L., Andreyeva, A. Y., Chelebieva, E. S., Vodiasova, E. A., Lantushenko, A. O., & Kladchenko, E. S. (2022). Adaptive potential of the Mediterranean mussel Mytilus galloprovincialis to short-term environmental hypoxia. Fish & Shellfish Immunology, 131, 654-661.
  • Karakaş, S.B. & Otludil, B. (2020) Accumulation and histopathological effects of cadmium on the great pond snail Lymnaea stagnalis Linnaeus, 1758 (Gastropoda: Pulmonata). Environmental Toxicology and Pharmacology, 78, 103403.
  • Kaur, N., Singh, P., Bedi, J. S., & Gupta, A. (2019). Studies on persistent organic pollutants residue in water, sediment and fish tissues of River Sutlej, India. Journal of Environmental Biology, 40(2), 258-264.
  • Kartheek, R.M., David, M. (2018) Assessment of fipronil toxicity on wistar rats: A hepatotoxic perspective. Toxicology Reports, 5, 448-456.
  • Klobucar G.I., Lajtner J., Erben R. (2001) Increase in number and size of kidney concretions as a result of PCP exposure in the freshwater snail Planorbarius corneus (Gastropoda, Pulmonata). Diseases of Aquatic Organisms, 44(2), 149-54.
  • Kocabaş, F. K., Kocabaş, M., & Akça, A. (2022). Morphometric Parameters Comparison of Viviparus contectus (Millet, 1813) in Demirköprü Dam Lake, Turkey using multivariate statistical methods: Morphometric Parameters Comparison. Sustainable Aquatic Research, 1(2), 126-132.
  • Kutluyer, F., & Kocabaş, M. (2022). Demirköprü Baraj Gölü’nde İlk Viviparus contectus (Millet, 1813) Kaydı ve Bazı Biyometrik Parametrelerinin Değerlendirilmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 25(Ek Sayı 1), 263-269.
  • Luna, L.G., 1968. Manual of histologic staining methods of the Armed Forces Institute of Pathology. New York: Blackiston Division, McGraw-Hill.
  • Merola, C., Fabrello, J., Matozzo, V., Faggio, C., Iannetta, A., Tinelli, A., ... & Perugini, M. (2022). Dinitroaniline herbicide pendimethalin affects development and induces biochemical and histological alterations in zebrafish early-life stages. Science of The Total Environment, 828, 154414.
  • Michel, N., Freese, M., Brinkmann, M., Pohlmann, J. D., Hollert, H., Kammann, U., ... & Hanel, R. (2016). Fipronil and two of its transformation products in water and European eel from the river Elbe. Science of The Total Environment, 568, 171-179.
  • Nillos, M. G., Lin, K., Gan, J., Bondarenko, S., & Schlenk, D. (2009). Enantioselectivity in fipronil aquatic toxicity and degradation. Environmental Toxicology and Chemistry: An International Journal, 28(9), 1825-1833.
  • Perkins, R., Whitehead, M., Civil, W., & Goulson, D. (2021). Potential role of veterinary flea products in widespread pesticide contamination of English rivers. Science of The Total Environment, 755, 143560.
  • Qian, Y., Wang, C., Wang, J., Zhang, X., Zhou, Z., Zhao, M., & Lu, C. (2017). Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation. Scientific Reports, 7(1), 1-11.
  • Qu, H., Wang, P., Ma, R. X., Qiu, X. X., Xu, P., Zhou, Z. Q., & Liu, D. H. (2014). Enantioselective toxicity, bioaccumulation and degradation of the chiral insecticide fipronil in earthworms (Eisenia feotida). Science of The Total Environment, 485, 415-420.
  • Qureshi,Z.I., Bibi, A., Shahid, S., Ghazanfar, M. (2016) Exposure to sub-acute doses of fipronil and buprofezin in combination or alone induces biochemical, hematological, histopathological and genotoxic damage in common carp (Cyprinus carpio L.). Aquatic Toxicology, 179, 103-114.
  • Shen, C., Pan, X., Wu, X., Xu, J., Dong, F., & Zheng, Y. (2022). Predicting and assessing the toxicity and ecological risk of seven widely used neonicotinoid insecticides and their aerobic transformation products to aquatic organisms. Science of The Total Environment, 847, 157670.
  • Srikanth, K., Raju, N. V., Pamanji, R., & Nutalapati, V. (2021). Pila virens as sentinel of silica nanoparticles toxicity induced oxidative stress. Materials Letters, 300, 130185.
  • Stara, A., Pagano, M., Albano, M., Savoca, S., Di Bella, G., Albergamo, A., ... & Faggio, C. (2021). Effects of long-term exposure of Mytilus galloprovincialis to thiacloprid: A multibiomarker approach. Environmental Pollution, 289, 117892.
  • Sule, R. O., Condon, L., & Gomes, A. V. (2022). A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide-induced toxicity. Oxidative Medicine and Cellular Longevity, 5563759.
  • Şimşek, İ., & Bilgili, A. (2022). Investigation of monthly residues of polycyclic aromatic hydrocarbons in water and sediment samples from Kirikkale Kizilirmak River Basin. Environmental Monitoring and Assessment, 194(683), 1–11.
  • Tang, F. H., Lenzen, M., McBratney, A., & Maggi, F. (2021a). Risk of pesticide pollution at the global scale. Nature Geoscience, 14(4), 206-210.
  • Tang, J., Wang, W., Jiang, Y., & Chu, W. (2021b). Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio). Environmental Pollution, 269, 116129.
  • Tongo, I., Onokpasa, A., Emerure, F., Balogun, P. T., Enuneku, A. A., Erhunmwunse, N., ... & Ezemonye, L. (2022). Levels, bioaccumulation and biomagnification of pesticide residues in a tropical freshwater food web. International Journal of Environmental Science and Technology, 19(3), 1467-1482.
  • Třešňáková, N., Günal, A.Ç., Başaran Kankılıç, G., Paçal, E., Uyar, R., Erkoç, F. (2020) Sub-lethal toxicities of zinc pyrithione, copper pyrithione alone and in combination to the indicator mussel species Unio crassus Philipsson, 1788 (Bivalvia, Unionidae). Chemistry and Ecology, 36(4), 292-308.
  • Tyohemba, R. L., Pillay, L., & Humphries, M. S. (2021). Bioaccumulation of current-use herbicides in fish from a global biodiversity hotspot: Lake St Lucia, South Africa. Chemosphere, 284, 131407.
  • Wirth, E. F., Pennington, P. L., Lawton, J. C., DeLorenzo, M. E., Bearden, D., Shaddrix, B., ... & Fulton, M. H. (2004). The effects of the contemporary-use insecticide (fipronil) in an estuarine mesocosm. Environmental Pollution, 131(3), 365-371.
There are 44 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section RESEARCH ARTICLE
Authors

Pınar Arslan 0000-0001-5910-2835

Prof.dr. Mehmet Zeki Yıldırım 0000-0003-0281-2232

Aysel Çağlan Günal 0000-0002-9072-543X

Early Pub Date June 14, 2023
Publication Date December 31, 2023
Submission Date December 26, 2022
Acceptance Date April 7, 2023
Published in Issue Year 2023Volume: 26 Issue: 6

Cite

APA Arslan, P., Yıldırım, P. M. Z., & Günal, A. Ç. (2023). The Effects of Fipronil on Glutathione and Histology of Freshwater Snails. Kahramanmaraş Sütçü İmam Üniversitesi Tarım Ve Doğa Dergisi, 26(6), 1436-1442. https://doi.org/10.18016/ksutarimdoga.vi.1224789


International Peer Reviewed Journal
Free submission and publication
Published 6 times a year



88x31.png


KSU Journal of Agriculture and Nature

e-ISSN: 2619-9149