Research Article
BibTex RIS Cite

Removal of COD, TOC, and Color from Textile Industry Wastewater by Using Phanerochaete chrysosporium

Year 2021, Volume: 6 Issue: 2, 211 - 216, 30.06.2021
https://doi.org/10.35229/jaes.867306

Abstract

Wastewater discharge from textile industries concern environmental risks. Superiority of microbial methods over other high cost combined methods includes conversion of persistent organic materials to non-toxic last materials, sustainability, low cost, and comfortable. Textile wastewaters can have opposite effects on the quality of water in total organic carbon (TOC) and Chemical oxygen demand (COD). Agitation cultures can reach the surface area of the dyes, whereas a static cannot do. Biotreatment of textile wastewater from the dyeing process using white-rot fungus Phanerochaete chrysosporium (P.C) was investigated in agitated and static culture conditions. Dye is the major pollutant component in this wastewater includes some different organic pollutants. The treatment mediums containing distilled water in 1:10 ratio of wastewater were compared for treatment efficiency of P.C. Especially in agitated conditions at 27 oC and 150 rpm, it was achieved a successful treatment results. Under these conditions, a 48h long treatment reduced by 91,46 % of the original COD (from 1484 mg l-1) and by 94,92% the TOC (initial was 723.66 mg l-1). Moreover, treatment reduced color by 86,28 % from 3.550 A540 to 0.487 A540 at the end of the study. The decolorization properties of P.C obtained high performance and we determined P.C showed up to effective removal rate for COD and TOC within 48 hours. We suggest that these fungus pellets of P.C can reach the decolorization and can be a useful tool for bioremediation of textile dye wastewater within a short time period.

References

  • APHA, AWWA, WEF (2005). Standard Methods for the Examination of Water and Wastewater, 21th Edition, Washington, DC.
  • ANOVA (2017). IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.
  • Arora, S., Sain, H.S. & Singh, K. (2007). Decolorization optimization of a mono azo disperse dye with Bacillus firmus: Identification of a degradation product. Coloration Technology,123, 184–190.
  • Asad, S., Amoozegar, M.A., Pourbabaee, A.A., Sarbolouki, M.N. & Dastghei, S.M.M. (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource Technology, 98, 2082–2088.
  • Asgher, M., Yasmeen, Q. & Iqbal, H.M.N. (2013). Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi Journal of Biological Sciences, 20, 347–352.
  • Faraco, V., Pezzella, C., Miele, A., Giardina, P. & Sannia, G. (2009). Bioremediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation, 20, 209–220.
  • Hai, F.I., Yamamoto, K. & Fukushi, K. (2005). Different fouling modes of submerged hollow-fiber and flat-sheet membranes induced by high strength wastewater with concurrent biofouling. Desalination, 180, 89-97.
  • Harry, W.S., Paul, J.V. & John, J.L.E. (1991). Microbes in Action: A Laboratory Manual of Microbiology 4th Edition. 450 pp.
  • Hossain, K., Quaik, S., Ismail, N., Rafatullah, M., Avasan, M. & Shaik, R. (2016). Bioremediation and Detoxification of the Textile Wastewater with Membrane Bioreactor Using the White-rot Fungus and Reuse of Wastewater, Iranian Journal of Biotechnology, 14, 154–162.
  • Kalyani, D.C., Patil, P.S., Jadhav, J.P. & Govindwar, S.P. (2008). Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresource Technology, 99, 4635– 4641.
  • Kapdan, I.K. & Kargi, F. (2002). Biological decolorization of textile dyestuff containingwastewater by Coriolus versicolor in a rotating biological contactor. Enzyme and Microbial Technology, 30, 195- 199.
  • Lin, J., Zhang, X., Zhongjian, L. & Lei, L. (2009). Biodegradation of reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas spisolate. Bioresource Technology, 101, 34–40.
  • Mahmoud, M.S. (2016). Decolorization of certain reactive dye from aqueous solution using Baker’s Yeast (Saccharomyces cerevisiae) strain. HBRC Journal 12, 88-98.
  • Mahmoud, M.S., Mostafa, M.K., Mohamed, S.A., Sobhy, N.A. & Nasr, M. (2017). Bioremediation of red azo dye from aqueous solutions by Aspergillus niger strain isolated from textile wastewater. Journal of Environmental Chemical Engineering, 5, 547–554.
  • Mohamed, V.B.H., Arunprasath, R. & Purusothaman, G. (2016). Biological treatment of azo dyes on effluent by Neurospora sp isolated and adopted from dye contaminated site. Journal of the Textile Institute, 111, 1239-1245.
  • Nienow, A.W. (2006). Reactor Engineering in Large Scale Animal Cell Culture. Cytotechnology, 50, 9–33.
  • Nilsson, I., Möller, A., Mattiason, B., Rubindamayugi, M.S.T. & Welander, U. (2006). Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme and Microbial Technology, 38, 94–100.
  • Ogugbue, C.J. & Sawidis, T. (2011). Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila. Isolated from Industrial Effluent. Biotechnology Research International, 967925.
  • Pakshirajan, K. & Kheria, S. (2012). Continuous treatment of colored industry wastewater using immobilized Phanerochaete chrysosporiumin a rotating biological contactor reactor. Journal of Environmental Management, 101, 118-123.
  • Robinson, T., McMullan, G., Marchant, R. & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247-255.
  • Saratale, R.G., Saratale, G.D., Chang, J.S. & Govindvar, S.P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138-157.
  • Shahvali, M., Assadi, M.M. & Rostami, K. (2000). Effect of environmental parameters on decolorization of textile wastewater using Phanerochaete chrysosporium. Bioprocess Engineering, 23, 721-726.
  • Singh, N.K., Kazmi, A.A. & Starkl, M. (2015). A review on full-scale decentralized wastewater treatment systems: techno-economical approach. Water Science and Technology, 71, 468–478.
  • Srinivasan, A. & Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: A review. Journal of Environmental Management, 91, 1915–1929.
  • Yildirim, N.C., Tanyol, M., Yildirim, N., Serdar, O. & Tatar, S. (2018). Biochemical responses of Gammarus pulex to malachite green solutions decolorized by Coriolus versicolor as a biosorbent under batch adsorption conditions optimized with response surface methodology. Ecotoxicology Environment Safety, 156, 41-47.
  • Yonten, V., Tanyol, M., Yildirim, N., Yildirim, N.C. & Ince, M. (2016). Optimization of Remazol Brilliant Blue R dye removal by novel biosorbent P. eryngii immobilized on Amberlite XAD-4 using response surface methodology. Desalination and Water Treatment, 57, 15592-15602.
  • Zelles, L., Adrian, P., Bai, Q.Y., Stepper, K., Adrian, M.V., Fischer, K., Maier, A. & Ziegler, A. (1991). Microbial activity measured in soils stored under different temperature and humidity conditions. Soil Biology and Biochemistry, 23, 955–962.

Tekstil Endüstrisi Atıksuyundan Phanerocate chrysosporium ile KOİ, TOK ve Renk Giderimi

Year 2021, Volume: 6 Issue: 2, 211 - 216, 30.06.2021
https://doi.org/10.35229/jaes.867306

Abstract

Tekstil endüstrilerden kaynaklı atıksu deşarjı çevresel riskler teşkil eder. Mikrobiyal metodların diğer yüksek maliyetli kombine metodlara nazaran üstünlüğü kalıcı organic materyallerin toksik olmayan nihai ürünlere dönüşmesi, sürekliliği, düşük maliyeti ve uygulanırlığıdır. Tekstil atıksuları su kalitesine toplam organic karbon (TOK) ve kimyasal oksijen ihtiyacı (KOİ) bakımından olumsuz etki yapar. Çalkalamalı kültürler boyar maddelerin yüzey alanıne girerken, static koşullarında bu gerçekleşmez. Boyar madde prosesinden gelen tekstil atıksuyunun beyaz kök mantarı Phanerochaete chrysosporium (P.C) ile biyoarıtımı çalkalamalı ve statik kültür koşullarında araştırılmıştır. Bu atık suda temel kirletici bileşik olan boyar madde bazı organic kirleticiler içermektedir. 1:10 oranında distile su içeren atıksudaki arıtma ortamları P.C’ nin arıtma verimiyle kıyaslanmıştır. Özellikle çalkalamalı kültür koşullarında 270’ da 150 rpm’ de oldukça uygun bir arıtma sonucu elde edilmiştir. Bu koşullar altında, 48 saatte arıtım orjinal KOİ’ de %91,46’ya (1484 mg l-1’ den) ve TOK bakımından ise % 94,92 (giriş değeri 723.66 mg l-1 ‘ dir). Bunlara ilave olarak çalışma sonunda renkdeki giderim 3,550 A540 den 0.487 A540 ‘a % 86.28’ in altına düşmüştür. P.C’ nin dekolorizasyon özelliği yüksek bir performans elde etmiştir ve P.C; KOİ ve TOK’ da 48 saatte etkili bir giderim oranı göstermiştir. P.C’ nin mantar pelletlerinin renk giderimini sağlayabildiği ve tekstil boyar atıksularıın biyoremediasyonunda kısa zaman periyodunda kullanılabilir bir araç olabileceğini önermekteyiz.

References

  • APHA, AWWA, WEF (2005). Standard Methods for the Examination of Water and Wastewater, 21th Edition, Washington, DC.
  • ANOVA (2017). IBM Corp. Released 2017. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.
  • Arora, S., Sain, H.S. & Singh, K. (2007). Decolorization optimization of a mono azo disperse dye with Bacillus firmus: Identification of a degradation product. Coloration Technology,123, 184–190.
  • Asad, S., Amoozegar, M.A., Pourbabaee, A.A., Sarbolouki, M.N. & Dastghei, S.M.M. (2007) Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Bioresource Technology, 98, 2082–2088.
  • Asgher, M., Yasmeen, Q. & Iqbal, H.M.N. (2013). Enhanced decolorization of Solar brilliant red 80 textile dye by an indigenous white rot fungus Schizophyllum commune IBL-06. Saudi Journal of Biological Sciences, 20, 347–352.
  • Faraco, V., Pezzella, C., Miele, A., Giardina, P. & Sannia, G. (2009). Bioremediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes. Biodegradation, 20, 209–220.
  • Hai, F.I., Yamamoto, K. & Fukushi, K. (2005). Different fouling modes of submerged hollow-fiber and flat-sheet membranes induced by high strength wastewater with concurrent biofouling. Desalination, 180, 89-97.
  • Harry, W.S., Paul, J.V. & John, J.L.E. (1991). Microbes in Action: A Laboratory Manual of Microbiology 4th Edition. 450 pp.
  • Hossain, K., Quaik, S., Ismail, N., Rafatullah, M., Avasan, M. & Shaik, R. (2016). Bioremediation and Detoxification of the Textile Wastewater with Membrane Bioreactor Using the White-rot Fungus and Reuse of Wastewater, Iranian Journal of Biotechnology, 14, 154–162.
  • Kalyani, D.C., Patil, P.S., Jadhav, J.P. & Govindwar, S.P. (2008). Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresource Technology, 99, 4635– 4641.
  • Kapdan, I.K. & Kargi, F. (2002). Biological decolorization of textile dyestuff containingwastewater by Coriolus versicolor in a rotating biological contactor. Enzyme and Microbial Technology, 30, 195- 199.
  • Lin, J., Zhang, X., Zhongjian, L. & Lei, L. (2009). Biodegradation of reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas spisolate. Bioresource Technology, 101, 34–40.
  • Mahmoud, M.S. (2016). Decolorization of certain reactive dye from aqueous solution using Baker’s Yeast (Saccharomyces cerevisiae) strain. HBRC Journal 12, 88-98.
  • Mahmoud, M.S., Mostafa, M.K., Mohamed, S.A., Sobhy, N.A. & Nasr, M. (2017). Bioremediation of red azo dye from aqueous solutions by Aspergillus niger strain isolated from textile wastewater. Journal of Environmental Chemical Engineering, 5, 547–554.
  • Mohamed, V.B.H., Arunprasath, R. & Purusothaman, G. (2016). Biological treatment of azo dyes on effluent by Neurospora sp isolated and adopted from dye contaminated site. Journal of the Textile Institute, 111, 1239-1245.
  • Nienow, A.W. (2006). Reactor Engineering in Large Scale Animal Cell Culture. Cytotechnology, 50, 9–33.
  • Nilsson, I., Möller, A., Mattiason, B., Rubindamayugi, M.S.T. & Welander, U. (2006). Decolorization of synthetic and real textile wastewater by the use of white-rot fungi. Enzyme and Microbial Technology, 38, 94–100.
  • Ogugbue, C.J. & Sawidis, T. (2011). Bioremediation and Detoxification of Synthetic Wastewater Containing Triarylmethane Dyes by Aeromonas hydrophila. Isolated from Industrial Effluent. Biotechnology Research International, 967925.
  • Pakshirajan, K. & Kheria, S. (2012). Continuous treatment of colored industry wastewater using immobilized Phanerochaete chrysosporiumin a rotating biological contactor reactor. Journal of Environmental Management, 101, 118-123.
  • Robinson, T., McMullan, G., Marchant, R. & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247-255.
  • Saratale, R.G., Saratale, G.D., Chang, J.S. & Govindvar, S.P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138-157.
  • Shahvali, M., Assadi, M.M. & Rostami, K. (2000). Effect of environmental parameters on decolorization of textile wastewater using Phanerochaete chrysosporium. Bioprocess Engineering, 23, 721-726.
  • Singh, N.K., Kazmi, A.A. & Starkl, M. (2015). A review on full-scale decentralized wastewater treatment systems: techno-economical approach. Water Science and Technology, 71, 468–478.
  • Srinivasan, A. & Viraraghavan, T. (2010). Decolorization of dye wastewaters by biosorbents: A review. Journal of Environmental Management, 91, 1915–1929.
  • Yildirim, N.C., Tanyol, M., Yildirim, N., Serdar, O. & Tatar, S. (2018). Biochemical responses of Gammarus pulex to malachite green solutions decolorized by Coriolus versicolor as a biosorbent under batch adsorption conditions optimized with response surface methodology. Ecotoxicology Environment Safety, 156, 41-47.
  • Yonten, V., Tanyol, M., Yildirim, N., Yildirim, N.C. & Ince, M. (2016). Optimization of Remazol Brilliant Blue R dye removal by novel biosorbent P. eryngii immobilized on Amberlite XAD-4 using response surface methodology. Desalination and Water Treatment, 57, 15592-15602.
  • Zelles, L., Adrian, P., Bai, Q.Y., Stepper, K., Adrian, M.V., Fischer, K., Maier, A. & Ziegler, A. (1991). Microbial activity measured in soils stored under different temperature and humidity conditions. Soil Biology and Biochemistry, 23, 955–962.
There are 27 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Numan Yıldırım 0000-0003-1109-8106

Gökhan Önder Ergüven 0000-0003-1573-080X

Aytekin Çelik 0000-0003-4234-1797

Publication Date June 30, 2021
Submission Date January 24, 2021
Acceptance Date April 11, 2021
Published in Issue Year 2021 Volume: 6 Issue: 2

Cite

APA Yıldırım, N., Ergüven, G. Ö., & Çelik, A. (2021). Removal of COD, TOC, and Color from Textile Industry Wastewater by Using Phanerochaete chrysosporium. Journal of Anatolian Environmental and Animal Sciences, 6(2), 211-216. https://doi.org/10.35229/jaes.867306


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg