Research Article
BibTex RIS Cite

Effect of Gibberellin on Some Fatty Acid Profiles Under Nitrogen Starvation in Green Algae Chlorella vulgaris

Year 2021, Volume: 8 Issue: 1, 11 - 19, 08.03.2021
https://doi.org/10.21448/ijsm.739771

Abstract

Plant growth substances could be stimulating algal growth rate and alter lipid compositions. In the present study, we tested hypothesis that exogenous gibberellin (GA) has any effect on growth rate and some fatty acid profiles in green algae Chlorella vulgaris. In Bold Basal Medium with 100 µM GA3, cell density increased to 68.57% on third day as compared to the control cells. These results indicated that GA3 enhanced microalgal growth and cell size. The lipid profile was also altered compared to control using Gas Chromatography-Mass Spectrometry (GC-MS). GA3 promotes the production of C16:0, C18:0, C18:1 and C18:3 on day-3 and-5. Under nitrogen starvation condition, application of GA3 provide enhanced algae growth and stimulated C16:0 and C18:1 production. In conclusion, this study demonstrated that gibberellin could be a good candidate as a hormone for increasing lipid production in microalgae culture system

Supporting Institution

Scientific and Technological Research Council of Turkey (TUBITAK)

Project Number

2209 Undergraduate Student Project

References

  • Abdelaziz, A.E.M., Leite, G.B., & Hallenbeck, P.C. (2013) Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply. Environ. Technol., 34, 1783-1805. https://doi.org/10.1080/09593330.2013.827748
  • Babu, G.A., Wu, X., Kabra, A.N., & Kim, D P. (2017). Cultivation of an indigenous Chlorella sorokiniana with phytohotmones for biomass and lipid production under N-limitation. Algal Res., 23, 178-185. https://doi.org/10.1016/j.algal.2017.02.004
  • Benvenuti, G., Bosma, R., Cuaresma, M., Janssen, M., Barbosa, M.J., & Wijffels, R.H. (2015). Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. J. Appl. Phycol., 27,1425-1431. https://doi.org/10.1007/s10811-014-0470-8
  • Bligh, E.G., & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian J. Biochem. Physiol., 37(8), 911-917. https://doi.org/10.1139/o59-099
  • Borowitzka, M.A., & Moheimani, N.R. (2013) Sustainable biofuels from algae. Mitig. Adapt. Strateg. Glob. Change, 18, 13-25. https://doi.org/10.1007/s11027-010-9271-9
  • Cakmak, T., Angun, P., Demiray, Y.E., Ozkan, A.D., Elibol, Z., & Tekinay, T. (2012). Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol. Bioeng., 109, 1947-1957. https://doi.org/10.1002/bit.24474
  • Dillschneider, R., Steinweg, C., Rosello-Sastre, R., & Posten, C. (2013). Biofuels from microalgae: photoconversion efficiency during lipid accumulation. Bioresour. Technol., 142, 647-654. https://doi.org/10.1016/j.biortech.2013.05.088
  • Du, K., Tao, H., Wen, X., Geng, Y. & Li, Y. (2015). Enhanced growth and lipid production of Chlorella pyrenoidosa by plant growth regulator GA3. Fresenius Environ. Bull., 24, 3414–3419.
  • Falkowska, M., Pietryczuk, A., Piotrowska, A., Bajguz, A., Grygoruk, A., & Czerpark, R. (2011). The effect pf gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Polish J. Environ. Stud., 20(1), 53-59.
  • González-Garcinuño, A., Sánchez-Álvarez, J.M., Galán, M.A., & Martin del Valle, E.M. (2016). Understanding and optimizing the addition of phytohormones in the culture of microalgae for lipid production. Biotechnol. Prog., 32, 1203–1211. https://doi.org/10.1002/btpr.2312
  • Grindstaff, K.K., Feilding, L.A., & Brodi, M.R. (1996). Effect of Gibberellins and heat shock on the lipid composition of Endoplasmic reticulum in Barley Aulorene layers. Plant Physiol., 110, 571-581. https://doi.org/10.1104/pp.110.2.571
  • Illman, A.M., Scragg, A.H., & Shales, S.W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Tech., 27, 631–635. https://doi.org/10.1016/s0141-0229(00)00266-0
  • James, G.O., Hocart, C.H., Hillier. W., Price, G.D., & Djordjevic, M.A. (2013). Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii. Bioresour. Technol., 127, 441-447. https://doi.org/10.1016/j.biortech.2012.09.090
  • Jennings, R.C. (1968). Gibberellins as Endogenous growth regulators in green and brown algae. Planta, 80, 34-42.
  • Jerez, C.G., Malapascua, J.R., Sergejevová, M., Figueroa, F.L., & Masojidek, J. (2016). Effect of Nutrient Starvation under High Irradiance on Lipid and Strach Accumulation in Chlorella fusca (Chlorophyta). Mar. Biotechnol., 18, 24-36. https://doi.org/10.1007/s10126-015-9664-6
  • Joseph, I., & Chennubhotla, V.S.K. (1999). Gibberellic acid and 2,4-D as growth regulators in laboratory culture of seaweeds. Indian J. Mar.Sci., 28, 66-69.
  • Jusoh, M., Loh, S.H., Chuah, T.S., Aziz, A., & Cha, T.S. (2015a). Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry, 111, 65-71. https://doi.org/10.1016/j.phytochem.2014.12.022
  • Jusoh, M., Loh, S.H., Chuah, T.S., Aziz, A., & Cha, T.S. (2015b). Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res., 9, 14-20. https://doi.org/10.1016/j.algal.2015.02.020
  • Kattner, G., & Fricke, H.S.G. (1986). Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J. Chromatogr., 361, 263–268. https://doi.org/10.1016/S0021-9673(01)86914-4
  • Leite, G.B., Abdelaziz, A.E.M., & Hallenbeck, P.C. (2013) Algal biofuels: challenges and opportunities. Bioresour. Technol., 145, 134 141. https://doi.org/10.1016/j.biortech.2013.02.007
  • Li, T., Zheng, Y., Yu, L., & Chen, Z. (2013). High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour.Technol. 131, 60–67. https://doi.org/10.1016/j.biortech.2012.11.121
  • Liu, Z.Y., Wang, G.C., & Zhou, B.C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour.Technol., 99, 4717 4722. https://doi.org/10.1016/j.biortech.2007.09.073
  • Lu, Y., & Xu, Y. (2015). Phytohormones in microalgae: a new opportunity for microalgal biotechnology. Trend Plant Sci., 20(5), 273 282. http://dx.doi.org/10.1016/j.tplants.2015.01.0
  • Mata, T.M., Martins, A.A., & Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renew Sust. Energ. Rev., 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  • Mekhalfi, M., Amara, S., Robert, S., Carriere, F., & Gontero, B. (2014). Effect of environmental conditions on various enzyme activities and triacylglycerol contents in cultures of the freshwater diatom, Asterionella formosa (Bacillariophyceae). Biochimie., 101, 21–30. https://doi.org/10.1016/j.biochi.2013.12.004
  • Minhas, A.K., Hodgson, P., Barrow, C.J., Sashidhar, B., & Adholeya, A. (2016) The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Bioresour. Technol., 211, 556–565. https://doi.org/10.1016/j.biortech.2016.03.121
  • Nakajima, M., Shimada, A., Takashi, Y., Kim, Y.C., Park, S.H., Ueguchi-Tanaka, M., Suzuki, H., Katoh, E., Iuchi, S., Kobayashi, M., Maeda, T., Matsuoka, M., & Yamaguchi, I. (2006). Identification and characterization of Arabidopsis gibberellin receptors. Plant J., 46, 880-889. https://doi.org/10.1111/j.1365-313X.2006.02748.x
  • Park, W.K., Yoo, G., Moon, M., Kim, C.W., Choi, Y.E., & Yang, J.W. (2013). Phytohormone supplemantion significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl. Biochem. Biotechnol 17(1), 1128-1142. https://doi.org/10.1007/s12010-013-0386-9
  • Radley, M. (1961). Gibberellin-like substances in plants. Nature (Lond.). 191, 684-685.
  • Ren, H.Y., Liu, B.F., Kong, F., & Zhao, L. (2014). Enhanced lipid accumulation of green microalga Scenedesmus sp. By metal ions and EDTA addition. Bioresour. Technol., 169, 763-767. https://doi.org/10.1016/j.biortech.2014.06.062
  • Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 102, 100–112. https://doi.org/10.1002/bit.22033
  • Sasaki, A., Ithoh, H., Gomi, K., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Jeong, D.H., An, G., Kitano, H., Ashikari, M., & Matsuoka, M. (2003). Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 299(5614), 1896-1898. https://doi.org/10.1126/science.1081077
  • Solovchenko, A.E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., & Merzlyak, M.N. (2008). Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J. Appl. Phycol., 20, 245–251. https://doi.org/10.1007/s10811-007-9233-0
  • Sreekumar, N., Chennattussery, A.J., Mariya, A., & Selvaraju, N. (2018). Anaerobic digester sludge as nutrient source for culturing of microalgae for economic biodiesel production Int. J. Environ. Sci. Technol., 15, 2607-2614. https://doi.org/10.1007/s13762-017-1491-z
  • Tyler, L., Thomas, S.G., Hu, J., Dill, A., Alonso, J.M., Ecker, J.R., & Sun, T. (2004). DELLA proteins and Gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol., 135, 1008-1019. https://doi.org/10.1104/pp.104.039578
  • Yu, X.J., Sun, J., Sun, Y.Q., Zheng, J.Y., & Wang, Z. (2016). Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem. Eng. J., 112, 258–268. https://doi.org/10.1016/j.bej.2016.05.002
  • Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J., & Yuan, Z. (2014). Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol., 152, 292-298. https://doi.org/10.1016/j.biortech.2013.10.092

Effect of Gibberellin on Some Fatty Acid Profiles Under Nitrogen Starvation in Green Algae Chlorella vulgaris

Year 2021, Volume: 8 Issue: 1, 11 - 19, 08.03.2021
https://doi.org/10.21448/ijsm.739771

Abstract

Plant growth substances could be stimulating algal growth rate and alter lipid compositions. In the present study, we tested hypothesis that exogenous gibberellin (GA) has any effect on growth rate and some fatty acid profiles in green algae Chlorella vulgaris. In Bold Basal Medium with 100 µM GA3, cell density increased to 68.57% on third day as compared to the control cells. These results indicated that GA3 enhanced microalgal growth and cell size. The lipid profile was also altered compared to control using Gas Chromatography-Mass Spectrometry (GC-MS). GA3 promotes the production of C16:0, C18:0, C18:1 and C18:3 on day-3 and-5. Under nitrogen starvation condition, application of GA3 provide enhanced algae growth and stimulated C16:0 and C18:1 production. In conclusion, this study demonstrated that gibberellin could be a good candidate as a hormone for increasing lipid production in microalgae culture system

Project Number

2209 Undergraduate Student Project

References

  • Abdelaziz, A.E.M., Leite, G.B., & Hallenbeck, P.C. (2013) Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply. Environ. Technol., 34, 1783-1805. https://doi.org/10.1080/09593330.2013.827748
  • Babu, G.A., Wu, X., Kabra, A.N., & Kim, D P. (2017). Cultivation of an indigenous Chlorella sorokiniana with phytohotmones for biomass and lipid production under N-limitation. Algal Res., 23, 178-185. https://doi.org/10.1016/j.algal.2017.02.004
  • Benvenuti, G., Bosma, R., Cuaresma, M., Janssen, M., Barbosa, M.J., & Wijffels, R.H. (2015). Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. J. Appl. Phycol., 27,1425-1431. https://doi.org/10.1007/s10811-014-0470-8
  • Bligh, E.G., & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian J. Biochem. Physiol., 37(8), 911-917. https://doi.org/10.1139/o59-099
  • Borowitzka, M.A., & Moheimani, N.R. (2013) Sustainable biofuels from algae. Mitig. Adapt. Strateg. Glob. Change, 18, 13-25. https://doi.org/10.1007/s11027-010-9271-9
  • Cakmak, T., Angun, P., Demiray, Y.E., Ozkan, A.D., Elibol, Z., & Tekinay, T. (2012). Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol. Bioeng., 109, 1947-1957. https://doi.org/10.1002/bit.24474
  • Dillschneider, R., Steinweg, C., Rosello-Sastre, R., & Posten, C. (2013). Biofuels from microalgae: photoconversion efficiency during lipid accumulation. Bioresour. Technol., 142, 647-654. https://doi.org/10.1016/j.biortech.2013.05.088
  • Du, K., Tao, H., Wen, X., Geng, Y. & Li, Y. (2015). Enhanced growth and lipid production of Chlorella pyrenoidosa by plant growth regulator GA3. Fresenius Environ. Bull., 24, 3414–3419.
  • Falkowska, M., Pietryczuk, A., Piotrowska, A., Bajguz, A., Grygoruk, A., & Czerpark, R. (2011). The effect pf gibberellic acid (GA3) on growth, metal biosorption and metabolism of the green algae Chlorella vulgaris (Chlorophyceae) Beijerinck exposed to cadmium and lead stress. Polish J. Environ. Stud., 20(1), 53-59.
  • González-Garcinuño, A., Sánchez-Álvarez, J.M., Galán, M.A., & Martin del Valle, E.M. (2016). Understanding and optimizing the addition of phytohormones in the culture of microalgae for lipid production. Biotechnol. Prog., 32, 1203–1211. https://doi.org/10.1002/btpr.2312
  • Grindstaff, K.K., Feilding, L.A., & Brodi, M.R. (1996). Effect of Gibberellins and heat shock on the lipid composition of Endoplasmic reticulum in Barley Aulorene layers. Plant Physiol., 110, 571-581. https://doi.org/10.1104/pp.110.2.571
  • Illman, A.M., Scragg, A.H., & Shales, S.W. (2000). Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enzyme Microb. Tech., 27, 631–635. https://doi.org/10.1016/s0141-0229(00)00266-0
  • James, G.O., Hocart, C.H., Hillier. W., Price, G.D., & Djordjevic, M.A. (2013). Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii. Bioresour. Technol., 127, 441-447. https://doi.org/10.1016/j.biortech.2012.09.090
  • Jennings, R.C. (1968). Gibberellins as Endogenous growth regulators in green and brown algae. Planta, 80, 34-42.
  • Jerez, C.G., Malapascua, J.R., Sergejevová, M., Figueroa, F.L., & Masojidek, J. (2016). Effect of Nutrient Starvation under High Irradiance on Lipid and Strach Accumulation in Chlorella fusca (Chlorophyta). Mar. Biotechnol., 18, 24-36. https://doi.org/10.1007/s10126-015-9664-6
  • Joseph, I., & Chennubhotla, V.S.K. (1999). Gibberellic acid and 2,4-D as growth regulators in laboratory culture of seaweeds. Indian J. Mar.Sci., 28, 66-69.
  • Jusoh, M., Loh, S.H., Chuah, T.S., Aziz, A., & Cha, T.S. (2015a). Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry, 111, 65-71. https://doi.org/10.1016/j.phytochem.2014.12.022
  • Jusoh, M., Loh, S.H., Chuah, T.S., Aziz, A., & Cha, T.S. (2015b). Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res., 9, 14-20. https://doi.org/10.1016/j.algal.2015.02.020
  • Kattner, G., & Fricke, H.S.G. (1986). Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J. Chromatogr., 361, 263–268. https://doi.org/10.1016/S0021-9673(01)86914-4
  • Leite, G.B., Abdelaziz, A.E.M., & Hallenbeck, P.C. (2013) Algal biofuels: challenges and opportunities. Bioresour. Technol., 145, 134 141. https://doi.org/10.1016/j.biortech.2013.02.007
  • Li, T., Zheng, Y., Yu, L., & Chen, Z. (2013). High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour.Technol. 131, 60–67. https://doi.org/10.1016/j.biortech.2012.11.121
  • Liu, Z.Y., Wang, G.C., & Zhou, B.C. (2008). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour.Technol., 99, 4717 4722. https://doi.org/10.1016/j.biortech.2007.09.073
  • Lu, Y., & Xu, Y. (2015). Phytohormones in microalgae: a new opportunity for microalgal biotechnology. Trend Plant Sci., 20(5), 273 282. http://dx.doi.org/10.1016/j.tplants.2015.01.0
  • Mata, T.M., Martins, A.A., & Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renew Sust. Energ. Rev., 14, 217-232. https://doi.org/10.1016/j.rser.2009.07.020
  • Mekhalfi, M., Amara, S., Robert, S., Carriere, F., & Gontero, B. (2014). Effect of environmental conditions on various enzyme activities and triacylglycerol contents in cultures of the freshwater diatom, Asterionella formosa (Bacillariophyceae). Biochimie., 101, 21–30. https://doi.org/10.1016/j.biochi.2013.12.004
  • Minhas, A.K., Hodgson, P., Barrow, C.J., Sashidhar, B., & Adholeya, A. (2016) The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Bioresour. Technol., 211, 556–565. https://doi.org/10.1016/j.biortech.2016.03.121
  • Nakajima, M., Shimada, A., Takashi, Y., Kim, Y.C., Park, S.H., Ueguchi-Tanaka, M., Suzuki, H., Katoh, E., Iuchi, S., Kobayashi, M., Maeda, T., Matsuoka, M., & Yamaguchi, I. (2006). Identification and characterization of Arabidopsis gibberellin receptors. Plant J., 46, 880-889. https://doi.org/10.1111/j.1365-313X.2006.02748.x
  • Park, W.K., Yoo, G., Moon, M., Kim, C.W., Choi, Y.E., & Yang, J.W. (2013). Phytohormone supplemantion significantly increases growth of Chlamydomonas reinhardtii cultivated for biodiesel production. Appl. Biochem. Biotechnol 17(1), 1128-1142. https://doi.org/10.1007/s12010-013-0386-9
  • Radley, M. (1961). Gibberellin-like substances in plants. Nature (Lond.). 191, 684-685.
  • Ren, H.Y., Liu, B.F., Kong, F., & Zhao, L. (2014). Enhanced lipid accumulation of green microalga Scenedesmus sp. By metal ions and EDTA addition. Bioresour. Technol., 169, 763-767. https://doi.org/10.1016/j.biortech.2014.06.062
  • Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol. Bioeng., 102, 100–112. https://doi.org/10.1002/bit.22033
  • Sasaki, A., Ithoh, H., Gomi, K., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Jeong, D.H., An, G., Kitano, H., Ashikari, M., & Matsuoka, M. (2003). Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science, 299(5614), 1896-1898. https://doi.org/10.1126/science.1081077
  • Solovchenko, A.E., Khozin-Goldberg, I., Didi-Cohen, S., Cohen, Z., & Merzlyak, M.N. (2008). Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa. J. Appl. Phycol., 20, 245–251. https://doi.org/10.1007/s10811-007-9233-0
  • Sreekumar, N., Chennattussery, A.J., Mariya, A., & Selvaraju, N. (2018). Anaerobic digester sludge as nutrient source for culturing of microalgae for economic biodiesel production Int. J. Environ. Sci. Technol., 15, 2607-2614. https://doi.org/10.1007/s13762-017-1491-z
  • Tyler, L., Thomas, S.G., Hu, J., Dill, A., Alonso, J.M., Ecker, J.R., & Sun, T. (2004). DELLA proteins and Gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol., 135, 1008-1019. https://doi.org/10.1104/pp.104.039578
  • Yu, X.J., Sun, J., Sun, Y.Q., Zheng, J.Y., & Wang, Z. (2016). Metabolomics analysis of phytohormone gibberellin improving lipid and DHA accumulation in Aurantiochytrium sp. Biochem. Eng. J., 112, 258–268. https://doi.org/10.1016/j.bej.2016.05.002
  • Zhu, S., Huang, W., Xu, J., Wang, Z., Xu, J., & Yuan, Z. (2014). Metabolic changes of starch and lipid triggered by nitrogen starvation in the microalga Chlorella zofingiensis. Bioresour Technol., 152, 292-298. https://doi.org/10.1016/j.biortech.2013.10.092
There are 37 citations in total.

Details

Primary Language English
Subjects Structural Biology
Journal Section Articles
Authors

Uygar Kabaoğlu

Ufuk Aslan This is me

Dilek Ünal

Project Number 2209 Undergraduate Student Project
Publication Date March 8, 2021
Submission Date May 19, 2020
Published in Issue Year 2021 Volume: 8 Issue: 1

Cite

APA Kabaoğlu, U., Aslan, U., & Ünal, D. (2021). Effect of Gibberellin on Some Fatty Acid Profiles Under Nitrogen Starvation in Green Algae Chlorella vulgaris. International Journal of Secondary Metabolite, 8(1), 11-19. https://doi.org/10.21448/ijsm.739771
International Journal of Secondary Metabolite

e-ISSN: 2148-6905