Review
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 2, 200 - 207, 15.08.2018

Abstract

References

  • 1. Telefoncu, A., Biochemistry Graduate Summer School -Biosensors, 1999, Izmir-Turkey: Ege University Science Faculty Press, p. 1-2.
  • 2. Anonymous. [cited 2016 07 May]; Available from: http://iupac.org/
  • 3. Grieshaber, D., R. MacKenzie, J. Vörös, and E. Reimhult. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors, Switzerland, 2008. 8(3), p. 1400–1458.
  • 4. Jain, K.K., Applications of biochips: from diagnostics to personalized medicine. Current Opinion to Drug Discovery and Development. 2004. 7, p.285–289.
  • 5. Jianrong, C., M. Yuqing, H. Nongyue, W. Xiaohua, and L. Sijiao. Nanotechnology and biosensors. Biotechnology Advances. 2004. 22, p.505–518.
  • 6. Malik, P., V. Katyal, V. Malik, A. Asatkar, G. Inwati, and T.K. Mukherjee. Nanobiosensors: Concepts and Variations. Hindawi Publishing Corporation. ISRN Nanomaterials. 2013. 2013 (327435), 9 pages.
  • 7. Abu-Salah, K.M., S.A. Alrokyan, M.N. Khan, and A.A. Ansari. Nanomaterials as Analytical Tools for Genosensors. Sensors, 2010. 10, p. 963-993.
  • 8. Li, Yanbin. 2006. Section 2.3 Biosensors, p. 52-93, of Chapter 2 Hardware, in CIGR Handbook of Agricultural Engineering Volume VI Information Technology. Edited by CIGR-The International Commission of Agricultural Engineering; Volume Editor, Axel Munack. St. Joseph, Michigan, USA: ASABE. (doi:10.13031/2013.21666).
  • 9. Tothill, I.E. Biosensors and Nanomaterials and their Application for Mycotoxin Determination. World Mycotoxin Journal. 2011. 4(4), p.361-374.
  • 10. Anonymous. [cited 2016 24 May]; Available from: http://nptel.ac.in/courses/118107015/module3/lecture4/lecture4.pdf
  • 11. Akbayırlı, P., E. Akyılmaz. Activation-based catalase enzyme electrode and its usage for glucose determination. Analytical Letters. 2007. 40, p.3360-3372.
  • 12. Clark, Jr. L. C., and C. Lyons. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci. 1962. 105, p. 20-45.
  • 13. Guilbault, G. G., and J. Montalvo. Urea-specific enzyme electrode. Journal of American Chemical Society. 1969. 91(8), p. 2164-2569.
  • 14. Scheller, F.W., F. Schubert, B. Neumann, D. Pfeiffer, R. Hintsche, I. Dransfeld, U. Wollenberger, R. Renneberg, A. Warsinke, G. Johansson, M. Skoog, X. Yang, V. Bogdanovskaya, A. Bückmann, S.Y. Zaitsev.. Second generation biosensors. Biosensors and Bioelectronics. 1991 6(3), p. 245-253.
  • 15. Bhushan., B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectronic Engineering, 2007. 84(3), p. 387–412.
  • 16. Robertson, S. [cited 2016 24 May]; Available from: http://www.news-medical.net/health/Biosensors-and-Food-Industry.aspx
  • 17. Dong, S. and X. Chen, Some new aspects in biosensors. J Biotechnol. 2002. 82(4), p. 303-23.
  • 18. Marazuela, M. and M. Moreno-Bondi. Fiber-optic biosensors – an overview. Analytical and Bioanalytical Chemistry. 2002. 372(5–6), p. 664–682.
  • 19. Pohanka, M. Cholinesterases in biorecognition and biosensor construction, a review. Analytical Letters. 2013. 46(12), p. 1849–1868.
  • 20. Paredes A.P., J. Parellada, M.V. Fernandez, I. Katakis and E. Dominguez. Amperometric Mediated Carbon Paste Biosensor Based On D-fructose dehydrogenase for determination of fructose in food analysis. Biosensors and Bioelectronics. 1997. 12(12), p. 1233-1243.
  • 21. Sacchi S., L. Pollegioni, M.S. Pilone and C. Rosetti. Determination of D-Amino-acids using a D-amino acid oxidase biosensor with spectrophotometric and potentiometric detection. Biotechnology Techniques. 1998. 12, p. 149-153.
  • 22. Rehmrev-Broom M., M. Jonker, K. Venema, G. Jobst, R. Tiessen, and J. Korf. On-line continuous monitoring of glucose or lactate by ultraslow microdialysis combined with flow-through nanoliter biosensor based on poly (m-phenylenediamine) ultra-thin polymer membrane as enzyme electrode. Analyst. 2001. 126 (7), p. 1073-1079.
  • 23. Soldatkin O.O., V.M. Peshkara, S.V. Dzyadevych, A.P. Soldatkin, N. Jaffrezic-Renault, A.V. Elskaya. Novel sucrose three enzyme conductometric biosensor. Mater. Sci. Eng. C. 2008. 28, p. 959-964.
  • 24. Dubey, R. S. and S.N. Upadhyay. Microbial corrosion monitoring by an amperometric microbial biosensor developed using whole cell of Pseudomonas sp. Biosensors and Bioelectronics. 2001. 16(9–12), p. 995–1000.
  • 25. Védrine, C., J.-C. Leclerc, C. Durrieu, and C. Tran-Minh. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosensors and Bioelectronics. 2003. 18(4), p. 457–63.
  • 26. Bragadin, M., S. Manente, R. Piazza, and G. Scutari. The Mitochondria as Biosensors for the Monitoring of Detergent Compounds in Solution. Analytical Biochemistry. 2001. 292(2), p. 305–307.
  • 27. Murugaboopathi, G., V. Parthasarathy, C. Chellaram, T. Prem Anand and S. Vinurajkumar. Applications of Biosensors in Food Industry. Biosciences Biotechnology Research Asia. 2013. 10(2), 711-714.
  • 28. Ali, M.A., T.A. Eldin, M.E. Moghazy, I.M Tork, I.I. Omara. Detection of E. coli O157:H7 in feed samples using gold nanoparticles sensor. International Journal of Current Microbiology and Applied Science. 2014. 3(6):697–708.
  • 29. Xiang, C., R.Li, B. Adhikari, Z. She, Y. Li, H.-B. Kraatz. Sensitive electrochemical detection of Salmonella with Chitosan-Gold oparticles composite film. Talanta. 2015. 140, 122-127.
  • 30. Kokbas, U., L. Kayrin, and A. Tuli. Biosensors and Their Medical Applications. Archives Medical Review Journal. 2013. 22(4), p. 499-513.
  • 31. Thakur, M.S. and K.V. Ragavan. Biosensors in food processing. Journal of Food Science and Technology. 2013. 50(4): 625–641.
  • 32. Van Gerwen, P., W. Laureyn, W. Laureys, G. Huyberechts, M. Op De Beeck, K. Baert, J. Sls, W. Sansen, P. Jacobs, L. Hermans, and R. Mertens. Nanoscaled interdigitated electrode arrays for biochemical sensors. Sensors and Actuators B. 1998. B: 49(1-2), p. 73–80.
  • 33. Yokoo, A. and H. Namatsu. Nanoelectrode Lithograpy: Chemical Nanoimprint that transfers a pattern by electrochemical reaction. Selected papers: forefront of basic research at NTT (Technical Review). 2008. 6(8), p. 1-8.
  • 34. Zhang, W., H. Tang, P. Geng, Q. Wang, L. Jin, and Z. Wu. Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode. Electrochem. Commun. 2007. 9, p. 833-838.
  • 35. Pak, S. C., W. Penrose, and P.J. Hesketh. An ultrathin platinum film sensor to measure biomolecular binding. Biosensors and Bioelectronics, 2001.16(6), p. 371–379.
  • 36. Lu, B.W. and W.C. Chen. A disposable glucose biosensor based on drop-coating of screen-printed carbon electrodes with magnetic nanoparticles. J. Magn. Magn. Mater. 2006. 304, p. 400-402.
  • 37. Yu, J., D. Yu, T. Zhao, and B. Zeng. Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix. Talanta, 2008. 74, p. 1586-1591.
  • 38. Zou, Y., C. Xiang, L.X. Sun, and F. Xu. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosensors and Bioelectronics. 2008, 23, p. 1010-1016.
  • 39. Vamvakaki, V. and N.A. Chaniotakis. Pesticide detection with a liposome-based nano-biosensor. Biosensors and Bioelectronics. 2007. 22, p. 2848-2853.
  • 40. Seo, S., M. Dobozi-King, R.F. Young, L.B. Kish, and M. Cheng. Patterning a nanowell sensor biochip for specific and rapid detection of bacteria. Microelectron. Eng. 2008. 85, p. 1484-1489.
  • 41. Zeng, S., K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics. 2011. 6(3), p. 491–506.
  • 42. Tombelli, S., M. Minunni, and M. Mascini. Analytical applications of aptamers. Biosensors and Bioelectronics. 2005. 20, p. 2424-2434.
  • 43. McCauley, T. G., N. Hamaguchi, and M. Stanton. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal. Biochem. 2003. 319: 244-250.
  • 44. Li, B., Y. Du, H. Wei, and S. Dong. Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules. Chem. Commun. 2007. p. 3780-3782.
  • 45. Medley, C.D., J.E. Smith, Z. Tang, Y. Wu, S. Bamrungsap, and W. Tan. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008. 80, p. 1067-1072.
  • 46. Wang, Y., D. Xu, and H-Y. Chen. Aptamer-based silver nanosensor for multiple protein detection. Lab on a Chip. 2012. 12(17): 3184-9.
  • 47. Datta, D., K. Sarkar, S. Mukherjee, X. Meshik, M.A Stroscio, and M. Dutta. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor. Nanotechnology 28: 325502 (9pp).
  • 48. Cao, C., J.H. Kim, D. Yoon, E.S. Hwang, Y.J. Kim, and S. Baik. Optical detection of DNA hybridization using absorption spectra of single-walled carbon nanotubes. Mater. Chem. Phys. 2008.112, p. 738-741.
  • 49. Galandova, J., G. Ziyatdinova, and J. Labuda. Disposable electrochemical biosensor with multiwalled carbon nanotubes - Chitosan composite layer for the detection of deep DNA damage. Anal. Sci. 2008. 24, p. 711-716.
  • 50. McKenzie, F., K. Faulds, and D. Graham. Sequence-specific DNA detection using high-affinityLNA-functionalized gold nanoparticles. Small, 2007. 3, p. 1866-1868.
  • 51. Ma, Y., K. Jiao, T. Yang, and D. Sun. Sensitive PAT gene sequence detection by nano-SiO2/paminothiophenol self-assembled films DNA electrochemical biosensor based on impedance measurement. Sens. Actuat. B, 2008. 131, p. 565-571.
  • 52. Wang, D., X. Xiao, S. Xu, Y. Liu, and Y. Li. Electrochemical aptamer-based nanosensor fabricated on single Au-nanowire electrodes for adenosine triphosphate assay. Biosensors and Bioelectronics. 2018. 99: 431–437.
  • 53. Liu, J., D. Mazumdar, Y. Lu. A simple and sensitive ―dipstick test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed., 2006. 45, p. 7955-7959.
  • 54. Zhang, S., J. Xia, X. Li. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal. Chem., 2008. 80, p.8382-8388.
  • 55. Liu, J., J.H. Lee, Y. Lu. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal. Chem., 2007. 79, p. 4120-4125.
  • 56. Wang, J., L. Wang, X. Liu, Z. Liang, S. Song, W. Li, G. Li, C. Fan. A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv. Mater., 2007. 19, p. 3943-3946.
  • 57. Chen, S.J., Y.F. Huang, C.C. Huang, K.H. Lee, Z.H. Lin, H.T. Chang. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosensors and Bioelectronics. 2008. 23, p. 1749-1753.
  • 58. Lee, J.-S., C.A. Mirkin. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal. Chem., 2008. 80, p. 6805-6808.
  • 59. Liu, C.-W., C.C. Huang, H.T. Chang. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Langmuir, 2008. 24, p. 8346-8350.
  • 60. Xue, X., F. Wang, X. Liu. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc., 2008. 130, p. 3244-3245.
  • 61. Liu, C.W., Y.T. Hsieh, C.C. Huang, Z.H. Lin, H.T. Chang. Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun. 2008. 208, p. 2242-2244.
  • 62. Zhao, W., W. Chiuman, J.C.F. Lam, S.A. McManus, W. Chen, Y. Cui, R. Pelton, M.A. Brook, Y. Li. DNA aptamer folding on gold nanoparticles: From colloid chemistry to biosensors. J. Am. Chem. Soc., 2008.130, p. 3610-3618.
  • 63. Wang, L., X. Liu, X. Hu, S. Song, C. Fan. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem. Commun., 2006. p. 3780-3782.
  • 64. Liu, J. Y. Lu. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc., 2003.125, p. 6642-6643.
  • 65. Liu, J. Y. Lu. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc., 2004. 126, p. 12298-12305.
  • 66. Pang, S., S. Liu, X. Su. An ultrasensitive sensing strategy for the detection of lead (II) ions based on the intermolecular G-quadruplex and graphene oxide. Sensors and Actuators B, 2015. 208, p. 415-420.
  • 67. Liang, G., Y. Man, X. Jin, L. Pan, X. Liu. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Analytica Chimica Acta, 2016. 936, p. 222-228.
  • 68. Chen, Z., L. Chen, H. Ma, T. Zhou, X. Li. Aptamer biosensor for label-free impedance spectroscopy detection of potassium ion based on DNA G-quadruplex conformation. Biosensors and Bioelectronics, 2013. 48, p. 108-112.
  • 69. Bai, W., C. Zhu, J. Liu, M. Yan, S Yang, A. Chen. Gold nanoparticle-based colorimetric aptasensor for rapid detection of six organophosphorous pesticides. Environmental Toxicology and Chemistry, 2015. 34(10), p. 2244-2249.
  • 70. Bala, R., M. Kumar, K. Bansal, R.K. Sharma, N. Wangoo. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosensors and Bioelectronics, 2016. 85, p. 445–449.
  • 71. Wang, C., D. Chen, Q. Wang, Q. Wang. Aptamer-based resonance light scattering for sensitive detection of acetamiprid. Anal. Sci., 2016. 32, p. 757–762.
  • 72. Hosseini, M., F. Mehrabi, M.R. Ganjali, P. Norouzi. A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters. Luminescence, 2016. 31, p. 1339–1343.
  • 73. Reinemann, C., U. Freiin von Fritsch, S. Rudolph, B. Strehlitz. Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosensors and Bioelectronics, 2016. 77, p. 1039–1047.
  • 74. Contreras Jimenez, G., S. Eissa, A. Ng, H. Alhadrami, M. Zourob, M. Siaj. Aptamer-based label-free impedimetric biosensor for detection of progesterone. Anal. Chem., 2015. 87, p. 1075–1082.
  • 75. Chung, E., J. Jeon, J. Yu, C. Lee, J. Choo. Surface-enhanced raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A. Biosensors and Bioelectronics, 2015. 64, p. 560–565.
  • 76. Qiao, Y., J. Li, H. Li, H. Fang, D. Fan, W. Wang. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized Zno nanopencils. Biosensors and Bioelectronics, 2016. 86, p. 315–320.
  • 77. He, M.Q., K. Wang, J.; Wang, Y.L. Yu, R.H. He. A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A. Anal. Bioanal. Chem., 2017. 409, p. 1797–1803.
  • 78. Liu, J., Y. Lu. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed., 2006. 45, p. 90-94.
  • 79. Zhao, W., W. Chiuman, M.A. Brook, Y. Li. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem, 2008. 8, p. 727-731.
  • 80. Wang, J., H.S. Zhou. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Anal. Chem., 2008. 80, p. 7174-7178.
  • 81. Zhang, J., L. Wang, D. Pan, S. Song, F.Y.C. Boey, H. Zhang, C. Fan. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small, 2008. 4, p. 1196-1200.
  • 82. Lee, J.-S., M.S. Han, C.A. Mirkin. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed., 2007. 46, p. 4093-4096.
  • 83. Liu, J., Y. Lu, Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J. Am. Chem. Soc., 2005. 127, p. 12677-12683.
  • 84. Wang, Z., J.H. Lee, Y. Lu. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv. Mater., 2008. 20, p. 3263-3267.
  • 85. Lee, J.-S., P.A. Ulmann, M.S. Han, C.A. Mirkin. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Letters. 2008. 8, p. 529-533.
  • 86. Wu, Y., L. Liu, F. Zhan, P. Zhou. Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst, 2012. 137, p. 4171-4178.

Biosensors from the first generation to nano-biosensors

Year 2018, Volume: 2 Issue: 2, 200 - 207, 15.08.2018

Abstract

All living creatures tend to sense the
changes in their habitat and have to comply with them to survive. At first, the
basics of the biosensor theory began with in
vitro
studies based on sensing ability of living beings. Then, scientists
have started to use this ability in some devices. Lately, these devices have
been smaller and smaller. They are in used for medical, chemical, food and some
other sciences to make easier, cheaper, accurate and rapid detection of
specific reactions, compounds, enzymes, cells according to their electrical,
thermal or optical signals. Lastly, the 4th generation of biosensor technology,
as lived now, has started with the developments of Micro, Nano or BioNano
Electro-Mechanical Systems (MEMS/NEMS/BioNEMS), nanotechnology and
biotechnology that are expected to have lots of features. Furthermore molecular
recognition elements like aptamers which are synthetic oligonucleotide ligands
against various target molecules ranging from small ions to large proteins,
toxins and other analytes as receptors. The studies on using aptamers
conjugated with nanomaterials to fabricate and design novel biosensors appear
to continue due to various advantages such as frequency of usage, practical use
and time-saving. 

References

  • 1. Telefoncu, A., Biochemistry Graduate Summer School -Biosensors, 1999, Izmir-Turkey: Ege University Science Faculty Press, p. 1-2.
  • 2. Anonymous. [cited 2016 07 May]; Available from: http://iupac.org/
  • 3. Grieshaber, D., R. MacKenzie, J. Vörös, and E. Reimhult. Electrochemical Biosensors - Sensor Principles and Architectures. Sensors, Switzerland, 2008. 8(3), p. 1400–1458.
  • 4. Jain, K.K., Applications of biochips: from diagnostics to personalized medicine. Current Opinion to Drug Discovery and Development. 2004. 7, p.285–289.
  • 5. Jianrong, C., M. Yuqing, H. Nongyue, W. Xiaohua, and L. Sijiao. Nanotechnology and biosensors. Biotechnology Advances. 2004. 22, p.505–518.
  • 6. Malik, P., V. Katyal, V. Malik, A. Asatkar, G. Inwati, and T.K. Mukherjee. Nanobiosensors: Concepts and Variations. Hindawi Publishing Corporation. ISRN Nanomaterials. 2013. 2013 (327435), 9 pages.
  • 7. Abu-Salah, K.M., S.A. Alrokyan, M.N. Khan, and A.A. Ansari. Nanomaterials as Analytical Tools for Genosensors. Sensors, 2010. 10, p. 963-993.
  • 8. Li, Yanbin. 2006. Section 2.3 Biosensors, p. 52-93, of Chapter 2 Hardware, in CIGR Handbook of Agricultural Engineering Volume VI Information Technology. Edited by CIGR-The International Commission of Agricultural Engineering; Volume Editor, Axel Munack. St. Joseph, Michigan, USA: ASABE. (doi:10.13031/2013.21666).
  • 9. Tothill, I.E. Biosensors and Nanomaterials and their Application for Mycotoxin Determination. World Mycotoxin Journal. 2011. 4(4), p.361-374.
  • 10. Anonymous. [cited 2016 24 May]; Available from: http://nptel.ac.in/courses/118107015/module3/lecture4/lecture4.pdf
  • 11. Akbayırlı, P., E. Akyılmaz. Activation-based catalase enzyme electrode and its usage for glucose determination. Analytical Letters. 2007. 40, p.3360-3372.
  • 12. Clark, Jr. L. C., and C. Lyons. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N.Y. Acad. Sci. 1962. 105, p. 20-45.
  • 13. Guilbault, G. G., and J. Montalvo. Urea-specific enzyme electrode. Journal of American Chemical Society. 1969. 91(8), p. 2164-2569.
  • 14. Scheller, F.W., F. Schubert, B. Neumann, D. Pfeiffer, R. Hintsche, I. Dransfeld, U. Wollenberger, R. Renneberg, A. Warsinke, G. Johansson, M. Skoog, X. Yang, V. Bogdanovskaya, A. Bückmann, S.Y. Zaitsev.. Second generation biosensors. Biosensors and Bioelectronics. 1991 6(3), p. 245-253.
  • 15. Bhushan., B. Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectronic Engineering, 2007. 84(3), p. 387–412.
  • 16. Robertson, S. [cited 2016 24 May]; Available from: http://www.news-medical.net/health/Biosensors-and-Food-Industry.aspx
  • 17. Dong, S. and X. Chen, Some new aspects in biosensors. J Biotechnol. 2002. 82(4), p. 303-23.
  • 18. Marazuela, M. and M. Moreno-Bondi. Fiber-optic biosensors – an overview. Analytical and Bioanalytical Chemistry. 2002. 372(5–6), p. 664–682.
  • 19. Pohanka, M. Cholinesterases in biorecognition and biosensor construction, a review. Analytical Letters. 2013. 46(12), p. 1849–1868.
  • 20. Paredes A.P., J. Parellada, M.V. Fernandez, I. Katakis and E. Dominguez. Amperometric Mediated Carbon Paste Biosensor Based On D-fructose dehydrogenase for determination of fructose in food analysis. Biosensors and Bioelectronics. 1997. 12(12), p. 1233-1243.
  • 21. Sacchi S., L. Pollegioni, M.S. Pilone and C. Rosetti. Determination of D-Amino-acids using a D-amino acid oxidase biosensor with spectrophotometric and potentiometric detection. Biotechnology Techniques. 1998. 12, p. 149-153.
  • 22. Rehmrev-Broom M., M. Jonker, K. Venema, G. Jobst, R. Tiessen, and J. Korf. On-line continuous monitoring of glucose or lactate by ultraslow microdialysis combined with flow-through nanoliter biosensor based on poly (m-phenylenediamine) ultra-thin polymer membrane as enzyme electrode. Analyst. 2001. 126 (7), p. 1073-1079.
  • 23. Soldatkin O.O., V.M. Peshkara, S.V. Dzyadevych, A.P. Soldatkin, N. Jaffrezic-Renault, A.V. Elskaya. Novel sucrose three enzyme conductometric biosensor. Mater. Sci. Eng. C. 2008. 28, p. 959-964.
  • 24. Dubey, R. S. and S.N. Upadhyay. Microbial corrosion monitoring by an amperometric microbial biosensor developed using whole cell of Pseudomonas sp. Biosensors and Bioelectronics. 2001. 16(9–12), p. 995–1000.
  • 25. Védrine, C., J.-C. Leclerc, C. Durrieu, and C. Tran-Minh. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosensors and Bioelectronics. 2003. 18(4), p. 457–63.
  • 26. Bragadin, M., S. Manente, R. Piazza, and G. Scutari. The Mitochondria as Biosensors for the Monitoring of Detergent Compounds in Solution. Analytical Biochemistry. 2001. 292(2), p. 305–307.
  • 27. Murugaboopathi, G., V. Parthasarathy, C. Chellaram, T. Prem Anand and S. Vinurajkumar. Applications of Biosensors in Food Industry. Biosciences Biotechnology Research Asia. 2013. 10(2), 711-714.
  • 28. Ali, M.A., T.A. Eldin, M.E. Moghazy, I.M Tork, I.I. Omara. Detection of E. coli O157:H7 in feed samples using gold nanoparticles sensor. International Journal of Current Microbiology and Applied Science. 2014. 3(6):697–708.
  • 29. Xiang, C., R.Li, B. Adhikari, Z. She, Y. Li, H.-B. Kraatz. Sensitive electrochemical detection of Salmonella with Chitosan-Gold oparticles composite film. Talanta. 2015. 140, 122-127.
  • 30. Kokbas, U., L. Kayrin, and A. Tuli. Biosensors and Their Medical Applications. Archives Medical Review Journal. 2013. 22(4), p. 499-513.
  • 31. Thakur, M.S. and K.V. Ragavan. Biosensors in food processing. Journal of Food Science and Technology. 2013. 50(4): 625–641.
  • 32. Van Gerwen, P., W. Laureyn, W. Laureys, G. Huyberechts, M. Op De Beeck, K. Baert, J. Sls, W. Sansen, P. Jacobs, L. Hermans, and R. Mertens. Nanoscaled interdigitated electrode arrays for biochemical sensors. Sensors and Actuators B. 1998. B: 49(1-2), p. 73–80.
  • 33. Yokoo, A. and H. Namatsu. Nanoelectrode Lithograpy: Chemical Nanoimprint that transfers a pattern by electrochemical reaction. Selected papers: forefront of basic research at NTT (Technical Review). 2008. 6(8), p. 1-8.
  • 34. Zhang, W., H. Tang, P. Geng, Q. Wang, L. Jin, and Z. Wu. Amperometric method for rapid detection of Escherichia coli by flow injection analysis using a bismuth nano-film modified glassy carbon electrode. Electrochem. Commun. 2007. 9, p. 833-838.
  • 35. Pak, S. C., W. Penrose, and P.J. Hesketh. An ultrathin platinum film sensor to measure biomolecular binding. Biosensors and Bioelectronics, 2001.16(6), p. 371–379.
  • 36. Lu, B.W. and W.C. Chen. A disposable glucose biosensor based on drop-coating of screen-printed carbon electrodes with magnetic nanoparticles. J. Magn. Magn. Mater. 2006. 304, p. 400-402.
  • 37. Yu, J., D. Yu, T. Zhao, and B. Zeng. Development of amperometric glucose biosensor through immobilizing enzyme in a Pt nanoparticles/mesoporous carbon matrix. Talanta, 2008. 74, p. 1586-1591.
  • 38. Zou, Y., C. Xiang, L.X. Sun, and F. Xu. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosensors and Bioelectronics. 2008, 23, p. 1010-1016.
  • 39. Vamvakaki, V. and N.A. Chaniotakis. Pesticide detection with a liposome-based nano-biosensor. Biosensors and Bioelectronics. 2007. 22, p. 2848-2853.
  • 40. Seo, S., M. Dobozi-King, R.F. Young, L.B. Kish, and M. Cheng. Patterning a nanowell sensor biochip for specific and rapid detection of bacteria. Microelectron. Eng. 2008. 85, p. 1484-1489.
  • 41. Zeng, S., K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan. A review on functionalized gold nanoparticles for biosensing applications. Plasmonics. 2011. 6(3), p. 491–506.
  • 42. Tombelli, S., M. Minunni, and M. Mascini. Analytical applications of aptamers. Biosensors and Bioelectronics. 2005. 20, p. 2424-2434.
  • 43. McCauley, T. G., N. Hamaguchi, and M. Stanton. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal. Biochem. 2003. 319: 244-250.
  • 44. Li, B., Y. Du, H. Wei, and S. Dong. Reusable, label-free electrochemical aptasensor for sensitive detection of small molecules. Chem. Commun. 2007. p. 3780-3782.
  • 45. Medley, C.D., J.E. Smith, Z. Tang, Y. Wu, S. Bamrungsap, and W. Tan. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008. 80, p. 1067-1072.
  • 46. Wang, Y., D. Xu, and H-Y. Chen. Aptamer-based silver nanosensor for multiple protein detection. Lab on a Chip. 2012. 12(17): 3184-9.
  • 47. Datta, D., K. Sarkar, S. Mukherjee, X. Meshik, M.A Stroscio, and M. Dutta. Graphene oxide and DNA aptamer based sub-nanomolar potassium detecting optical nanosensor. Nanotechnology 28: 325502 (9pp).
  • 48. Cao, C., J.H. Kim, D. Yoon, E.S. Hwang, Y.J. Kim, and S. Baik. Optical detection of DNA hybridization using absorption spectra of single-walled carbon nanotubes. Mater. Chem. Phys. 2008.112, p. 738-741.
  • 49. Galandova, J., G. Ziyatdinova, and J. Labuda. Disposable electrochemical biosensor with multiwalled carbon nanotubes - Chitosan composite layer for the detection of deep DNA damage. Anal. Sci. 2008. 24, p. 711-716.
  • 50. McKenzie, F., K. Faulds, and D. Graham. Sequence-specific DNA detection using high-affinityLNA-functionalized gold nanoparticles. Small, 2007. 3, p. 1866-1868.
  • 51. Ma, Y., K. Jiao, T. Yang, and D. Sun. Sensitive PAT gene sequence detection by nano-SiO2/paminothiophenol self-assembled films DNA electrochemical biosensor based on impedance measurement. Sens. Actuat. B, 2008. 131, p. 565-571.
  • 52. Wang, D., X. Xiao, S. Xu, Y. Liu, and Y. Li. Electrochemical aptamer-based nanosensor fabricated on single Au-nanowire electrodes for adenosine triphosphate assay. Biosensors and Bioelectronics. 2018. 99: 431–437.
  • 53. Liu, J., D. Mazumdar, Y. Lu. A simple and sensitive ―dipstick test in serum based on lateral flow separation of aptamer-linked nanostructures. Angew. Chem. Int. Ed., 2006. 45, p. 7955-7959.
  • 54. Zhang, S., J. Xia, X. Li. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles. Anal. Chem., 2008. 80, p.8382-8388.
  • 55. Liu, J., J.H. Lee, Y. Lu. Quantum dot encoding of aptamer-linked nanostructures for one-pot simultaneous detection of multiple analytes. Anal. Chem., 2007. 79, p. 4120-4125.
  • 56. Wang, J., L. Wang, X. Liu, Z. Liang, S. Song, W. Li, G. Li, C. Fan. A gold nanoparticle-based aptamer target binding readout for ATP assay. Adv. Mater., 2007. 19, p. 3943-3946.
  • 57. Chen, S.J., Y.F. Huang, C.C. Huang, K.H. Lee, Z.H. Lin, H.T. Chang. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles. Biosensors and Bioelectronics. 2008. 23, p. 1749-1753.
  • 58. Lee, J.-S., C.A. Mirkin. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal. Chem., 2008. 80, p. 6805-6808.
  • 59. Liu, C.-W., C.C. Huang, H.T. Chang. Control over surface DNA density on gold nanoparticles allows selective and sensitive detection of mercury(II). Langmuir, 2008. 24, p. 8346-8350.
  • 60. Xue, X., F. Wang, X. Liu. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J. Am. Chem. Soc., 2008. 130, p. 3244-3245.
  • 61. Liu, C.W., Y.T. Hsieh, C.C. Huang, Z.H. Lin, H.T. Chang. Detection of mercury(II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chem. Commun. 2008. 208, p. 2242-2244.
  • 62. Zhao, W., W. Chiuman, J.C.F. Lam, S.A. McManus, W. Chen, Y. Cui, R. Pelton, M.A. Brook, Y. Li. DNA aptamer folding on gold nanoparticles: From colloid chemistry to biosensors. J. Am. Chem. Soc., 2008.130, p. 3610-3618.
  • 63. Wang, L., X. Liu, X. Hu, S. Song, C. Fan. Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem. Commun., 2006. p. 3780-3782.
  • 64. Liu, J. Y. Lu. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc., 2003.125, p. 6642-6643.
  • 65. Liu, J. Y. Lu. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc., 2004. 126, p. 12298-12305.
  • 66. Pang, S., S. Liu, X. Su. An ultrasensitive sensing strategy for the detection of lead (II) ions based on the intermolecular G-quadruplex and graphene oxide. Sensors and Actuators B, 2015. 208, p. 415-420.
  • 67. Liang, G., Y. Man, X. Jin, L. Pan, X. Liu. Aptamer-based biosensor for label-free detection of ethanolamine by electrochemical impedance spectroscopy. Analytica Chimica Acta, 2016. 936, p. 222-228.
  • 68. Chen, Z., L. Chen, H. Ma, T. Zhou, X. Li. Aptamer biosensor for label-free impedance spectroscopy detection of potassium ion based on DNA G-quadruplex conformation. Biosensors and Bioelectronics, 2013. 48, p. 108-112.
  • 69. Bai, W., C. Zhu, J. Liu, M. Yan, S Yang, A. Chen. Gold nanoparticle-based colorimetric aptasensor for rapid detection of six organophosphorous pesticides. Environmental Toxicology and Chemistry, 2015. 34(10), p. 2244-2249.
  • 70. Bala, R., M. Kumar, K. Bansal, R.K. Sharma, N. Wangoo. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosensors and Bioelectronics, 2016. 85, p. 445–449.
  • 71. Wang, C., D. Chen, Q. Wang, Q. Wang. Aptamer-based resonance light scattering for sensitive detection of acetamiprid. Anal. Sci., 2016. 32, p. 757–762.
  • 72. Hosseini, M., F. Mehrabi, M.R. Ganjali, P. Norouzi. A fluorescent aptasensor for sensitive analysis oxytetracycline based on silver nanoclusters. Luminescence, 2016. 31, p. 1339–1343.
  • 73. Reinemann, C., U. Freiin von Fritsch, S. Rudolph, B. Strehlitz. Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosensors and Bioelectronics, 2016. 77, p. 1039–1047.
  • 74. Contreras Jimenez, G., S. Eissa, A. Ng, H. Alhadrami, M. Zourob, M. Siaj. Aptamer-based label-free impedimetric biosensor for detection of progesterone. Anal. Chem., 2015. 87, p. 1075–1082.
  • 75. Chung, E., J. Jeon, J. Yu, C. Lee, J. Choo. Surface-enhanced raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A. Biosensors and Bioelectronics, 2015. 64, p. 560–565.
  • 76. Qiao, Y., J. Li, H. Li, H. Fang, D. Fan, W. Wang. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized Zno nanopencils. Biosensors and Bioelectronics, 2016. 86, p. 315–320.
  • 77. He, M.Q., K. Wang, J.; Wang, Y.L. Yu, R.H. He. A sensitive aptasensor based on molybdenum carbide nanotubes and label-free aptamer for detection of bisphenol A. Anal. Bioanal. Chem., 2017. 409, p. 1797–1803.
  • 78. Liu, J., Y. Lu. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed., 2006. 45, p. 90-94.
  • 79. Zhao, W., W. Chiuman, M.A. Brook, Y. Li. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem, 2008. 8, p. 727-731.
  • 80. Wang, J., H.S. Zhou. Aptamer-based Au nanoparticles-enhanced surface plasmon resonance detection of small molecules. Anal. Chem., 2008. 80, p. 7174-7178.
  • 81. Zhang, J., L. Wang, D. Pan, S. Song, F.Y.C. Boey, H. Zhang, C. Fan. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small, 2008. 4, p. 1196-1200.
  • 82. Lee, J.-S., M.S. Han, C.A. Mirkin. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed., 2007. 46, p. 4093-4096.
  • 83. Liu, J., Y. Lu, Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J. Am. Chem. Soc., 2005. 127, p. 12677-12683.
  • 84. Wang, Z., J.H. Lee, Y. Lu. Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv. Mater., 2008. 20, p. 3263-3267.
  • 85. Lee, J.-S., P.A. Ulmann, M.S. Han, C.A. Mirkin. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Letters. 2008. 8, p. 529-533.
  • 86. Wu, Y., L. Liu, F. Zhan, P. Zhou. Ultrasensitive aptamer biosensor for arsenic(III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst, 2012. 137, p. 4171-4178.
There are 86 citations in total.

Details

Primary Language English
Journal Section Review Articles
Authors

Sercan Dede

Filiz Altay

Publication Date August 15, 2018
Submission Date March 14, 2018
Acceptance Date May 21, 2018
Published in Issue Year 2018 Volume: 2 Issue: 2

Cite

APA Dede, S., & Altay, F. (2018). Biosensors from the first generation to nano-biosensors. International Advanced Researches and Engineering Journal, 2(2), 200-207.
AMA Dede S, Altay F. Biosensors from the first generation to nano-biosensors. Int. Adv. Res. Eng. J. August 2018;2(2):200-207.
Chicago Dede, Sercan, and Filiz Altay. “Biosensors from the First Generation to Nano-Biosensors”. International Advanced Researches and Engineering Journal 2, no. 2 (August 2018): 200-207.
EndNote Dede S, Altay F (August 1, 2018) Biosensors from the first generation to nano-biosensors. International Advanced Researches and Engineering Journal 2 2 200–207.
IEEE S. Dede and F. Altay, “Biosensors from the first generation to nano-biosensors”, Int. Adv. Res. Eng. J., vol. 2, no. 2, pp. 200–207, 2018.
ISNAD Dede, Sercan - Altay, Filiz. “Biosensors from the First Generation to Nano-Biosensors”. International Advanced Researches and Engineering Journal 2/2 (August 2018), 200-207.
JAMA Dede S, Altay F. Biosensors from the first generation to nano-biosensors. Int. Adv. Res. Eng. J. 2018;2:200–207.
MLA Dede, Sercan and Filiz Altay. “Biosensors from the First Generation to Nano-Biosensors”. International Advanced Researches and Engineering Journal, vol. 2, no. 2, 2018, pp. 200-7.
Vancouver Dede S, Altay F. Biosensors from the first generation to nano-biosensors. Int. Adv. Res. Eng. J. 2018;2(2):200-7.



Creative Commons License

Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.