Research Article
BibTex RIS Cite

Metilen mavisi boyasının aljinat-biyocam membranlara adsorpsiyonu: Cevap yüzey yöntemi, izoterm ve kinetik çalışmalar

Year 2023, Volume: 13 Issue: 3, 538 - 552, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1245309

Abstract

Bu çalışmada, solvent çözücü döküm yöntemi ile aljinat (ALG) ve biyocam nanopartikül (BGs) bazlı çevre dostu kompozit membranlar hazırlanmış ve metilen mavisinin (MB) sudan uzaklaştırılması için adsorban olarak kullanılmıştır. Partiküllerin zeta potansiyeli, lazer dinamik ışık saçılımı (DLS) ile -24,9 mV olarak belirlenmiş ve boyutları, transmisyon elektron mikroskobu (TEM) ve DLS analizi ile sırasıyla 773 ve 777 nm olarak bulunmuştur. Atomik kuvvet mikroskobu (AFM) analizi, BGs içeriğinin %1'den %5'e çıkarılmasının, membranların karekök ortalama pürüzlülüğünün 159,38 nm'den 182,03 nm'ye çıkmasına neden olduğunu ortaya koymuştur. Adsorpsiyon süreci, hibrit cevap yüzey metodolojisi ile bütünleşmiş merkezi bileşik tasarım (RSM-CCD) kullanılarak başarılı bir şekilde modellenmiş ve optimize edilmiştir. Üç önemli bağımsız değişkenin (BGs konsantrasyonu (%1-5 a/h), solüsyonun pH'ı (3- 9), ve başlangıç boya konsantrasyonu (15-45 mg L-1)) MB adsorpsiyon kapasitesi üzerindeki etkilerini değerlendirmek ve optimize etmek için istatistiksel analiz gerçekleştirilmiştir. Sonuçlar, ikinci dereceden modelin MB'nin uzaklaştırılmasının tahmini için uygun olduğunu ortaya koymuştur. Optimize edilmiş deneysel parametreler, pH=9, 120 dk temas süresi, 45 mg L-1 başlangıç MB konsantrasyonu ve %1 (a/h) BGs konsantrasyonu olarak tespit edilmiştir. Freundlich izotermi ve yalancı ikinci dereceden kinetik modellerinin sırasıyla izoterm ve kinetik çalışmalarda en uygun modeller olduğu bulunmuştur. Dubinin-Radushkevich (D-R) izoterm modeli, kompozit aljinat membranlara MB adsorpsiyonu için kimyasal bir mekanizma öngörmüştür.

References

  • Abdullah, Z. W., Dong, Y., Han, N., & Liu, S. (2019). Water and gas barrier properties of polyvinyl alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) bionanocomposite films: Experimental characterisation and modelling approach. Composites Part B: Engineering, 174, 107033.https://doi.org/ 10.1016/j.compositesb.2019.107033
  • Allouss, D., Essamlali, Y., Amadine, O., Chakir, A., & Zahouily, M. (2019). Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Advances, 9(65), 37858-37869. https://doi.org/10.1039/c9ra06450h
  • Al-Sakkari, E. G., Abdeldayem, O. M., Genina, E. E., Amin, L., Bahgat, N. T., Rene, E. R., & El-Sherbiny, I. M. (2020). New alginate-based interpenetrating polymer networks for water treatment: A response surface methodology based optimization study. International Journal of Biological Macromolecules, 155, 772-785. https://doi.org/10.1016/j.ijbiomac.2020.03.220
  • Alver, E., Metin, A. Ü., & Brouers, F. (2020). Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International Journal of Biological Macromolecules, 154, 104-113. https://doi.org/10.1016/j.ijbiomac.2020.02.330
  • Baloch, H. A., Nizamuddin, S., Siddiqui, M. T. H., Riaz, S., Jatoi, A. S., Dumbre, D. K., Griffin, G. (2018). Recent advances in production and upgrading of bio-oil from biomass: A critical overview. Journal of environmental chemical engineering, 6(4), 5101-5118. https://doi.org/10.1016/j.jece.2018.07.050
  • Batool, F., Akbar, J., Iqbal, S., Noreen, S., & Bukhari, S. N. A. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorganic Chemistry and Applications, https://doi.org/10.1155/2018/3463724
  • Boukhalfa, N., Boutahala, M., Djebri, N., & Idris, A. (2019). Kinetics, thermodynamics, equilibrium isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/oxidized multiwalled carbon nanotubes composites. International Journal of Biological Macromolecules, 123, 539-548. https://doi.org/j.ijbiomac.2018.11.102
  • Boukoussa, B., Mokhtar, A., El Guerdaoui, A., Hachemaoui, M., Ouachtak, H., Abdelkrim, S., Bengueddach, A. (2021). Adsorption behavior of cationic dye on mesoporous silica SBA-15 carried by calcium alginate beads: Experimental and molecular dynamics study. Journal of Molecular Liquids, 333, 115976. https://doi.org/10.1016/j.molliq.2021.115976
  • Djelad, A., Mokhtar, A., Khelifa, A., Bengueddach, A., & Sassi, M. (2019). Alginate-whey an effective and green adsorbent for crystal violet removal: Kinetic, thermodynamic and mechanism studies. International Journal of Biological Macromolecules, 139, 944-954. https://doi.org/10.1016/j.ijbiomac.2019.08.068
  • Dlamini, D. S., Tesha, J. M., Vilakati, G. D., Mamba, B. B., Mishra, A. K., Thwala, J. M., & Li, J. (2020). A critical review of selected membrane-and powder-based adsorbents for water treatment: Sustainability and effectiveness. Journal of Cleaner Production, 277, 123497. https://doi.org/j.jclepro.2020.123497
  • Dziadek, M., Menaszek, E., Zagrajczuk, B., Pawlik, J., & Cholewa-Kowalska, K. (2015). New generation poly (ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering. Materials Science and Engineering: C, 56, 9-21. https://doi.org/10.1016/j.msec.2015.06.020
  • Godiya, C. B., Liang, M., Sayed, S. M., Li, D., & Lu, X. (2019). Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions. Journal of Environmental Management, 232, 829-841. https://doi.org/10.1016/j.jenvman.2018.11.131
  • Karimifard, S., & Moghaddam, M. R. A. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Science of the Total Environment, 640, 772-797. https://doi.org/10.1016/j.scitotenv.2018.05.355
  • Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of environmental chemical engineering, 6(4), 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060
  • Li, L., Chen, L., Shi, H., Chen, X., & Lin, W. (2016). Evaluation of mesoporous bioactive glass (MBG) as adsorbent for removal of methylene blue (MB) from aqueous solution. Journal of environmental chemical engineering, 4(2), 1451-1459. https://doi.org/10.1016/j.jece.2016.01.039
  • Ma, Y., Qi, P., Ju, J., Wang, Q., Hao, L., Wang, R., Tan, Y. (2019). Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Composites Part B: Engineering, 162, 671-677. https://doi.org/10.1016/j.compositesb.2019.01.048.
  • Marzban, N., Moheb, A., Filonenko, S., Hosseini, S. H., Nouri, M. J., Libra, J. A., & Farru, G. (2021). Intelligent modeling and experimental study on methylene blue adsorption by sodium alginate-kaolin beads. International Journal of Biological Macromolecules, 186, 79-91. https://doi.org/ 10.1016/j.ijbiomac.2021.07.006
  • Mensah, K., Mahmoud, H., Fujii, M., Samy, M., & Shokry, H. (2022). Dye removal using novel adsorbents synthesized from plastic waste and eggshell: mechanism, isotherms, kinetics, thermodynamics, regeneration, and water matrices. Biomass Conversion and Biorefinery, 1-16. https://doi.org/10.1007/s13399-022-03304-4
  • Mokhtar, A., Abdelkrim, S., Djelad, A., Sardi, A., Boukoussa, B., Sassi, M., & Bengueddach, A. (2020). Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydrate Polymers, 229, 115399. https://doi.org/10.1016/j.carbpol.2019.115399
  • Mostafa, A. A., El-Sayed, M. M., Emam, A. N., Abd-Rabou, A. A., Dawood, R. M., & Oudadesse, H. (2021). Bioactive glass doped with noble metal nanoparticles for bone regeneration: in vitro kinetics and proliferative impact on human bone cell line. RSC Advances, 11(41), 25628-25638. https://doi.org/10.1039/d1ra03876a
  • Nidheesh, P., Zhou, M., & Oturan, M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210-227. https://doi.org/ 10.1016/j.chemosphere.2017.12.195
  • Oladipo, A. A., Gazi, M., & Saber-Samandari, S. (2014). Adsorption of anthraquinone dye onto eco-friendly semi-IPN biocomposite hydrogel: equilibrium isotherms, kinetic studies and optimization. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 653-664. https://doi.org/10.1016/j.jtice.2013.07.013
  • Sabbagh, N., Tahvildari, K., & Sharif, A. A. M. (2021). Application of chitosan-alginate bio composite for adsorption of malathion from wastewater: Characterization and response surface methodology. Journal of Contaminant Hydrology, 242, 103868. https://doi.org/10.1016/j.jconhyd.2021.103868
  • Suba, V., & Rathika, G. (2016). Novel adsorbents for the removal of dyes and metals from aqueous solution—a review. Journal of Advanced Physics, 5(4), 277-294. https://doi.org/10.1166/jap.2016.1269
  • Tan, C. H. C., Sabar, S., & Hussin, M. H. (2018). Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal. South African journal of chemical engineering, 26, 11-24. https://doi.org/10.1016/j.sajce.2018.08.001
  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222. https://doi.org/10.1016/j.scitotenv.2020.137222
  • Türe, H. (2019). Development of copper-doped bioglass/alginate composite membranes: Preliminary results on their characterization and antimicrobial properties. Materials Today Communications, 21, 100583.https://doi.org/10.1016/j.mtcomm.2019.100583
  • Wang, B., Wan, Y., Zheng, Y., Lee, X., Liu, T., Yu, Z., Gao, B. (2019). Alginate-based composites for environmental applications: a critical review. Critical Reviews in Environmental Science and Technology, 49(4), 318-356. https://doi.org/10.1080/10643389.2018.1547621
  • Zheng, K., Dai, X., Lu, M., Hüser, N., Taccardi, N., & Boccaccini, A. R. (2017). Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications. Colloids and Surfaces B: Biointerfaces, 150, 159-167. https://doi.org/10.1016/j.colsurfb.2016.11.016.
  • Zheng, K., Wu, J., Li, W., Dippold, D., Wan, Y., & Boccaccini, A. R. (2018). Incorporation of Cu-containing bioactive glass nanoparticles in gelatin-coated scaffolds enhances bioactivity and osteogenic activity. ACS Biomaterials Science & Engineering, 4(5), 1546-1557. https://doi.org/10.1021/acsbiomaterials.8b00051
  • Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: a review. Environmental Pollution, 252, 352-365. https://doi.org/10.1016/j.envpol.2019.05.072

Adsorption of methylene blue dye onto alginate-bioglass membranes: response surface method, isotherm, and kinetic studies

Year 2023, Volume: 13 Issue: 3, 538 - 552, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1245309

Abstract

In this research, environment-friendly composite membranes based on alginate (ALG) and bioglass nanoparticles (BGs) were prepared by the solvent casting technique and utilized as adsorbents for the elimination of methylene blue (MB) from water. Zeta potential of the particles was determined to be -24.9 mV by laser dynamic light scattering (DLS), and their sizes were found to be 773 and 777 nm by transmission electron microscopy (TEM) and DLS analysis, respectively. Atomic force microscope (AFM) analysis revealed that increasing the BGs content from 1 to 5% w/v caused the root mean square roughness of membranes to increase from 159.38 to 182.03 nm. The adsorption process was successfully modeled and optimized using a hybrid response surface methodology integrated central composite design (RSM-CCD). A statistical analysis was utilized to examine and optimize the effects of three important independent variables (concentration of BGs (1-5% w/v), pH of the solution (3-9), and initial dye level (15-45 mg L-1)) on MB adsorption performance. The findings indicated that the quadratic model was suitable for prediction of MB's removal. Optimized experimental parameters were found to be a pH of 9, a contact time of 120 min, an initial MB concentration of 45 mg L-1, and a BGs concentration of 1% (w/v). Freundlich isotherm and pseudo-second-order kinetic models were found to be the best-fitting models in isotherm and kinetic studies, respectively. Dubinin-Radushkevich (D-R) isotherm model predicted a chemical mechanism for MB adsorption onto the composite alginate membranes.

References

  • Abdullah, Z. W., Dong, Y., Han, N., & Liu, S. (2019). Water and gas barrier properties of polyvinyl alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) bionanocomposite films: Experimental characterisation and modelling approach. Composites Part B: Engineering, 174, 107033.https://doi.org/ 10.1016/j.compositesb.2019.107033
  • Allouss, D., Essamlali, Y., Amadine, O., Chakir, A., & Zahouily, M. (2019). Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Advances, 9(65), 37858-37869. https://doi.org/10.1039/c9ra06450h
  • Al-Sakkari, E. G., Abdeldayem, O. M., Genina, E. E., Amin, L., Bahgat, N. T., Rene, E. R., & El-Sherbiny, I. M. (2020). New alginate-based interpenetrating polymer networks for water treatment: A response surface methodology based optimization study. International Journal of Biological Macromolecules, 155, 772-785. https://doi.org/10.1016/j.ijbiomac.2020.03.220
  • Alver, E., Metin, A. Ü., & Brouers, F. (2020). Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International Journal of Biological Macromolecules, 154, 104-113. https://doi.org/10.1016/j.ijbiomac.2020.02.330
  • Baloch, H. A., Nizamuddin, S., Siddiqui, M. T. H., Riaz, S., Jatoi, A. S., Dumbre, D. K., Griffin, G. (2018). Recent advances in production and upgrading of bio-oil from biomass: A critical overview. Journal of environmental chemical engineering, 6(4), 5101-5118. https://doi.org/10.1016/j.jece.2018.07.050
  • Batool, F., Akbar, J., Iqbal, S., Noreen, S., & Bukhari, S. N. A. (2018). Study of isothermal, kinetic, and thermodynamic parameters for adsorption of cadmium: an overview of linear and nonlinear approach and error analysis. Bioinorganic Chemistry and Applications, https://doi.org/10.1155/2018/3463724
  • Boukhalfa, N., Boutahala, M., Djebri, N., & Idris, A. (2019). Kinetics, thermodynamics, equilibrium isotherms, and reusability studies of cationic dye adsorption by magnetic alginate/oxidized multiwalled carbon nanotubes composites. International Journal of Biological Macromolecules, 123, 539-548. https://doi.org/j.ijbiomac.2018.11.102
  • Boukoussa, B., Mokhtar, A., El Guerdaoui, A., Hachemaoui, M., Ouachtak, H., Abdelkrim, S., Bengueddach, A. (2021). Adsorption behavior of cationic dye on mesoporous silica SBA-15 carried by calcium alginate beads: Experimental and molecular dynamics study. Journal of Molecular Liquids, 333, 115976. https://doi.org/10.1016/j.molliq.2021.115976
  • Djelad, A., Mokhtar, A., Khelifa, A., Bengueddach, A., & Sassi, M. (2019). Alginate-whey an effective and green adsorbent for crystal violet removal: Kinetic, thermodynamic and mechanism studies. International Journal of Biological Macromolecules, 139, 944-954. https://doi.org/10.1016/j.ijbiomac.2019.08.068
  • Dlamini, D. S., Tesha, J. M., Vilakati, G. D., Mamba, B. B., Mishra, A. K., Thwala, J. M., & Li, J. (2020). A critical review of selected membrane-and powder-based adsorbents for water treatment: Sustainability and effectiveness. Journal of Cleaner Production, 277, 123497. https://doi.org/j.jclepro.2020.123497
  • Dziadek, M., Menaszek, E., Zagrajczuk, B., Pawlik, J., & Cholewa-Kowalska, K. (2015). New generation poly (ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering. Materials Science and Engineering: C, 56, 9-21. https://doi.org/10.1016/j.msec.2015.06.020
  • Godiya, C. B., Liang, M., Sayed, S. M., Li, D., & Lu, X. (2019). Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions. Journal of Environmental Management, 232, 829-841. https://doi.org/10.1016/j.jenvman.2018.11.131
  • Karimifard, S., & Moghaddam, M. R. A. (2018). Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Science of the Total Environment, 640, 772-797. https://doi.org/10.1016/j.scitotenv.2018.05.355
  • Katheresan, V., Kansedo, J., & Lau, S. Y. (2018). Efficiency of various recent wastewater dye removal methods: A review. Journal of environmental chemical engineering, 6(4), 4676-4697. https://doi.org/10.1016/j.jece.2018.06.060
  • Li, L., Chen, L., Shi, H., Chen, X., & Lin, W. (2016). Evaluation of mesoporous bioactive glass (MBG) as adsorbent for removal of methylene blue (MB) from aqueous solution. Journal of environmental chemical engineering, 4(2), 1451-1459. https://doi.org/10.1016/j.jece.2016.01.039
  • Ma, Y., Qi, P., Ju, J., Wang, Q., Hao, L., Wang, R., Tan, Y. (2019). Gelatin/alginate composite nanofiber membranes for effective and even adsorption of cationic dyes. Composites Part B: Engineering, 162, 671-677. https://doi.org/10.1016/j.compositesb.2019.01.048.
  • Marzban, N., Moheb, A., Filonenko, S., Hosseini, S. H., Nouri, M. J., Libra, J. A., & Farru, G. (2021). Intelligent modeling and experimental study on methylene blue adsorption by sodium alginate-kaolin beads. International Journal of Biological Macromolecules, 186, 79-91. https://doi.org/ 10.1016/j.ijbiomac.2021.07.006
  • Mensah, K., Mahmoud, H., Fujii, M., Samy, M., & Shokry, H. (2022). Dye removal using novel adsorbents synthesized from plastic waste and eggshell: mechanism, isotherms, kinetics, thermodynamics, regeneration, and water matrices. Biomass Conversion and Biorefinery, 1-16. https://doi.org/10.1007/s13399-022-03304-4
  • Mokhtar, A., Abdelkrim, S., Djelad, A., Sardi, A., Boukoussa, B., Sassi, M., & Bengueddach, A. (2020). Adsorption behavior of cationic and anionic dyes on magadiite-chitosan composite beads. Carbohydrate Polymers, 229, 115399. https://doi.org/10.1016/j.carbpol.2019.115399
  • Mostafa, A. A., El-Sayed, M. M., Emam, A. N., Abd-Rabou, A. A., Dawood, R. M., & Oudadesse, H. (2021). Bioactive glass doped with noble metal nanoparticles for bone regeneration: in vitro kinetics and proliferative impact on human bone cell line. RSC Advances, 11(41), 25628-25638. https://doi.org/10.1039/d1ra03876a
  • Nidheesh, P., Zhou, M., & Oturan, M. A. (2018). An overview on the removal of synthetic dyes from water by electrochemical advanced oxidation processes. Chemosphere, 197, 210-227. https://doi.org/ 10.1016/j.chemosphere.2017.12.195
  • Oladipo, A. A., Gazi, M., & Saber-Samandari, S. (2014). Adsorption of anthraquinone dye onto eco-friendly semi-IPN biocomposite hydrogel: equilibrium isotherms, kinetic studies and optimization. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 653-664. https://doi.org/10.1016/j.jtice.2013.07.013
  • Sabbagh, N., Tahvildari, K., & Sharif, A. A. M. (2021). Application of chitosan-alginate bio composite for adsorption of malathion from wastewater: Characterization and response surface methodology. Journal of Contaminant Hydrology, 242, 103868. https://doi.org/10.1016/j.jconhyd.2021.103868
  • Suba, V., & Rathika, G. (2016). Novel adsorbents for the removal of dyes and metals from aqueous solution—a review. Journal of Advanced Physics, 5(4), 277-294. https://doi.org/10.1166/jap.2016.1269
  • Tan, C. H. C., Sabar, S., & Hussin, M. H. (2018). Development of immobilized microcrystalline cellulose as an effective adsorbent for methylene blue dye removal. South African journal of chemical engineering, 26, 11-24. https://doi.org/10.1016/j.sajce.2018.08.001
  • Tkaczyk, A., Mitrowska, K., & Posyniak, A. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Science of the Total Environment, 717, 137222. https://doi.org/10.1016/j.scitotenv.2020.137222
  • Türe, H. (2019). Development of copper-doped bioglass/alginate composite membranes: Preliminary results on their characterization and antimicrobial properties. Materials Today Communications, 21, 100583.https://doi.org/10.1016/j.mtcomm.2019.100583
  • Wang, B., Wan, Y., Zheng, Y., Lee, X., Liu, T., Yu, Z., Gao, B. (2019). Alginate-based composites for environmental applications: a critical review. Critical Reviews in Environmental Science and Technology, 49(4), 318-356. https://doi.org/10.1080/10643389.2018.1547621
  • Zheng, K., Dai, X., Lu, M., Hüser, N., Taccardi, N., & Boccaccini, A. R. (2017). Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications. Colloids and Surfaces B: Biointerfaces, 150, 159-167. https://doi.org/10.1016/j.colsurfb.2016.11.016.
  • Zheng, K., Wu, J., Li, W., Dippold, D., Wan, Y., & Boccaccini, A. R. (2018). Incorporation of Cu-containing bioactive glass nanoparticles in gelatin-coated scaffolds enhances bioactivity and osteogenic activity. ACS Biomaterials Science & Engineering, 4(5), 1546-1557. https://doi.org/10.1021/acsbiomaterials.8b00051
  • Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: a review. Environmental Pollution, 252, 352-365. https://doi.org/10.1016/j.envpol.2019.05.072
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hasan Türe 0000-0003-4883-0751

Publication Date July 15, 2023
Submission Date January 31, 2023
Acceptance Date April 28, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Türe, H. (2023). Adsorption of methylene blue dye onto alginate-bioglass membranes: response surface method, isotherm, and kinetic studies. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 538-552. https://doi.org/10.17714/gumusfenbil.1245309