Research Article
BibTex RIS Cite

A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae)

Year 2020, Volume: 44 Issue: 3, 399 - 412, 01.09.2020
https://doi.org/10.16970/entoted.657190

Abstract

In this study, total lipid and fatty acid composition of insects belonging to the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coelostoma orbiculare Fabricius, 1775; Coelostoma transcaspicum Reitter, 1906; Helochares obscurus Müller, 1776; Helochares lividus Forster, 1771) of Hydrophilidae (Coleoptera) family collected from Bingöl Province were determined. Specimens were collected in 2015. Fatty acid component of the insects was determined by mass-gas chromatography (GC-MS). Total saturated fatty acids (ΣSFA) were between 23.9-40.8%, total monounsaturated fatty acids (ΣMUFA) were 21.6-53.2% and total polyunsaturated fatty acids (ΣPUFA) were 14.3-27.4%. Myristic acid (14:0), pentadecanoic acid (15:0) palmitic acid (16:0), heptadecanoic acid (17:0) from SFA, palmitoleic acid (16:1n-7), oleic acid (18:1n-9) from MUFA; linoleic acid (18:2n-6), linolenic acid (18:3n-3), arachidonic acid (ARA, 20: 4n-6), eicosapentaenoic acid (EPA, 20: 5n-3) were the most important fatty acids. ANOSIM results showed that only the difference among the species was significant (R=0.63); the difference among subfamilies (R=0.17) and among the genera (R=0.17) were partially significant and that the difference among the families (R=0.08) was not significant.

Supporting Institution

BÜBAP

Project Number

This research was supported by the BAP-281-265-2015 project of Bingöl University.

Thanks

This research was supported by the BAP-281-265-2015 project of Bingöl University.

References

  • Angus, R. B., 1992. Süsswasser Fauna von Mitteleuropa (Insecta: Coleoptera: Hydrophilidae: Helophorinae). Gustav Fischer Verlag, Jena, New York, 144 pp.
  • Baldus, T. J. & J. A. Mutchmor, 1988. The effects of acclimation and post-treatment temperature on the toxicity of allethrin to the American cockroach, Periplaneta americana. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 89 (2): 403-407.
  • Başhan, M., 1996. Effect of various diets on the total lipit compositions the black cricket Melanogrillus desertus Pall. Turkish Journal of Zoology, 20 (4): 375-379.
  • Beenakkers, A. M. T., D. J. Van Der Horst & J. A. Van Marrewijk, 1985. Insect lipids and lipoproteins and their role in physiological processes. Progress in Lipid Research, 24 (1): 19-67.
  • Bozkuş, K., 2003. Phospholipid and triacylgliserol fatty acid compositions from various development stages of Melanogryllus desertus. Turkish Journal of Biology, 27 (2): 73-78.
  • Çakmak, Ö., M. Başhan & H. Bolu, 2005. Monosteira lobulifera Reut. (Heteroptera: Tingidae)’ nın fosfolipid ve triaçilgliserol fraksiyonundaki yağ asiti bileşimi. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17 (4): 637-643.
  • Çakmak, Ö., M. Başhan & A. Satar, 2007. Total fatty acid composition of Lertha sheppardi (Neuroptera: Nemopteridae) during its main life stages. Biologia, 62 (6): 774-780.
  • Canavoso, L. E., Z. E. Jouni, K. J. Karnas, J. E. Pennington & M. A. Wells, 2001. Fat metabolism in insects. Annual Review of Nutrition, 21 (1): 23-46.
  • Christie, W. W., 1992. Preparation of fatty acid methyl esters. Inform, 3 (9): 1031-1034.
  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd Edition. PRIMER-E, Plymouth, 151 pp.
  • Cohen, A. C., 1990. Fatty acid distributions as related to adult age, sex and diet in the phytophagous Heteropteran, Lygus hesperus (Heteroptera: Miridae). Journal of Entomological Science, 25 (1): 75-84.
  • Dadd, R. H., 1973. Insect nutrition: Current development and metabolic implications. Annual Review of Entomology, 18: 381-420.
  • Darılmaz, M. & S. Kıyak, 2006a. Helochares lividus: New Distributional Records from Turkey (Coleoptera: Hydrophilidae). Entomological Problems, 36 (1): 79.
  • Darılmaz, M. & S. Kıyak, 2006b. A contribution to the knowledge of the Turkish water beetles fauna (Coleoptera). Munis Entomology and Zoology, 1 (1): 129-144.
  • Demirsoy, A., 1997. Yaşamın Temel Kuralları, Omurgasızlar/Böcekler, Entomoloji Cilt II/Kısım II, Beşinci Baskı. Meteksan Matbaacılık, Ankara, 941 s.
  • Downer, R. G. H. & J. R. Matthews, 1976. Patterns of lipid distribution and utilization in insects. American Zoologist, 16 (6): 733-745.
  • Fikảček, M., 2006. Taxonomic status of Cercyon alpinus, C. exorabilis, C. strandi and C. tatricus and notes on their biology (Coleoptera: Hydrophilidae: Sphaeridiinae). Annalen des Naturhistorischen Museums in Wien, 107B: 145-164.
  • Gentili, E., 2000. Distibuzione del genere Laccobius (Coleoptera: Hydrophilidae) in Anatolia e Problemi Relativi. Biogeographia, 21 (1): 173-214.
  • Gentili, E. & P. E. Whitehead, 2000. A new species of Laccobius (Col., Hydrophilidae) from Lycia, Turkey. The Entomologist’s Montly Magazine, 136: 73-76.
  • Gilbert, L. I., 1967. Lipid metabolism and function in insect. Advances in Insect Physiology, 4: 69-211.
  • Gilby, A. R., 1965. Lipids and their metabolism in insects. Annual Review of Entomology, 10: 141-160.
  • Hansen, M., 1987. The Hydrophilidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica, 18: 1-253.
  • Hara, A. & N. S. Radin, 1978. Lipid exctraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90 (1): 420-426.
  • Hoback, W. W., R. L. Rana & D. W. Stanley, 1999. Fatty acid compositions of phospholipids and triacylglycerols of selected tissues, and fatty acid biosynthesis in adult periodical cicadas, Magicicada septendecim. Comparative Biochemistry and Physiology Part A, 122 (3): 355-362.
  • İncekara, Ü., A. Mart & O. Erman, 2005. Some Notes on two newly recorded aquatic Coleoptera (Hydrophilidae, Helophoridae) species from Turkey. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17 (2): 449-454.
  • Kalyoncu, L. & S. Özge, 2014. Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae)'nın farklı gelişim evrelerinin yağ asiti bileşimi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 38: 10-18.
  • Keeley, L. L., J. H. Park, K. H. Lu & J. Y. Bradfield, 1996. Neurohormone signal transduction for dual regulation of metabolism and gene expression in insects: hypertrehalosemic hormone as a model. Archives Insect Biochemistry Physiology, 33: 283-301.
  • Khani, A., S. Moharramipour, M. Barzegar & H. Naderi-Manesh, 2007. Comparison of fatty acids composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae). Insect Science, 14 (2): 125-131.
  • Kharlamenko, V. I., N. V. Zhukova, S. V. Khotimchenko, V. I. Svetashev & G. M. Kamenev, 1995. Fatty acids as markers of food sources in a shallow water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series, 120: 231-241.
  • Khebbeb, M. E. H., J. Delachambre & N. Soltani, 1997. Lipid metabolism during the sexual maturation of the mealworm (Tenebrio molitor): effect of ingested diflubenzuron. Pesticide Biochemistry and Physiology, 58 (3): 209-217.
  • Kıyak, S., S. Canbulat, A. Salur & M. Darılmaz, 2006. Additional notes on aquatic Coleoptera fauna of Turkey with a new record (Helophoridae: Hydrophilidae). Munis Entomology and Zoology, 1 (2): 273-278.
  • Mart, A., 2005. Bingöl İli Helophoridae, Hydrophilidae ve Hydrochidae (Coleoptera) Türleri Üzerine Sistematik Araştırmalar, (Basılmamış) Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, Türkiye, 165 s.
  • Mart, A., 2009. Water scavenger beetles (Coleoptera: Hydrophilidae) provinces of Central Black Sea Region of Turkey. Journal of the Entomological Research Society, 11 (1): 47-70.
  • Nurullahoğlu, Z. Ü., 2003. Achroia grisella F. (Lepidoptera: Pyralidae) larva ve pupunun yağ asiti bileşimi. Selçuk Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi, 21: 75-78.
  • Nurullahoğlu, Z. Ü., F. Uçkan, O. Sak & E. Ergin, 2004. Total lipid and fatty acid composition of Apanteles galleria and its parasitized Host. Annals of the Entomological Society of America, 97 (5): 1000-1006.
  • Ouyang, L. L., S. H. Chen, Y. Li & Z. G. Zhou, 2013. Transcriptome analysis reveals unique C4- like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14 (1): 1-13.
  • Pethybridge, H., R. K. Daley & P. D. Nichols, 2011. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. Journal of Experimental Marine Biology and Ecology, 409 (2): 290-299.
  • Sayanova, O. & J. A. Napier, 2011. Transgenic oilseed crops as an alternative to fish oils. Prostaglandins Leukot Essent Fatty Acids, 85 (5): 253-260.
  • Seven, E., 2004. Plodia interpunctella (Lepidoptera: Pyralidae) Larva ve Pupunun Total Lipid, Total Yağ Asiti Ve Yağ Asiti Bileşimi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Konya, 25 s.
  • Shanab, S. M. M., R. M. Hafez & A. S. Fouad, 2018. A review on algae and plants as potential source of arachidonic acid. Journal Advanced Research, 11: 3-13.
  • Shinmen, Y., K. Katoh, S. Shimizu, S. Jareonkitmongkol & H. Yamada, 1991. Production of arachidonic acid and eicosapentaenoic acids by Marchantia polymorpha in cell culture. Phytochemistry, 30 (10): 3255-3260.
  • Short, A. E. Z. & M. Fikácek, 2013. Molecular phylogeny, evolution and classification of the Hydrophilidae (Coleoptera). Systematic Entomology, 38: 723-752.
  • Spike, B. P., R. J. Wright, S. D. Danielson & D. W. Stanley-Samuelson, 1991. The fatty acid compositions of phospholipids and triacylglycerols, from two chinch bug species Blissus leucopterus leucopterus and B. iowensis (Insecta; Hemiptera; Lygaeidae) are similar to the characteristic dipteran pattern. Comparative Biochemistry and Physiology, 99 (4): 799-802.
  • Stanley-Samuelson, D. W. & R. H. Dadd, 1983. Long-chain polyunsaturated fatty acids: Patterns of occurrence in insects. Insect Biochemistry, 13 (5): 549-558.
  • Stanley, D. W. & R. W. Howard, 1998. The biology of prostaglandins and related eicosanoids in invertebrates: Cellular organismal and ecological actions. American Zoologist, 38 (2): 369-381.
  • Stanley-Samuelson, D. W., R. W. Howard & E. C. Toolson, 1990. Phospholipid fatty acid composition and arachidonic acid uptake and metabolism by the cicada Tibicen dealbatus (Homoptera: Cicadidae). Comparative Biochemistry and Physiology, 97 (2): 285-289.
  • Stanley-Samuelson, D. W., E. Jenson, K. W. Nickerson, K. Tiebel, C. L. Ogg & R. W. Howard, 1991. Insect immune response to bacterial infection is mediated by eicosanoids. Proceedings of the National Academy of Sciences of the United States of America, 88 (3): 1064-1068.
  • Stanley-Samuelson, D. W., R. A. Jurenka, C. Cripps, G. J. Blomquist & M. Derenobles, 1988. Fatty acids in insects: composition, metabolism, and biological significance. Archives of Insect Biochemistry and Physiology, 9 (1): 1-33.
  • Stanley, D. W., 2000. Eicosanoids in invertebrate signal transduction systems. Princeton University Press, Princeton, N.J., USA, 277 pp.
  • Stanley, D., 2006. Prostaglandins and other eicosanoids in insects: Biological significance. Annual Review of Entomology, 51 (1): 25-44.
  • Suloma, A., H. Y. Ogata, H. Furuita, E. S. Garibay & D. R. Chavez, 2007. “Arachidonic Acid Distribution in Seaweed, Seagrass, İnvertebrates and Dugong in Coral Reef Areas in The Philippines, 107-111”. In: Sustainable Production Systems of Aquatic Animals in Brackish Mangrove Areas (Ed. K Nakamura). Japan International Research Center for Agricultural Sciences Working Report Tsukuba, Ibaraki, Japan, 151 pp.
  • Thompson, S. N., 1973. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comparative Biochemistry and Physiology, 45 (2): 467-482.
  • Thompson, S. N., 1979. The effect of dietary carbohyrate on larval development and lipogenesis in the parasite, Exeristes robarator (Fabricius (Hymenoptera: Ichneumonidae. Journal of Parasitology, 65 (6): 849-854.
  • Uçkan, F. & A. Gülel, 2001. The effects of cold storage on the adult longevity, fecundity and sex ratio of Apanteles galleria Wilkinson (Hym: Braconidae). Turkish Journal of Zoology, 25 (3): 187-191.
  • Üstüner, P., L. Kalyoncu & A. Aktümsek, 2010. Besinin Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) larva ve pupunun toplam lipid, yağ asiti oranlarına ve yağ asiti bileşimine etkileri. Süleyman Demirel Üniversitesi Fen Dergisi, 5 (1): 29-37.
  • Wakayama, E. J., J. E. Dillwith & G. J. Blomquist, 1980. In vitro biosynthesis of prostaglandins in the reproductive tissues of the male house fly Musca domestica (L.). American Zoologist, 20: 904.
  • Ziegler, R. & R. V. Antwerpen, 2006. Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology, 36 (4): 264-272.

Helochares Mulsant, 1844 ve Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae) cinslerinin yağ asiti kompozisyonuna taksonomik bir yaklaşım

Year 2020, Volume: 44 Issue: 3, 399 - 412, 01.09.2020
https://doi.org/10.16970/entoted.657190

Abstract

Bu çalışmada, Bingöl İli’nden toplanan Hydrophilidae (Coleoptera) familyasının Helochares Mulsant, 1844 ve Coelostoma Brullé, 1835 cinsine (Coelostoma orbiculare Fabricius, 1775; Coelostoma transcaspicum Reitter, 1906; Helochares obscurus Müller, 1776; Helochares lividus Forster, 1771) ait böceklerin toplam lipit ve yağ asiti kompozisyonu belirlenmiştir. Örnekler 2015 yılında toplanmıştır. Böceklerin yağ asiti bileşeni gaz kromatografisi (GC-MS) ile belirlenmiştir. Toplam doymuş yağ asitleri (ΣSFA) %23.9-40.8, toplam tekli doymamış yağ asitleri (ΣMUFA) %21.6-53.2 ve toplam çoklu doymamış yağ asitleri (ΣPUFA) %14.3-27.4 arasında değişim göstermiştir. SFA’ dan miristik asit (14: 0), pentadekanoik asit (15: 0) palmitik asit (16: 0), heptadekanoik asit (17: 0); MUFA’dan palmitoleik asit (16: 1n-7), oleik asit (18: 1n-9); ve PUFA’ dan linoleik asit (18: 2n-6), linolenik asit (18: 3n-3), araşidonik asit (ARA, 20: 4n-6), eikosapentaenoik asit (EPA, 20: 5n-3) en önemli yağ asitleri olarak saptanmıştır. Hydrophilidae familyası bireylerinde sadece türler arasındaki farkın nispeten önemli olduğu (R=0.63), alt familyalar (R=0.17) ve cinsler (R=0.17) arasındaki farkın kısmen önemli olduğu ve familyalar (R=0.08) arasındaki farkın önemli olmadığı ANOSIM sonuçlarıyla ortaya konulmuştur.

Project Number

This research was supported by the BAP-281-265-2015 project of Bingöl University.

References

  • Angus, R. B., 1992. Süsswasser Fauna von Mitteleuropa (Insecta: Coleoptera: Hydrophilidae: Helophorinae). Gustav Fischer Verlag, Jena, New York, 144 pp.
  • Baldus, T. J. & J. A. Mutchmor, 1988. The effects of acclimation and post-treatment temperature on the toxicity of allethrin to the American cockroach, Periplaneta americana. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 89 (2): 403-407.
  • Başhan, M., 1996. Effect of various diets on the total lipit compositions the black cricket Melanogrillus desertus Pall. Turkish Journal of Zoology, 20 (4): 375-379.
  • Beenakkers, A. M. T., D. J. Van Der Horst & J. A. Van Marrewijk, 1985. Insect lipids and lipoproteins and their role in physiological processes. Progress in Lipid Research, 24 (1): 19-67.
  • Bozkuş, K., 2003. Phospholipid and triacylgliserol fatty acid compositions from various development stages of Melanogryllus desertus. Turkish Journal of Biology, 27 (2): 73-78.
  • Çakmak, Ö., M. Başhan & H. Bolu, 2005. Monosteira lobulifera Reut. (Heteroptera: Tingidae)’ nın fosfolipid ve triaçilgliserol fraksiyonundaki yağ asiti bileşimi. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17 (4): 637-643.
  • Çakmak, Ö., M. Başhan & A. Satar, 2007. Total fatty acid composition of Lertha sheppardi (Neuroptera: Nemopteridae) during its main life stages. Biologia, 62 (6): 774-780.
  • Canavoso, L. E., Z. E. Jouni, K. J. Karnas, J. E. Pennington & M. A. Wells, 2001. Fat metabolism in insects. Annual Review of Nutrition, 21 (1): 23-46.
  • Christie, W. W., 1992. Preparation of fatty acid methyl esters. Inform, 3 (9): 1031-1034.
  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd Edition. PRIMER-E, Plymouth, 151 pp.
  • Cohen, A. C., 1990. Fatty acid distributions as related to adult age, sex and diet in the phytophagous Heteropteran, Lygus hesperus (Heteroptera: Miridae). Journal of Entomological Science, 25 (1): 75-84.
  • Dadd, R. H., 1973. Insect nutrition: Current development and metabolic implications. Annual Review of Entomology, 18: 381-420.
  • Darılmaz, M. & S. Kıyak, 2006a. Helochares lividus: New Distributional Records from Turkey (Coleoptera: Hydrophilidae). Entomological Problems, 36 (1): 79.
  • Darılmaz, M. & S. Kıyak, 2006b. A contribution to the knowledge of the Turkish water beetles fauna (Coleoptera). Munis Entomology and Zoology, 1 (1): 129-144.
  • Demirsoy, A., 1997. Yaşamın Temel Kuralları, Omurgasızlar/Böcekler, Entomoloji Cilt II/Kısım II, Beşinci Baskı. Meteksan Matbaacılık, Ankara, 941 s.
  • Downer, R. G. H. & J. R. Matthews, 1976. Patterns of lipid distribution and utilization in insects. American Zoologist, 16 (6): 733-745.
  • Fikảček, M., 2006. Taxonomic status of Cercyon alpinus, C. exorabilis, C. strandi and C. tatricus and notes on their biology (Coleoptera: Hydrophilidae: Sphaeridiinae). Annalen des Naturhistorischen Museums in Wien, 107B: 145-164.
  • Gentili, E., 2000. Distibuzione del genere Laccobius (Coleoptera: Hydrophilidae) in Anatolia e Problemi Relativi. Biogeographia, 21 (1): 173-214.
  • Gentili, E. & P. E. Whitehead, 2000. A new species of Laccobius (Col., Hydrophilidae) from Lycia, Turkey. The Entomologist’s Montly Magazine, 136: 73-76.
  • Gilbert, L. I., 1967. Lipid metabolism and function in insect. Advances in Insect Physiology, 4: 69-211.
  • Gilby, A. R., 1965. Lipids and their metabolism in insects. Annual Review of Entomology, 10: 141-160.
  • Hansen, M., 1987. The Hydrophilidae (Coleoptera) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica, 18: 1-253.
  • Hara, A. & N. S. Radin, 1978. Lipid exctraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90 (1): 420-426.
  • Hoback, W. W., R. L. Rana & D. W. Stanley, 1999. Fatty acid compositions of phospholipids and triacylglycerols of selected tissues, and fatty acid biosynthesis in adult periodical cicadas, Magicicada septendecim. Comparative Biochemistry and Physiology Part A, 122 (3): 355-362.
  • İncekara, Ü., A. Mart & O. Erman, 2005. Some Notes on two newly recorded aquatic Coleoptera (Hydrophilidae, Helophoridae) species from Turkey. Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17 (2): 449-454.
  • Kalyoncu, L. & S. Özge, 2014. Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae)'nın farklı gelişim evrelerinin yağ asiti bileşimi. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, 38: 10-18.
  • Keeley, L. L., J. H. Park, K. H. Lu & J. Y. Bradfield, 1996. Neurohormone signal transduction for dual regulation of metabolism and gene expression in insects: hypertrehalosemic hormone as a model. Archives Insect Biochemistry Physiology, 33: 283-301.
  • Khani, A., S. Moharramipour, M. Barzegar & H. Naderi-Manesh, 2007. Comparison of fatty acids composition in total lipid of diapause and non-diapause larvae of Cydia pomonella (Lepidoptera: Tortricidae). Insect Science, 14 (2): 125-131.
  • Kharlamenko, V. I., N. V. Zhukova, S. V. Khotimchenko, V. I. Svetashev & G. M. Kamenev, 1995. Fatty acids as markers of food sources in a shallow water hydrothermal ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Marine Ecology Progress Series, 120: 231-241.
  • Khebbeb, M. E. H., J. Delachambre & N. Soltani, 1997. Lipid metabolism during the sexual maturation of the mealworm (Tenebrio molitor): effect of ingested diflubenzuron. Pesticide Biochemistry and Physiology, 58 (3): 209-217.
  • Kıyak, S., S. Canbulat, A. Salur & M. Darılmaz, 2006. Additional notes on aquatic Coleoptera fauna of Turkey with a new record (Helophoridae: Hydrophilidae). Munis Entomology and Zoology, 1 (2): 273-278.
  • Mart, A., 2005. Bingöl İli Helophoridae, Hydrophilidae ve Hydrochidae (Coleoptera) Türleri Üzerine Sistematik Araştırmalar, (Basılmamış) Doktora Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, Türkiye, 165 s.
  • Mart, A., 2009. Water scavenger beetles (Coleoptera: Hydrophilidae) provinces of Central Black Sea Region of Turkey. Journal of the Entomological Research Society, 11 (1): 47-70.
  • Nurullahoğlu, Z. Ü., 2003. Achroia grisella F. (Lepidoptera: Pyralidae) larva ve pupunun yağ asiti bileşimi. Selçuk Üniversitesi Fen-Edebiyat Fakültesi Fen Dergisi, 21: 75-78.
  • Nurullahoğlu, Z. Ü., F. Uçkan, O. Sak & E. Ergin, 2004. Total lipid and fatty acid composition of Apanteles galleria and its parasitized Host. Annals of the Entomological Society of America, 97 (5): 1000-1006.
  • Ouyang, L. L., S. H. Chen, Y. Li & Z. G. Zhou, 2013. Transcriptome analysis reveals unique C4- like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14 (1): 1-13.
  • Pethybridge, H., R. K. Daley & P. D. Nichols, 2011. Diet of demersal sharks and chimaeras inferred by fatty acid profiles and stomach content analysis. Journal of Experimental Marine Biology and Ecology, 409 (2): 290-299.
  • Sayanova, O. & J. A. Napier, 2011. Transgenic oilseed crops as an alternative to fish oils. Prostaglandins Leukot Essent Fatty Acids, 85 (5): 253-260.
  • Seven, E., 2004. Plodia interpunctella (Lepidoptera: Pyralidae) Larva ve Pupunun Total Lipid, Total Yağ Asiti Ve Yağ Asiti Bileşimi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Yüksek Lisans Tezi, Konya, 25 s.
  • Shanab, S. M. M., R. M. Hafez & A. S. Fouad, 2018. A review on algae and plants as potential source of arachidonic acid. Journal Advanced Research, 11: 3-13.
  • Shinmen, Y., K. Katoh, S. Shimizu, S. Jareonkitmongkol & H. Yamada, 1991. Production of arachidonic acid and eicosapentaenoic acids by Marchantia polymorpha in cell culture. Phytochemistry, 30 (10): 3255-3260.
  • Short, A. E. Z. & M. Fikácek, 2013. Molecular phylogeny, evolution and classification of the Hydrophilidae (Coleoptera). Systematic Entomology, 38: 723-752.
  • Spike, B. P., R. J. Wright, S. D. Danielson & D. W. Stanley-Samuelson, 1991. The fatty acid compositions of phospholipids and triacylglycerols, from two chinch bug species Blissus leucopterus leucopterus and B. iowensis (Insecta; Hemiptera; Lygaeidae) are similar to the characteristic dipteran pattern. Comparative Biochemistry and Physiology, 99 (4): 799-802.
  • Stanley-Samuelson, D. W. & R. H. Dadd, 1983. Long-chain polyunsaturated fatty acids: Patterns of occurrence in insects. Insect Biochemistry, 13 (5): 549-558.
  • Stanley, D. W. & R. W. Howard, 1998. The biology of prostaglandins and related eicosanoids in invertebrates: Cellular organismal and ecological actions. American Zoologist, 38 (2): 369-381.
  • Stanley-Samuelson, D. W., R. W. Howard & E. C. Toolson, 1990. Phospholipid fatty acid composition and arachidonic acid uptake and metabolism by the cicada Tibicen dealbatus (Homoptera: Cicadidae). Comparative Biochemistry and Physiology, 97 (2): 285-289.
  • Stanley-Samuelson, D. W., E. Jenson, K. W. Nickerson, K. Tiebel, C. L. Ogg & R. W. Howard, 1991. Insect immune response to bacterial infection is mediated by eicosanoids. Proceedings of the National Academy of Sciences of the United States of America, 88 (3): 1064-1068.
  • Stanley-Samuelson, D. W., R. A. Jurenka, C. Cripps, G. J. Blomquist & M. Derenobles, 1988. Fatty acids in insects: composition, metabolism, and biological significance. Archives of Insect Biochemistry and Physiology, 9 (1): 1-33.
  • Stanley, D. W., 2000. Eicosanoids in invertebrate signal transduction systems. Princeton University Press, Princeton, N.J., USA, 277 pp.
  • Stanley, D., 2006. Prostaglandins and other eicosanoids in insects: Biological significance. Annual Review of Entomology, 51 (1): 25-44.
  • Suloma, A., H. Y. Ogata, H. Furuita, E. S. Garibay & D. R. Chavez, 2007. “Arachidonic Acid Distribution in Seaweed, Seagrass, İnvertebrates and Dugong in Coral Reef Areas in The Philippines, 107-111”. In: Sustainable Production Systems of Aquatic Animals in Brackish Mangrove Areas (Ed. K Nakamura). Japan International Research Center for Agricultural Sciences Working Report Tsukuba, Ibaraki, Japan, 151 pp.
  • Thompson, S. N., 1973. A review and comparative characterization of the fatty acid compositions of seven insect orders. Comparative Biochemistry and Physiology, 45 (2): 467-482.
  • Thompson, S. N., 1979. The effect of dietary carbohyrate on larval development and lipogenesis in the parasite, Exeristes robarator (Fabricius (Hymenoptera: Ichneumonidae. Journal of Parasitology, 65 (6): 849-854.
  • Uçkan, F. & A. Gülel, 2001. The effects of cold storage on the adult longevity, fecundity and sex ratio of Apanteles galleria Wilkinson (Hym: Braconidae). Turkish Journal of Zoology, 25 (3): 187-191.
  • Üstüner, P., L. Kalyoncu & A. Aktümsek, 2010. Besinin Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae) larva ve pupunun toplam lipid, yağ asiti oranlarına ve yağ asiti bileşimine etkileri. Süleyman Demirel Üniversitesi Fen Dergisi, 5 (1): 29-37.
  • Wakayama, E. J., J. E. Dillwith & G. J. Blomquist, 1980. In vitro biosynthesis of prostaglandins in the reproductive tissues of the male house fly Musca domestica (L.). American Zoologist, 20: 904.
  • Ziegler, R. & R. V. Antwerpen, 2006. Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology, 36 (4): 264-272.
There are 57 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Fatma Caf 0000-0002-0363-4848

Günay Yıldız 0000-0003-4988-2393

Nurgül Sen Özdemir 0000-0001-6656-822X

Abdullah Mart 0000-0001-6539-9188

Project Number This research was supported by the BAP-281-265-2015 project of Bingöl University.
Publication Date September 1, 2020
Submission Date December 10, 2019
Acceptance Date June 23, 2020
Published in Issue Year 2020 Volume: 44 Issue: 3

Cite

APA Caf, F., Yıldız, G., Sen Özdemir, N., Mart, A. (2020). A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). Turkish Journal of Entomology, 44(3), 399-412. https://doi.org/10.16970/entoted.657190
AMA Caf F, Yıldız G, Sen Özdemir N, Mart A. A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). TED. September 2020;44(3):399-412. doi:10.16970/entoted.657190
Chicago Caf, Fatma, Günay Yıldız, Nurgül Sen Özdemir, and Abdullah Mart. “A Chemotaxonomic Approach to Fatty Acid Composition of the Genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae)”. Turkish Journal of Entomology 44, no. 3 (September 2020): 399-412. https://doi.org/10.16970/entoted.657190.
EndNote Caf F, Yıldız G, Sen Özdemir N, Mart A (September 1, 2020) A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). Turkish Journal of Entomology 44 3 399–412.
IEEE F. Caf, G. Yıldız, N. Sen Özdemir, and A. Mart, “A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae)”, TED, vol. 44, no. 3, pp. 399–412, 2020, doi: 10.16970/entoted.657190.
ISNAD Caf, Fatma et al. “A Chemotaxonomic Approach to Fatty Acid Composition of the Genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae)”. Turkish Journal of Entomology 44/3 (September 2020), 399-412. https://doi.org/10.16970/entoted.657190.
JAMA Caf F, Yıldız G, Sen Özdemir N, Mart A. A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). TED. 2020;44:399–412.
MLA Caf, Fatma et al. “A Chemotaxonomic Approach to Fatty Acid Composition of the Genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae)”. Turkish Journal of Entomology, vol. 44, no. 3, 2020, pp. 399-12, doi:10.16970/entoted.657190.
Vancouver Caf F, Yıldız G, Sen Özdemir N, Mart A. A chemotaxonomic approach to fatty acid composition of the genera Helochares Mulsant, 1844 and Coelostoma Brullé, 1835 (Coleoptera: Hydrophilidae). TED. 2020;44(3):399-412.