Research Article
BibTex RIS Cite
Year 2018, Volume: 2 Issue: 3, 96 - 105, 20.09.2018
https://doi.org/10.26701/ems.441446

Abstract

References

  • Razak, N. A., Shing, S. N. (2014). Investigation of effects of MIG welding on corrosion behaviour of AISI 1010 carbon steel. Journal of Mechanical Engineering and Sciences 7: 1168–78, Doi: 10.15282/jmes.7.2014.16.0114.
  • Nuraini, A. A., Zainal, A. S., Ariff, M. Hanim, A. (2014). The effects of Welding Parameters on Butt Joints Using Robotic Gas Metal Arc Welding. Journal of Mechanical Engineering and Sciences, 6: 988-994.
  • Singh, A. K., Dey, V., Rai, R. N. (2017). A Study to Enhance the Depth of Penetration in Grade P91 Steel Plate Using Alumina as Flux in FBTIG Welding. Arab Journal of Science and Engineering, 42: 4959-4970.
  • Memduh, K., Yukler, A., Bilici, M., Catalgol, Z. (2015). Effects Of Welding Current And Arc Voltage On Fcaw Weld Bead Geometry. International Journal of Research in Engineering and Technology, 4(9): 23-28.
  • Ikpe, A. E., Owunna, I., Ememobong, I. (2017). Effects of Arc Voltage and Welding Current on the Arc Length of Tungsten Inert Gas Welding (TIG). International Journal of Engineering Technologies-IJET, 3(4): 213-221.
  • Mohd, S., Mohd, P., Pratibha, K. (2013). Effect of MIG Welding Input Process Parameters on Weld Bead Geometry on HSLA Steel. International Journal of Engineering Science and Technology, Vol. 5(1): 200-212.
  • Bodude, M. A., Momohjimoh, I. (2015). Studies on Effects of Welding Parameters on the Mechanical Properties of Welded Low-Carbon Steel. Journal of Minerals and Materials Characterization and Engineering, 3: 142-153.
  • Sushant S. P. (2015). Theoretical and experimental study of MIG/MAG welding technique. International Journal of Engineering Trends and Technology (IJETT), 24(3): 142-144.
  • Abbasi, K., Alam, S., Khan, M. I. (2012). An Experimental Study on the Effect of MIG Welding parameters on the Weld-Bead Shape Characteristics. Engineering Science and Technology: An International Journal (ESTIJ), 2(4): 599- 602.
  • Satyaduttsinh P. C., Jayesh V., Tushar, M. (2014). A Review on Optimization of MIG Welding Parameters using Taguchi’s DOE Method. International Journal of Engineering and Management Research, 4(1): 16-21.
  • Yadav, P. K., Abbas, M., Patel, S. (2014). Analysis of Heat Affected Zone of Mild Steel Specimen Developed due to MIG Welding. International Journal of Mechanical Engineering and Robotic Research, 3(3): 399-404.
  • Tewari, S. P., Gupta, A., Prakash, J. (2010). Effect of Welding Parameters on the Weldability of Material, International Journal of Engineering Science and Technology, 2(4): 512-516.
  • Ghazvinloo, H. R., Honarbakhsh-Raouf, A., Shadfar, N. (2010). Effect of arc voltage, welding current and welding speed on fatigue life, impact energy and bead penetration ofAA6061 joints produced by robotic MIG welding. Indian Journal of Science and Technology, 3(2): 156-162.
  • Sudhakaran, R., Vel-Murugan, V., Sivasakthivel, P. S. (2012). Effect of Process Parameters on Depth of Penetration in Gas Tungsten Arc Welded (GTAW) 202 Grade Stainless Steel Plates Using Response Surface Methodology. The Journal of Engineering Research, 9(1): 64-79.
  • Cho, J. H., Na, S. J. (2009). Three-dimensional analysis of molten pool in GMA-laser hybrid welding. Welding Journal, 88: 35-43.
  • Piekarska, W., Kubiak, M. (2011). Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process. International Journal of Heat and Mass Transfer, 54: 4966-4974.
  • Sura, N., Mittal, V. (2015). Experimental Study on Effects of Process Parameters on HAZ of Plain Carbon Steel Using GMAW. International Journal of Latest Research in Science and Technology, 4(2): 167-170.
  • www.kobelco.co.jp/english/welding/events/files/2015_KOBELCO_Defect.pdf, 2017.
  • Kamble, A. G., Rao, R. V. (2013). Experimental Investigation on the Effects of Process Parameters of GMAW and Transient Thermal Analysis of AlSl321 Steel. Advances in Manufacturing, 1(4): 362-377.

3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate

Year 2018, Volume: 2 Issue: 3, 96 - 105, 20.09.2018
https://doi.org/10.26701/ems.441446

Abstract

Weld quality is adversely influenced by
bead penetration depth, as deeper penetration can improve the strength and load
bearing capacity of weldments in service condition.
Based on Design of Experiment (DOE), an experimental design matrix
having thirteen (13) center points, six (6) axial points and eight (8)
factorial points resulting in twenty (20) experimental runs was generated for
TIG welding current, voltage, gas flow rate L/min and temperature. Maximum bead
penetration of 8.44 mm was obtained from the FEM simulation with corresponding
input variables of 190 A, 19 V, 18 L/min and 298.44 oC compared to
maximum bead penetration of 7.942 mm obtained from the welding experimentation
with corresponding input variables of 155 A, 22 V, 15.50 L/min and 278.46 oC.  To clearly understand the rate of heat
distribution across the as-welded plate, FEM bead penetration profiles were
developed using Solid Works (2017 version) thermal transient analysis which
revealed that the higher the temperature distribution the wider the Heat
Affected Zones (HAZs) which are indications of phase transformations and
alterations in mechanical properties of the welded metal which may lead to
induced residual stresses if the welding parameters particularly the amperage
is not controlled adequately. In addition,
there was proximity in the trend of bead penetration from
the regression plot where
the FEM model had a coefficient of
determination (R2) of 0.9799 while R2 of 0.9694 was
obtained for the welding experimentation, indicating about 97.4% variance which
in this context signifies that both bead penetration values can be adopted for
real practical scenarios where deep weld bead penetrations are required.

References

  • Razak, N. A., Shing, S. N. (2014). Investigation of effects of MIG welding on corrosion behaviour of AISI 1010 carbon steel. Journal of Mechanical Engineering and Sciences 7: 1168–78, Doi: 10.15282/jmes.7.2014.16.0114.
  • Nuraini, A. A., Zainal, A. S., Ariff, M. Hanim, A. (2014). The effects of Welding Parameters on Butt Joints Using Robotic Gas Metal Arc Welding. Journal of Mechanical Engineering and Sciences, 6: 988-994.
  • Singh, A. K., Dey, V., Rai, R. N. (2017). A Study to Enhance the Depth of Penetration in Grade P91 Steel Plate Using Alumina as Flux in FBTIG Welding. Arab Journal of Science and Engineering, 42: 4959-4970.
  • Memduh, K., Yukler, A., Bilici, M., Catalgol, Z. (2015). Effects Of Welding Current And Arc Voltage On Fcaw Weld Bead Geometry. International Journal of Research in Engineering and Technology, 4(9): 23-28.
  • Ikpe, A. E., Owunna, I., Ememobong, I. (2017). Effects of Arc Voltage and Welding Current on the Arc Length of Tungsten Inert Gas Welding (TIG). International Journal of Engineering Technologies-IJET, 3(4): 213-221.
  • Mohd, S., Mohd, P., Pratibha, K. (2013). Effect of MIG Welding Input Process Parameters on Weld Bead Geometry on HSLA Steel. International Journal of Engineering Science and Technology, Vol. 5(1): 200-212.
  • Bodude, M. A., Momohjimoh, I. (2015). Studies on Effects of Welding Parameters on the Mechanical Properties of Welded Low-Carbon Steel. Journal of Minerals and Materials Characterization and Engineering, 3: 142-153.
  • Sushant S. P. (2015). Theoretical and experimental study of MIG/MAG welding technique. International Journal of Engineering Trends and Technology (IJETT), 24(3): 142-144.
  • Abbasi, K., Alam, S., Khan, M. I. (2012). An Experimental Study on the Effect of MIG Welding parameters on the Weld-Bead Shape Characteristics. Engineering Science and Technology: An International Journal (ESTIJ), 2(4): 599- 602.
  • Satyaduttsinh P. C., Jayesh V., Tushar, M. (2014). A Review on Optimization of MIG Welding Parameters using Taguchi’s DOE Method. International Journal of Engineering and Management Research, 4(1): 16-21.
  • Yadav, P. K., Abbas, M., Patel, S. (2014). Analysis of Heat Affected Zone of Mild Steel Specimen Developed due to MIG Welding. International Journal of Mechanical Engineering and Robotic Research, 3(3): 399-404.
  • Tewari, S. P., Gupta, A., Prakash, J. (2010). Effect of Welding Parameters on the Weldability of Material, International Journal of Engineering Science and Technology, 2(4): 512-516.
  • Ghazvinloo, H. R., Honarbakhsh-Raouf, A., Shadfar, N. (2010). Effect of arc voltage, welding current and welding speed on fatigue life, impact energy and bead penetration ofAA6061 joints produced by robotic MIG welding. Indian Journal of Science and Technology, 3(2): 156-162.
  • Sudhakaran, R., Vel-Murugan, V., Sivasakthivel, P. S. (2012). Effect of Process Parameters on Depth of Penetration in Gas Tungsten Arc Welded (GTAW) 202 Grade Stainless Steel Plates Using Response Surface Methodology. The Journal of Engineering Research, 9(1): 64-79.
  • Cho, J. H., Na, S. J. (2009). Three-dimensional analysis of molten pool in GMA-laser hybrid welding. Welding Journal, 88: 35-43.
  • Piekarska, W., Kubiak, M. (2011). Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process. International Journal of Heat and Mass Transfer, 54: 4966-4974.
  • Sura, N., Mittal, V. (2015). Experimental Study on Effects of Process Parameters on HAZ of Plain Carbon Steel Using GMAW. International Journal of Latest Research in Science and Technology, 4(2): 167-170.
  • www.kobelco.co.jp/english/welding/events/files/2015_KOBELCO_Defect.pdf, 2017.
  • Kamble, A. G., Rao, R. V. (2013). Experimental Investigation on the Effects of Process Parameters of GMAW and Transient Thermal Analysis of AlSl321 Steel. Advances in Manufacturing, 1(4): 362-377.
There are 19 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Article
Authors

İkechukwu Owunna

Aniekan Ikpe 0000-0001-9069-9676

J. I. Achebo This is me

Publication Date September 20, 2018
Acceptance Date August 4, 2018
Published in Issue Year 2018 Volume: 2 Issue: 3

Cite

APA Owunna, İ., Ikpe, A., & Achebo, J. I. (2018). 3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate. European Mechanical Science, 2(3), 96-105. https://doi.org/10.26701/ems.441446
AMA Owunna İ, Ikpe A, Achebo JI. 3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate. EMS. September 2018;2(3):96-105. doi:10.26701/ems.441446
Chicago Owunna, İkechukwu, Aniekan Ikpe, and J. I. Achebo. “3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate”. European Mechanical Science 2, no. 3 (September 2018): 96-105. https://doi.org/10.26701/ems.441446.
EndNote Owunna İ, Ikpe A, Achebo JI (September 1, 2018) 3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate. European Mechanical Science 2 3 96–105.
IEEE İ. Owunna, A. Ikpe, and J. I. Achebo, “3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate”, EMS, vol. 2, no. 3, pp. 96–105, 2018, doi: 10.26701/ems.441446.
ISNAD Owunna, İkechukwu et al. “3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate”. European Mechanical Science 2/3 (September 2018), 96-105. https://doi.org/10.26701/ems.441446.
JAMA Owunna İ, Ikpe A, Achebo JI. 3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate. EMS. 2018;2:96–105.
MLA Owunna, İkechukwu et al. “3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate”. European Mechanical Science, vol. 2, no. 3, 2018, pp. 96-105, doi:10.26701/ems.441446.
Vancouver Owunna İ, Ikpe A, Achebo JI. 3D Finite Element Modelling of Weld Bead Penetration in Tungsten Inert Gas (TIG) Welding of AISI 1020 Low Carbon Steel Plate. EMS. 2018;2(3):96-105.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter