Research Article
BibTex RIS Cite

Tatlı Sorgum (Sorghum Bicolor (L)) Biyokütlesinin Yaşam Döngüsü Değerlendirmesi ile Çevresel Etkilerinin Belirlenmesi

Year 2021, Issue: 22, 195 - 203, 31.01.2021
https://doi.org/10.31590/ejosat.852286

Abstract

Enerji bitkileri, fosil yakıt tüketimini ve sera gazı emisyonlarını azaltma da ümit vadeden biyoyakıtların hammaddelerindendir. Kuraklığa dayanıklı olan ve marjinal alanlarda kısa bir sürede yetiştirilebilen tatlı sorgum bu enerji bitkilerinden biridir. Bu çalışmada, tatlı sorgum (Sorghum Bicolor (L)) biyokütlesi üretimindeki çevresel etkiler belirlenmiştir. Tatlı sorgum üretiminin çevresel etkileri yaşam döngüsü değerlendirmesiyle değerlendirilmiştir. Çevresel etki kategorileri, CML 2001 metodolojisine göre on kategoriye ayrılmıştır. Sonuçta, tatlı sorgum üretiminde ortalama kuru biyokütle verimi 9135 kg ha-1 olarak saptanmıştır. Biyokütle üretimi amacıyla tatlı sorgum yetiştirilmesinin yaşam döngüsü etki değerlendirmesine göre, en fazla çevresel etkinin % 50.39 oranıyla, deniz canlılarının ekotoksisitesine sebep olduğu belirlenmiştir. Yaşam döngüsü yorumlanmasına göre de, % 80.02 oranıyla yerel etkiye sebep olduğuda saptanmıştır. Ayrıca, küresel ısınma değeride, 0.114 kg CO2-eş kgbiyokütle-1 (1043.51 kg CO2-eş ha-1) olarak hesaplanmıştır. Yetiştiricilikteki gübre uygulamalarının çevresel etkileri oldukça olumsuz etkilediği de tespit edilmiştir. Çalışma sonucunda belirlenen bu bulgulara bağlı olarak, mevcut üretimin iyileştirilmesine yönelik çözüm önerileri de verilmiştir.

References

  • Boone, L., Van Linden, V., De Meester, S., Vandecasteele, B., Muylle, H., & ve ark. (2016). Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of The Total Environment, 553, 551-564.
  • Christoforou, E., Fokaides, P. A., Koroneos, C. J. ve Lucia R. (2016). Life cycle assessment of first generation energy crops in arid isolated island states: The case of Cyprus. Sustainable Energy Technologies and Assessments, 14, 1-8.
  • Eren, Ö. (2011). Çukurova Bölgesinde Tatlı Sorgum (Sorghum Bicolor (L.) Moench) Üretiminde Yaşam Döngüsü Enerji ve Çevresel Etki Analizi. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Eren, Ö. ve Öztürk, H. H. (2011). Biyokütle Enerjisi. Doğa Yayıncılık Ltd. Şti., İstanbul. ISBN: 978-975-6263-19-8.
  • El Bassam, N. (2010). Handbook of Bioenergy Crops A Complete Reference to Species Development and Applications. ISBN: 978-1-84407-854-7
  • Frank M., Laginess T. ve Schöneboom J. (2020) Social life cycle assessment in agricultural systems – U.S. corn production as a case study. In: Traverso M., Petti L., Zamagni A. (eds) Perspectives on Social LCA. SpringerBriefs in Environmental Science. Springer, Cham.
  • Gilio L. ve Moraes M. A. F. D. (2016) Sugarcane industry’s socioeconomic impact in São Paulo, Brazil: A spatial dynamic panel approach. Energy Econ, 58,27–37.
  • Guiying, L., Weibin, G., Hicks, A. ve Chapman, K. R. (2003). A training manual for sweet sorghum. development of sweet sorghum for grain, sugar, feed, fiber, and value-added by-products, in the arid, saline-alkaline regions of China. FAO - TCP/CPR/0066.
  • IRENA (2017). Energy Profile (Turkey). https://www.irena.org/IRENADocuments/Statistical_Profiles/Eurasia/Turkey_Eurasia_RE_SP.pdf erişim: 31.12.2020
  • IRENA (2020). Renewable Energy Statistics 2020. ISBN 978-92-9260-246-8
  • Koppen, S., Reinhardt, G. ve Gartner, S. (2009). Assessment of energy and greenhouse gas ınventories of sweet sorghum for first and second generation bioethanol. Environment and Natural Resources Management Series, 30, FAO, Rome.
  • McKendry, P. (2002). Energy production from biomass (Part 1): Overview of biomass. Bioresource Technology, 83, 37–46. Miller, S. A., Sharp, B. E., Chamberlain, J. F., Sarkar, S. ve Keerthi, S. (2020). Exploring adoption price effects on life cycle inventory results. The International Journal of Life Cycle Assessment, 25, 1078-1087.
  • Moraes M. A. F. D., Piedade Bachi M. R. ve Caldarelli C. E. (2016) Accelerated growth of the sugarcane, sugar, and ethanol sectors in Brazil (2000–2008): effects on municipal gross domestic product per capita in the south-central region. Biomass Bioenergy, 91,16–125.
  • Vatsanidou, A., Kavalaris, C., Fountas, S., Katsoulas, N. Ve Gemtos, T. (2020). A life cycle assessment of biomass production from energy crops in crop rotation using different tillage system. Sustainability, 12, 6978.
  • Wang, M., Chen, Y., Xia, X., Li, J. ve Liu, J. (2014). Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis. Bioresource Technology, 163, 74-81.
  • Yin, C. Y. (2011). Prediction of Higher Heating Values of Biomass from Proximate and Ultimate Analyses. Fuel, 90, 1128-1132.
  • Zhang, W., He, X., Zhang, Z., Gong, S., Zhang, Q., & ve ark. (2018). Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China. Biosystems Engineering, 167, 75-86.

Determination of Environmental Impacts with Life Cycle Assessment of Sweet Sorghum (Sorghum Bicolor (L)) Biomass

Year 2021, Issue: 22, 195 - 203, 31.01.2021
https://doi.org/10.31590/ejosat.852286

Abstract

Energy crops are among the raw materials of biofuels that are promising to reduce fossil fuel consumption and greenhouse gas emissions. Sweet sorghum, which is drought resistant and can be grown in marginal areas in a short time, is one of these energy crops. In this study, environmental effects on sweet sorghum (Sorghum Bicolor (L)) biomass production were determined. Environmental effects of sweet sorghum production were evaluated by life cycle assessment. Environmental impact categories are diveded into ten categories according to the CML 2001 methodology. As a result, the average dry biomass yield in sweet sorghum production was determined as 9135 kg ha-1. According to the life cycle impact assessment of sweet sorghum cultivation for biomass production, it was determined that the highest environmental impact was 50.39%, causing the marine aquatic ecotoxicity. According to the life cycle interpretation, it has been determined that it causes local effect with a rate of 80.02%. Also, the value of global warming was calculated as 0.114 kg CO2-eş kgbiomass-1 (1043.51 kg CO-eq ha-1). It has also been determined that fertilizer applications in breeding have an extremely negative impact on environmental effects. Based on these findings determined because of the study, solution suggestions for improving the current production are also given.

References

  • Boone, L., Van Linden, V., De Meester, S., Vandecasteele, B., Muylle, H., & ve ark. (2016). Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of The Total Environment, 553, 551-564.
  • Christoforou, E., Fokaides, P. A., Koroneos, C. J. ve Lucia R. (2016). Life cycle assessment of first generation energy crops in arid isolated island states: The case of Cyprus. Sustainable Energy Technologies and Assessments, 14, 1-8.
  • Eren, Ö. (2011). Çukurova Bölgesinde Tatlı Sorgum (Sorghum Bicolor (L.) Moench) Üretiminde Yaşam Döngüsü Enerji ve Çevresel Etki Analizi. Doktora Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana.
  • Eren, Ö. ve Öztürk, H. H. (2011). Biyokütle Enerjisi. Doğa Yayıncılık Ltd. Şti., İstanbul. ISBN: 978-975-6263-19-8.
  • El Bassam, N. (2010). Handbook of Bioenergy Crops A Complete Reference to Species Development and Applications. ISBN: 978-1-84407-854-7
  • Frank M., Laginess T. ve Schöneboom J. (2020) Social life cycle assessment in agricultural systems – U.S. corn production as a case study. In: Traverso M., Petti L., Zamagni A. (eds) Perspectives on Social LCA. SpringerBriefs in Environmental Science. Springer, Cham.
  • Gilio L. ve Moraes M. A. F. D. (2016) Sugarcane industry’s socioeconomic impact in São Paulo, Brazil: A spatial dynamic panel approach. Energy Econ, 58,27–37.
  • Guiying, L., Weibin, G., Hicks, A. ve Chapman, K. R. (2003). A training manual for sweet sorghum. development of sweet sorghum for grain, sugar, feed, fiber, and value-added by-products, in the arid, saline-alkaline regions of China. FAO - TCP/CPR/0066.
  • IRENA (2017). Energy Profile (Turkey). https://www.irena.org/IRENADocuments/Statistical_Profiles/Eurasia/Turkey_Eurasia_RE_SP.pdf erişim: 31.12.2020
  • IRENA (2020). Renewable Energy Statistics 2020. ISBN 978-92-9260-246-8
  • Koppen, S., Reinhardt, G. ve Gartner, S. (2009). Assessment of energy and greenhouse gas ınventories of sweet sorghum for first and second generation bioethanol. Environment and Natural Resources Management Series, 30, FAO, Rome.
  • McKendry, P. (2002). Energy production from biomass (Part 1): Overview of biomass. Bioresource Technology, 83, 37–46. Miller, S. A., Sharp, B. E., Chamberlain, J. F., Sarkar, S. ve Keerthi, S. (2020). Exploring adoption price effects on life cycle inventory results. The International Journal of Life Cycle Assessment, 25, 1078-1087.
  • Moraes M. A. F. D., Piedade Bachi M. R. ve Caldarelli C. E. (2016) Accelerated growth of the sugarcane, sugar, and ethanol sectors in Brazil (2000–2008): effects on municipal gross domestic product per capita in the south-central region. Biomass Bioenergy, 91,16–125.
  • Vatsanidou, A., Kavalaris, C., Fountas, S., Katsoulas, N. Ve Gemtos, T. (2020). A life cycle assessment of biomass production from energy crops in crop rotation using different tillage system. Sustainability, 12, 6978.
  • Wang, M., Chen, Y., Xia, X., Li, J. ve Liu, J. (2014). Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis. Bioresource Technology, 163, 74-81.
  • Yin, C. Y. (2011). Prediction of Higher Heating Values of Biomass from Proximate and Ultimate Analyses. Fuel, 90, 1128-1132.
  • Zhang, W., He, X., Zhang, Z., Gong, S., Zhang, Q., & ve ark. (2018). Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China. Biosystems Engineering, 167, 75-86.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ömer Eren 0000-0003-4578-3187

Hasan Öztürk 0000-0001-6904-5539

Publication Date January 31, 2021
Published in Issue Year 2021 Issue: 22

Cite

APA Eren, Ö., & Öztürk, H. (2021). Tatlı Sorgum (Sorghum Bicolor (L)) Biyokütlesinin Yaşam Döngüsü Değerlendirmesi ile Çevresel Etkilerinin Belirlenmesi. Avrupa Bilim Ve Teknoloji Dergisi(22), 195-203. https://doi.org/10.31590/ejosat.852286