Research Article
BibTex RIS Cite

The evaluation of seasonal fatty acid composition and food sources of Pileurobrachia pileus (Ctenophora) in terms of trophic marker fatty acids in the Southeastern Black Sea

Year 2021, Volume: 38 Issue: 2, 211 - 218, 15.06.2021
https://doi.org/10.12714/egejfas.38.2.10

Abstract



Seasonal changes of the lipid and fatty acid composition of Pleurobrachia pileus investigated monthly from March 2012 to February 2013. Average total lipid content was determined as percentage (%) and per individual (mg ind-1). It was highest in February (1.48 %; 3.55 mg ind-1). However, it was proportionally the lowest in April (0.40 %), and per individual in August (0.33 mg ind-1). Major fatty acids of P. pileus were identified as 16:0, 14:0, 11:1 n-9c, 20:5 n-3, and 22:6 n-3. P. pileus had on average 27.27 % ∑SFA, 25.04 % ∑MUFA and 47.63 % ∑PUFA content. EPA and DHA were the major fatty acids from PUFA. Seasonal changes of DHA were more obvious than EPA (p<0.05). Herbivore calanoid zooplankton trophic markers; 20:1 n-9 and DHA/EPA and herbivory trophic markers; EPA and DHA content were high in P. pileus fatty acids. It showed that herbivory fatty acids were taken by feeding from herbivory zooplankton and phytoplankton. Diet was an important factor in seasonal fatty acid changes of P. pileus. In addition, we revealed that P. pileus has a rich lipid content and fatty acid composition and plays an important role in the Southeastern Black Sea ecosystem functionalities between herbivory and carnivory species. 


Supporting Institution

KTU- BAP

Project Number

2010.117.001.9

Thanks

We thank research assistant Ümit DOKUZPARMAK and the crew of KTU YAKAMOZ for help in collection of the samples, and Prof. Dr. Ökkeş YILMAZ for his help with GC analyses. This work was a part of PhD study supported by KTU BAP, 2010.117.001.9.

References

  • Anninsky, B.E., Finenko, G.A., Abolmasova, G.I., Hubareva, E.S., Svetlichny, L.S., Bat, L. & Kideys, A.E. (2004). Effect of starvation on the biochemical compositions and metabolic rates of ctenophores Mnemiopsis leidyi and Beroe ovata in the Black Sea. Journal of Marine Biology Association United Kingtom, 85, 549–561. DOI: 10.1017/S0025315405011471
  • Birinci Özdemir, Z., Erdem, Y. & Bat, L. (2018). Food composition and distribution of gelatinous macrozooplankton in the southern Black Sea. Indian Journal of Geo Marine Sciences, 4712, 2541–2548.
  • Christie, W. W. (1990). Gas chromatography and lipids. (pp 302-320 ). The Oil Press. Glasgow.
  • Cripps, G.C. & Atkinson, A. (2000). Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Canadian Journal of Fisheries Aquatic Sciences, 57(S3), 31–37. DOI:10.1139/f00-167
  • Dalsgaard. J., St John M. Kattner. G., Muller-Navarra, D. & Hagen, W. (2003). Fatty acid trophic markers in the pelagic marine environment. Advances Marine Biology, 46, 225–340. DOI: 10.1016/s0065-2881(03)46005-7
  • Falk-Petersen, S., Hopkins, C.C.E., & Sargent, J.R. (1990) Trophic relationships in the pelagic arctic food web. In M. Barnes. R.N. Gibson (Eds). Trophic relationships in the marine environment (pp 315-333). Proc. 24th Europ Mar Biol Symp. Aberdeen: Aberdeen University Press.
  • Falk-Petersen. S., Haug. T., Nilssen. K. T., Wold. A. & Dahl. T. M. (2004). Lipids and trophic linkages in harp seal Phoca groenlandica from the eastern Barents Sea. Polar Research, 23, 43–50. DOI: 10.1111/j.1751-8369.2004.tb00128
  • Falk-Petersen. S., Mayzaud. P., Kattner. G. & Sargent. J.R (2009). Lipids and life strategy of Arctic Calanus. Marine Biology Research, 5(1), 18-39. DOI: 10.1080/17451000802512267
  • Folch. J., Lees. M. & Sloane-Stanley. G. H. (1957). A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. The Journal of Biological Chemistry, 226, 497-509. DOI: 10.1016/S0021-9258(18)64849-5
  • Frank. K. T. (1986). Ecological significance of the ctenophore Pleurobrachia pileus off southwestern Nova Scotia. Canadian Journal of Fisheries and Aquatic Sciences, 431, 211–222. DOI: 10.1139/f86-024
  • Fraser. J. H. (1970). The ecology of the ctenophore Pleurobrachia pileus in Scottish waters. Journal du Conseil / Conseil Permanent International pour l'Exploration de la Mer, 332, 149–168. DOI: 10.1093/icesjms/33.2.149
  • Gibbons. M. J. & Painting. S. J. (1992). The effects and implications of container volume on clearance rates of the ambush entangling predator Pleurobrachia pileus Ctenophora: Tentaculata. Journal of Experimental Marine Biology and Ecology, 163, 199–208. DOI: 10.1016 / 0022-0981 (92) 90049-G
  • Graeve. M. G., Kattner. G. & Hagen. W. (1994). Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: Experimental evidence of trophic markers. Journal of Experimental Marine Biology and Ecology, 182, 97–110. DOI: 10.1016/0022-0981(94)90213-5
  • Greene. C. H., Landry. M. R. & Monger. B. C. (1986). Foraging behaviour and prey selection by the ambush entangling predator Pleurobrachia bachei. Ecology, 67, 1493–1501. DOI: 10.2307/1939080
  • Hirota. J. (1974). Quantitative natural history of Pleurobrachia bachei in La Jolla Bight. Fishery Bulletin-Washington, 722, 295–335.
  • Hoeger. U. (1983). Biochemical composition of ctenophores. Journal of Experimental Marine Biology and Ecology, 72, 251–261. DOI: 10.1016/0022-0981(83)90110-7
  • Kates. M. (1986). Techniques of lipidology: isolation, analysis, and identification of lipids, 2nd edn. Amsterdam. New York : Elsevier. New York : Elsevier Science Pub Co Laboratory Techniques in Biochemistry and Molecular Biology, 32, 464.
  • Larson. R.J. & Harbison. G.R. (1989). Source and fate of lipids in polar gelatinous zooplankton. Arctic, 42, 339-346. DOI: 0.14430/arctic1675
  • Lee. R.F. Hirota. J., & Barnett. A.M. (1971). Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Research, 18, 1147-1165. DOI: 10.1016/0011-7471(71)90023-4
  • Litzow. M.A., Bailey. K.M., Prahl. F.G. & Heinz. R. (2006). Climate regime shifts and reorganization of fish communities: the essential fatty acid limitation hypothesis. Marine Ecology Progress Series, 315, 1–11. DOI: 10.3354 / meps315001
  • Mazlum. R.E., Aytan. U., & Agirbas. E. (2018). The feeding behaviour of Pleurobrachia pileus (ctenophora: tentaculata) in the Southeastern Black Sea: in relation to area and season. Fresenius Environmental Bulletin, 27(2), 871-879.
  • Mutlu. E. (2001). Distribution and abundance of moon jellyfish Aurelia aurita and its zooplankton food in the Black Sea. Marine Biology, 138, 329-339. DOI: 10.1007 / s002270000459
  • Mutlu. E. & Bingel. F. (1999). Distribution and abundance of ctenophores. and their zooplankton food in the Black Sea. I. Pleurobrachia pileus. Marine Biology. 135. 589-601. DOI: 10.1007/s002270050661
  • Mutlu. E., Bingel. F., Gücü. A. C., Melnikov. V. V., Niermann. U., Ostr. N. A. & Zaika. V. E. (1994). Distribution of the new invader Mnemiopsis sp. and the resident Aurelia aurita and Pleurobrachia pileus populations in the Black Sea in the years 1991–1993. ICES Journal of Marine Sciences, 51, 407–421. DOI: 10.1006/jmsc.1994.1042
  • Møller. L. F., Canon. J. M., Tiselius. P. (2010). Bioenergetics and growth in the ctenophore Pleurobrachia pileus. Hydrobiologia, 645, 167–178. DOI: 10.1007 / s10750-010-0219-6
  • Nelson. M.M., Phleger. C.F., Mooney. B.D. & Nichols. P.D. (2000). Lipids of Gelatinous Antarctic Zooplankton: Cnidaria and Ctenophora. Lipids, 35 (5), 551–559. DOI: 10.1007/s11745-000-555-5
  • Pakhomov. E. A. & Perissinotto. R. (1996). Trophodynamics of the hyperiid amphipod Themisto gaudichaudii in the South Georgia region during late austral summer. Marine Ecology Progress Series, 134, 91–100. DOI: 10.3354/meps134091
  • Parrish. C. C. (1988). Dissolved and particulate marine lipid classes: a review. Marine Chemistry, 23, 17–40. DOI: 10.1016/0304-4203(88)90020-5
  • Phleger. C.F., Nichols. P.D. & Virtue. P. (1998). Lipids and trophodynamics of Antarctic zooplankton. Comparative Biochemistry and Physiology, 120B, 311–323. DOI: 10.1016/S0305-0491(98)10020-2
  • Reeve. M. R. & Walter. M. A. (1978). Nutritional ecology of ctenophores – a review of recent research. Advances in Marine Biology, 15, 249–287. DOI: 10.1016/S0065-2881(08)60406-X
  • Reinhardt. S. B. & Van Vleet. E. S. (1986). Lipid composition of twenty-two species of Antarctic midwater zooplankton and fish. Marine Biology, 91, 149–159. DOI: 10.1007/BF00569431
  • Sahin. F., Bat. L., Ustun. F., Birinci Ozdemir. Z., Satilmis. H. H., Kideys. A. E. & Develi. E. E. (2007). The Dinoflagellate- Diatom ratio in the Southeastern Black Sea off Sinop in the Years 1999-2000. Rapp. Comm. Int. Mer Médit, 38, 388.
  • Sargent. J.R. & Whittle. K.J. (1981). Lipids and hydrocarbons in the marine food web. In A.R Longhurst. (Ed). Analysis of marine ecosystems (pp 491-533). London: Academic Press.
  • Sargent. J. R., Parkes. R J., Mueller-Harvey. I. & Henderson. R. J. (1987). Lipid biomarkers in marine ecology. In M.A. Sleigh (Ed). Microbes in the Sea (pp 119–138). Harwood: Chichester.
  • Sargent. J.R., & Falk-Petersen. S. (1988). The lipid biochemistry of calanoid copepods. Hydrobiologia, 167-168, 101-114. DOI: 10.1007/BF00026297 Sen Ozdemir. N., Feyzioglu. A.M., Caf. F. & Yildiz. I. (2017). Seasonal changes in abundance. lipid and fatty acid composition of Calanus euxinus in the South-eastern Black Sea. Indian Journal of Fisheries, 643, 55-66. DOI:10.21077/ijf.2017.64.3.62172-09
  • Stevens. C. J., Deibel. D. & Parrish. C. C. (2004). Incorporation of bacterial fatty acids and changes in a wax ester-based omnivory index during a long-term incubation experiment with Calanus glacialis Jaschnov. Journal of Experimental Marine Biology and Ecology, 303, 135–156. DOI: 10.1016 / j.jembe.2003.11.008
  • Stowasser. G., Pond. D. W. & Collins. M. A. (2012). Fatty acid trophic markers elucidate resource partitioning within the demersal fish community of South Georgia and Shag Rocks Southern Ocean. Marine Biology, 159, 2229-2310. DOI: 10.1007/s00227-012-2015-5
  • Stübing. D., Hagen. W. & Schmidt. K. (2003). On the use of lipid biomarkers in marine food web analyses: An experimental case study on the Antarctic krill. Euphausia superba. Limnology and Oceanography, 484, 1685-1700. DOI: 10.4319/lo.2003.48.4.1685
  • Şen Özdemir, N., Parrish, C. C., Parzanini, C. C. & Mercier, A. (2019). Neutral and polar lipid fatty acids in five families of demersal and pelagic fish from the deep Northwest Atlantic. ICES Journal of Marine Science, 76 (6), 1807–1815. DOI:10.1093/icesjms/fsz054
  • Şen Özdemir, N., Feyzioglu, A.M., Caf, F. & Yildiz, I. (2020). Can the early stages copepoda (copepodites and naupliies) abundances effect the fatty acid composition of Sagitta setosa (chaetognatha) in the southeastern Black Sea? Ege Journal of Fisheries and Aquatic Sciences, 37 (4),335-342. DOI: 10.12714/egejfas.37.4.03
  • Viso, A. C. & Marty, J. C. (1993). Fatty acids from 28 marine microalgae. Phytochemistry, 34, 1521–1533. DOI: 10.1016/S0031-9422(00)90839-2
  • Yip, S. Y. (1984). The Feeding of Pleurabranchia pileus Müller (Ctenephora) from Galbay Bay. Proceedings of the Royal Irish Academy, 84 (B), 109-122.

Güney Doğu Karadeniz’de Pleurobrachia pileus'un (Ctenophora) trofik işaret yağ asitleri açısından mevsimsel yağ asiti kompozisyonu ve besin kaynaklarının değerlendirilmesi

Year 2021, Volume: 38 Issue: 2, 211 - 218, 15.06.2021
https://doi.org/10.12714/egejfas.38.2.10

Abstract



Pileurobrachia pileus’un lipit ve yağ asiti kompozisyonunun mevsimsel değişimleri Mart 2012’den Şubat 2013’e kadar aylık olarak araştırılmıştır. Ortalama toplam lipit içeriği yüzde (%) ve birey başına (mg ind-1) olarak belirlenmiştir. Ortalama toplam lipit miktarı en yüksek şubat ayında bulunmuştur (% 1.48; 3.55 mg ind-1). Bununla birlikte, oransal en düşük miktar Nisan ayında (% 0.40) ve birey başına Ağustos ayında (0.33 mg ind-1) belirlenmiştir. P. pileus'taki en önemli yağ asitleri 16: 0, 14: 0, 11: 1 n-9c, 20: 5 n-3 ve 22: 6 n-3 olarak tespit edilmiştir. P. pileus’da ortalama % 27.27 ∑SFA, % 25.04 ∑MUFA ve % 47.63 ∑PUFA belirlenmiştir. EPA ve DHA’nın, başlıca PUFA yağ asitleri olduğu ve. DHA'da mevsimsel değişikliklerin EPA'dan daha belirgin olduğu saptanmıştır (p <0.05). P. pileus yağ asitlerinde, herbivor kalanoid otçul zooplankton trofik işaretleri; 20: 1 n-9 ve DHA / EPA ve herbivor trofik işaretleri; EPA ve DHA içeriğinin yüksek olduğu tespit edilmiştir. Otçul yağ asitlerinin otçul zooplankton ve fitoplanktondan beslenerek alındığı görülmüştür. P. pileus'un mevsimsel yağ asiti değişiminde besinin önemli bir faktör olduğu saptanmıştır. Bunun yanında, P. pileus'un zengin bir lipit içeriğine ve yağ asiti bileşimine sahip olduğu ve Güneydoğu Karadeniz ekosisteminde, herbivor ve karnivor türler arasında önemli bir rol oynadığı ortaya konulmuştur.



Project Number

2010.117.001.9

References

  • Anninsky, B.E., Finenko, G.A., Abolmasova, G.I., Hubareva, E.S., Svetlichny, L.S., Bat, L. & Kideys, A.E. (2004). Effect of starvation on the biochemical compositions and metabolic rates of ctenophores Mnemiopsis leidyi and Beroe ovata in the Black Sea. Journal of Marine Biology Association United Kingtom, 85, 549–561. DOI: 10.1017/S0025315405011471
  • Birinci Özdemir, Z., Erdem, Y. & Bat, L. (2018). Food composition and distribution of gelatinous macrozooplankton in the southern Black Sea. Indian Journal of Geo Marine Sciences, 4712, 2541–2548.
  • Christie, W. W. (1990). Gas chromatography and lipids. (pp 302-320 ). The Oil Press. Glasgow.
  • Cripps, G.C. & Atkinson, A. (2000). Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Canadian Journal of Fisheries Aquatic Sciences, 57(S3), 31–37. DOI:10.1139/f00-167
  • Dalsgaard. J., St John M. Kattner. G., Muller-Navarra, D. & Hagen, W. (2003). Fatty acid trophic markers in the pelagic marine environment. Advances Marine Biology, 46, 225–340. DOI: 10.1016/s0065-2881(03)46005-7
  • Falk-Petersen, S., Hopkins, C.C.E., & Sargent, J.R. (1990) Trophic relationships in the pelagic arctic food web. In M. Barnes. R.N. Gibson (Eds). Trophic relationships in the marine environment (pp 315-333). Proc. 24th Europ Mar Biol Symp. Aberdeen: Aberdeen University Press.
  • Falk-Petersen. S., Haug. T., Nilssen. K. T., Wold. A. & Dahl. T. M. (2004). Lipids and trophic linkages in harp seal Phoca groenlandica from the eastern Barents Sea. Polar Research, 23, 43–50. DOI: 10.1111/j.1751-8369.2004.tb00128
  • Falk-Petersen. S., Mayzaud. P., Kattner. G. & Sargent. J.R (2009). Lipids and life strategy of Arctic Calanus. Marine Biology Research, 5(1), 18-39. DOI: 10.1080/17451000802512267
  • Folch. J., Lees. M. & Sloane-Stanley. G. H. (1957). A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. The Journal of Biological Chemistry, 226, 497-509. DOI: 10.1016/S0021-9258(18)64849-5
  • Frank. K. T. (1986). Ecological significance of the ctenophore Pleurobrachia pileus off southwestern Nova Scotia. Canadian Journal of Fisheries and Aquatic Sciences, 431, 211–222. DOI: 10.1139/f86-024
  • Fraser. J. H. (1970). The ecology of the ctenophore Pleurobrachia pileus in Scottish waters. Journal du Conseil / Conseil Permanent International pour l'Exploration de la Mer, 332, 149–168. DOI: 10.1093/icesjms/33.2.149
  • Gibbons. M. J. & Painting. S. J. (1992). The effects and implications of container volume on clearance rates of the ambush entangling predator Pleurobrachia pileus Ctenophora: Tentaculata. Journal of Experimental Marine Biology and Ecology, 163, 199–208. DOI: 10.1016 / 0022-0981 (92) 90049-G
  • Graeve. M. G., Kattner. G. & Hagen. W. (1994). Diet-induced changes in the fatty acid composition of Arctic herbivorous copepods: Experimental evidence of trophic markers. Journal of Experimental Marine Biology and Ecology, 182, 97–110. DOI: 10.1016/0022-0981(94)90213-5
  • Greene. C. H., Landry. M. R. & Monger. B. C. (1986). Foraging behaviour and prey selection by the ambush entangling predator Pleurobrachia bachei. Ecology, 67, 1493–1501. DOI: 10.2307/1939080
  • Hirota. J. (1974). Quantitative natural history of Pleurobrachia bachei in La Jolla Bight. Fishery Bulletin-Washington, 722, 295–335.
  • Hoeger. U. (1983). Biochemical composition of ctenophores. Journal of Experimental Marine Biology and Ecology, 72, 251–261. DOI: 10.1016/0022-0981(83)90110-7
  • Kates. M. (1986). Techniques of lipidology: isolation, analysis, and identification of lipids, 2nd edn. Amsterdam. New York : Elsevier. New York : Elsevier Science Pub Co Laboratory Techniques in Biochemistry and Molecular Biology, 32, 464.
  • Larson. R.J. & Harbison. G.R. (1989). Source and fate of lipids in polar gelatinous zooplankton. Arctic, 42, 339-346. DOI: 0.14430/arctic1675
  • Lee. R.F. Hirota. J., & Barnett. A.M. (1971). Distribution and importance of wax esters in marine copepods and other zooplankton. Deep Sea Research, 18, 1147-1165. DOI: 10.1016/0011-7471(71)90023-4
  • Litzow. M.A., Bailey. K.M., Prahl. F.G. & Heinz. R. (2006). Climate regime shifts and reorganization of fish communities: the essential fatty acid limitation hypothesis. Marine Ecology Progress Series, 315, 1–11. DOI: 10.3354 / meps315001
  • Mazlum. R.E., Aytan. U., & Agirbas. E. (2018). The feeding behaviour of Pleurobrachia pileus (ctenophora: tentaculata) in the Southeastern Black Sea: in relation to area and season. Fresenius Environmental Bulletin, 27(2), 871-879.
  • Mutlu. E. (2001). Distribution and abundance of moon jellyfish Aurelia aurita and its zooplankton food in the Black Sea. Marine Biology, 138, 329-339. DOI: 10.1007 / s002270000459
  • Mutlu. E. & Bingel. F. (1999). Distribution and abundance of ctenophores. and their zooplankton food in the Black Sea. I. Pleurobrachia pileus. Marine Biology. 135. 589-601. DOI: 10.1007/s002270050661
  • Mutlu. E., Bingel. F., Gücü. A. C., Melnikov. V. V., Niermann. U., Ostr. N. A. & Zaika. V. E. (1994). Distribution of the new invader Mnemiopsis sp. and the resident Aurelia aurita and Pleurobrachia pileus populations in the Black Sea in the years 1991–1993. ICES Journal of Marine Sciences, 51, 407–421. DOI: 10.1006/jmsc.1994.1042
  • Møller. L. F., Canon. J. M., Tiselius. P. (2010). Bioenergetics and growth in the ctenophore Pleurobrachia pileus. Hydrobiologia, 645, 167–178. DOI: 10.1007 / s10750-010-0219-6
  • Nelson. M.M., Phleger. C.F., Mooney. B.D. & Nichols. P.D. (2000). Lipids of Gelatinous Antarctic Zooplankton: Cnidaria and Ctenophora. Lipids, 35 (5), 551–559. DOI: 10.1007/s11745-000-555-5
  • Pakhomov. E. A. & Perissinotto. R. (1996). Trophodynamics of the hyperiid amphipod Themisto gaudichaudii in the South Georgia region during late austral summer. Marine Ecology Progress Series, 134, 91–100. DOI: 10.3354/meps134091
  • Parrish. C. C. (1988). Dissolved and particulate marine lipid classes: a review. Marine Chemistry, 23, 17–40. DOI: 10.1016/0304-4203(88)90020-5
  • Phleger. C.F., Nichols. P.D. & Virtue. P. (1998). Lipids and trophodynamics of Antarctic zooplankton. Comparative Biochemistry and Physiology, 120B, 311–323. DOI: 10.1016/S0305-0491(98)10020-2
  • Reeve. M. R. & Walter. M. A. (1978). Nutritional ecology of ctenophores – a review of recent research. Advances in Marine Biology, 15, 249–287. DOI: 10.1016/S0065-2881(08)60406-X
  • Reinhardt. S. B. & Van Vleet. E. S. (1986). Lipid composition of twenty-two species of Antarctic midwater zooplankton and fish. Marine Biology, 91, 149–159. DOI: 10.1007/BF00569431
  • Sahin. F., Bat. L., Ustun. F., Birinci Ozdemir. Z., Satilmis. H. H., Kideys. A. E. & Develi. E. E. (2007). The Dinoflagellate- Diatom ratio in the Southeastern Black Sea off Sinop in the Years 1999-2000. Rapp. Comm. Int. Mer Médit, 38, 388.
  • Sargent. J.R. & Whittle. K.J. (1981). Lipids and hydrocarbons in the marine food web. In A.R Longhurst. (Ed). Analysis of marine ecosystems (pp 491-533). London: Academic Press.
  • Sargent. J. R., Parkes. R J., Mueller-Harvey. I. & Henderson. R. J. (1987). Lipid biomarkers in marine ecology. In M.A. Sleigh (Ed). Microbes in the Sea (pp 119–138). Harwood: Chichester.
  • Sargent. J.R., & Falk-Petersen. S. (1988). The lipid biochemistry of calanoid copepods. Hydrobiologia, 167-168, 101-114. DOI: 10.1007/BF00026297 Sen Ozdemir. N., Feyzioglu. A.M., Caf. F. & Yildiz. I. (2017). Seasonal changes in abundance. lipid and fatty acid composition of Calanus euxinus in the South-eastern Black Sea. Indian Journal of Fisheries, 643, 55-66. DOI:10.21077/ijf.2017.64.3.62172-09
  • Stevens. C. J., Deibel. D. & Parrish. C. C. (2004). Incorporation of bacterial fatty acids and changes in a wax ester-based omnivory index during a long-term incubation experiment with Calanus glacialis Jaschnov. Journal of Experimental Marine Biology and Ecology, 303, 135–156. DOI: 10.1016 / j.jembe.2003.11.008
  • Stowasser. G., Pond. D. W. & Collins. M. A. (2012). Fatty acid trophic markers elucidate resource partitioning within the demersal fish community of South Georgia and Shag Rocks Southern Ocean. Marine Biology, 159, 2229-2310. DOI: 10.1007/s00227-012-2015-5
  • Stübing. D., Hagen. W. & Schmidt. K. (2003). On the use of lipid biomarkers in marine food web analyses: An experimental case study on the Antarctic krill. Euphausia superba. Limnology and Oceanography, 484, 1685-1700. DOI: 10.4319/lo.2003.48.4.1685
  • Şen Özdemir, N., Parrish, C. C., Parzanini, C. C. & Mercier, A. (2019). Neutral and polar lipid fatty acids in five families of demersal and pelagic fish from the deep Northwest Atlantic. ICES Journal of Marine Science, 76 (6), 1807–1815. DOI:10.1093/icesjms/fsz054
  • Şen Özdemir, N., Feyzioglu, A.M., Caf, F. & Yildiz, I. (2020). Can the early stages copepoda (copepodites and naupliies) abundances effect the fatty acid composition of Sagitta setosa (chaetognatha) in the southeastern Black Sea? Ege Journal of Fisheries and Aquatic Sciences, 37 (4),335-342. DOI: 10.12714/egejfas.37.4.03
  • Viso, A. C. & Marty, J. C. (1993). Fatty acids from 28 marine microalgae. Phytochemistry, 34, 1521–1533. DOI: 10.1016/S0031-9422(00)90839-2
  • Yip, S. Y. (1984). The Feeding of Pleurabranchia pileus Müller (Ctenephora) from Galbay Bay. Proceedings of the Royal Irish Academy, 84 (B), 109-122.
There are 42 citations in total.

Details

Primary Language English
Subjects Fisheries Management
Journal Section Articles
Authors

Nurgül Sen Özdemir 0000-0001-6656-822X

Muzaffer Feyzioğlu 0000-0003-1171-5493

Fatma Caf 0000-0002-0363-4848

Project Number 2010.117.001.9
Publication Date June 15, 2021
Submission Date August 10, 2020
Published in Issue Year 2021Volume: 38 Issue: 2

Cite

APA Sen Özdemir, N., Feyzioğlu, M., & Caf, F. (2021). The evaluation of seasonal fatty acid composition and food sources of Pileurobrachia pileus (Ctenophora) in terms of trophic marker fatty acids in the Southeastern Black Sea. Ege Journal of Fisheries and Aquatic Sciences, 38(2), 211-218. https://doi.org/10.12714/egejfas.38.2.10