Short Communication
BibTex RIS Cite

Use of the acoustic positioning system in artificial reef sites

Year 2016, Volume: 33 Issue: 4, 405 - 411, 25.11.2016
https://doi.org/10.12714/egejfas.2016.33.4.15

Abstract



Acoustic telemetry
technology has been used for monitoring fish in artificial reefs since twenty
years. In this study, acoustic positioning system design was developed for
telemetry studies in artificial reefs. The performance and effective detection
distance of acoustic positioning system were also determined. In this research
was carried out between July and September of 2013 in Edremit Bay artificial
reefs area, Vemco of acoustic positioning system (VPS; Vemco Positioning
System) was used. 6 acoustic receivers (VR2W), 5 synchronization transmitters
(Synctag; V13-1L) and 1 control transmitter (Reftag; V13T-1L) were deployed as
a pentagonal design. While 89.9% of the signals were captured by at least one
receiver, 62.1% of the signals were determined by at least one receiver in a
range of 600 m. This study as being the first for Turkey is expected to
contribute scientific literature for artificial reef studies.



References

  • Andrews, K.S., Tolimieri, N., Williams, G.D., Samhouri, J.F., Harvey, C.J. & Levin, P.S., (2011). Comparison of fine-scale acoustic monitoring systems using home range size of a demersal fish. Marine Biology, 158: 2377–2387. doi:10.1007/s00227-011-1724-5
  • Bombace, G. (1989). Artificial Reefs in the Mediterranean Sea. Bulletin of Marine Science, 44: 1023-1032.
  • Bortone, S.A. & Kimmel, J.J. (1991). Environmental assessment and monitoring of artificial reefs. In: Artificial Habitats for Marine and Freshwater Fisheries (pp. 177–236). W. Seaman Jr, and L. Sprague (Ed.). New York, Academic Press Inc.
  • Bortone, S.A. & Mille, K.J. (1999). Data needs for assessing marine reserves with an emphasis on estimating fish size in situ. Naturalista Siciliano, 23: 13-31.
  • D'Anna, G., Giacalone, V.M., Pipitone, C. & Badalamenti, F. (2011). Movement pattern of white seabream, Diplodus sargus (L.,1758) (Osteichthyes, Sparidae) acoustically tracked in an artificial reef area. Italian Journal of Zoology, 78: 255-263. doi:10.1080/11250000903464059
  • Doray, M., Josse, E., Gervain, P., Reynal, L. & Chantrel, J. (2006). Acoustic characterization of pelagic fish aggregations around moored fish aggregating devices in Martinique (Lesser Antilles), Fisheries Research, 82: 162–175. doi:10.1016/j.fishres.2011.01.011
  • Espinoza, M., Farrugia, T.J., Webber, D.M., Smith, F. & Lowe, C.G. (2011). Testing a new acoustic telemetry technique to quantify long-term, fine-scale movements of aquatic animals. Fisheries Research, 108: 364–371. doi:10.1016/j.fishres.2011.01.011
  • FAO (2015). Practical guidelines for the use of artificial reefs in the Mediterranean and the Black Sea. Studies and Reviews. Fabi, G., Scarcella G., Spagnolo, A., Bortone, A.S., Charbonnel, E., Goutayer, J.J., Haddad, N., Lök, A., Trommelen, M., (Eds). General Fisheries Commission for the Mediterranean. No. 96. Rome, Italy.
  • Giacalone, V.M., D’Anna, G., Garofalo, G., Collins, K. & Badalamenti, F. (2005). Estimation of positioning error from an array of automated omni-directional receivers in an artificial reef area. In: Aquatic telemetry: advances and applications: Proceedings of the Fifth Conference on Fish Telemetry held in Europe, (pp. 245–253). Spedicato MT, Lembo G, Marmulla G, (Eds.). Ustica, Italy, 9–13 June 2003. Rome, Italy: FAO/COISPA,
  • Hallier, J. & Gaertner, D. (2008). Drifting fish aggregation devices could act as an ecological trap for tropical tuna species. Marine Ecology Progress Series, 353: 255-264. doi:10.3354/meps07180
  • Heupel, M.R., Semmens, J.M. & Hobday, A.J. (2006). Automated acoustic tracking of aquatic animals: scales, design, and deployment of listening station arrays. Marine & Freshwater Research, 57: 1-13. doi:10.1071/MF05091
  • Ito, Y., 2011. Artificial Reef Function in Fishing Grounds off Japan. In: Artificial Reefs in Fisheries Management (pp: 239-264). Bortone, S., A. Brandini, F.P., Fabi G., and Otake, S., (Eds). CRC Press, Taylor & Francis Group, New York.
  • Josse, E. & Bertrand, A. (2000). In situ acoustic target strength measurements of tuna associated with a fish aggregating device, ICES Journal of Marine Science, 57: 911–918. doi:10.1006/jmsc.2000.0578
  • Klimley, A.P., Voegeli, F., Beavers, S.C. & Le Boeuf, B.J. (1998). Automated listening stations for tagged marine fishes. Marine Technology Society Journal, 32:94-101.
  • Klimley, A., Le Boeuf, B., Cantara, K., Richert, J., Davis, S. & Van Sommeran, S. (2001). Radio acoustic positioning as a tool for studying site-specific behavior of the white shark and other large marine species. Marine Biology, 138(2): 429–446.
  • Lacroix, G.L. & Voegeli, F.A. (2000). Development of automated monitoring systems for ultrasonic transmitters. A. Moore and I. Russell. (Eds.), In: Advances in Fish Telemetry; Proceedings of the Third Conference on Fish Telemetry in Europe (pp. 37–50). CEFAS. Suffolk, UK.
  • Lök, A. (1995). A study on the feasibility of artificial reefs (in Turkish with English abstract), Ph.D thesis. Ege University, Graduate School of Natural and Applied Sciences, 54pp.
  • Lök, A., Metin, C., Düzbastılar, F.O., Ulaş, A. & Özgül, A. (2013). Research report on a study on observation of fish community structure and physicochemical parameters in Edremit Bay artificial reef project (in Turkish), Ege University, Research and Application Center of Underwater, Bornova, İzmir, 21.
  • Nakamura, T. & Hamano, A. (2009). Seasonal differences in the vertical distribution pattern of Japanese jack mackerel, Trachurus japonicus: changes according to age? ICES Journal of Marine Sciences, 66 (6): 1289-1295. doi:10.1093/icesjms/fsp114
  • Özgül, A., (2010). The adaptation of floating artificial reefs for pelagic fisheries in the Aegean Sea (in Turkish with English abstract), Ph.D thesis. Ege University, Graduate School of Natural and Applied Sciences, 168 pp.
  • Özgül, A., Lök, A., Ulaş, A., Düzbastılar, F.O., Tanrıkul, T.T. & Pelister, C. (2015). Preliminary study on the use of the Vemco Positioning System to determine fish movements in artificial reef areas: a case study on Sciaena umbra Linnaeus, 1758. Journal of Applied Ichthyology, 31: 41–47.
  • doi: 10.1111/jai.12922
  • Payne, N.C., Gillanders, B.M., Webber, D.M., & Semmens, J.M. (2010). Interpreting diel activity patterns from acoustic telemetry: the need for controls. Marine Ecology Progress Series, 419, 295–301.
  • doi: 10.3354/meps08864
  • Piraino, M.N. & Szedlmayer, S.T., (2014). Fine-Scale Movements and Home Ranges of Red Snapper around Artificial Reefs in the Northern Gulf of Mexico. Transactions of the American Fisheries Society, 143, (4): 988-998. doi:10.1080/00028487.2014.901249
  • Reubens, J., Pasotti, F., Degraer, S. & Vincx, M., (2013). Residency, Site Fidelity and Habitat Use of Atlantic Cod (Gadus morhua) at an Offshore Wind Farm Using Acoustic Telemetry. Marine Environmental Research, 90: 128-135. doi:10.1016/j.marenvres.2013.07.001
  • Simpfendorfer, C.A., Heupel, M.R. & Collins, A.B., (2008). Variation in the performance of acoustic receivers and its implication for positioning algorithms in a riverine setting. Canadian Journal of Fisheries and Aquatic Sciences, 65, 482-492.
  • doi:10.1139/F07-180
  • Smedbol, S.J., Smith, F., Webber, D.M., Vallée, R.E. & King, T.D. (2014). Using underwater coded acoustic telemetry for fine scale positioning of aquatic animals. 20th Symposium of the International Society on Biotelemetry Proceedings (pp. 9-11). Kyoto University–Japan,
  • Szedlmayer, S.T. & Schroepfer, R.L. (2005). Long-term residence of red snapper on artificial reefs in the northeastern Gulf of Mexico. Transactions of the American Fisheries Society, 134: 315-325.
  • doi:10.1577/T04-070.1
  • Thorne, R.E., Hedgepeth, J.B. & Campos, J.A. (1989). Hydroacoustic observations of fish abundance and behavior around an artificial reef in Costa Rica. Bulletin of Marine Science, 44 (2):1058-1064.
  • Topping, D.T. & Szedlmayer, S.T., (2011). Home range and movement patterns of red snapper (Lutjanus campechanus) on artificial reefs. Fisheries Research, 112: 77–84.
  • Voegeli, F.A. & Pincock, D.G. (1996). Overview of underwater acoustics as it applies to telemetry. In: Underwater Biotelemetry: Proceedings of the First Conference and Workshop on Fish Telemetry in Europe (pp. 23–40). E. Baras, and J.C. Phillipart, (Eds.), University of Liège, Belgium.
  • Welsh, J.Q., Fox, R.J., Webber, D.M. & Bellwood, D.R. (2012). Performance of remote acoustic receivers within a coral reef habitat: implications for array design. Coral Reefs, 31: 693-702. doi:10.1007/s00338-012-0892-1

Akustik konumlandırma sistemlerinin yapay resif alanlarında kullanımı

Year 2016, Volume: 33 Issue: 4, 405 - 411, 25.11.2016
https://doi.org/10.12714/egejfas.2016.33.4.15

Abstract



Akustik telemetri teknolojisinin yapay
resif alanlarındaki canlıların izlenmesinde kullanımına son yirmi yılda
rastlanmaktadır. Bu çalışmada yapay resif alanlarında yapılacak telemetri
çalışmaları için akustik konumlandırma sistemi tasarımı geliştirilmiş ve etkili
algılama mesafesi (menzil) ve performansı belirlenmiştir. Edremit Körfezi yapay
resif alanında Temmuz-Eylül 2013 tarihleri arasında yürütülen araştırmada,
Vemco firmasına ait akustik konumlandırma sistemi (VPS; Vemco Positioning
System) kullanılmıştır. Beşgen şeklindeki VPS tasarımı, 6 adet akustik alıcı
(VR2W), 5 adet senkronizasyon vericisi (Synctag; V13-1L) ve 1 adet kontrol
vericisinden (Reftag; V13T-1L) meydana gelmiştir. Çalışmada senkronizasyon
vericilerden gelen sinyallerin %89,9’u üç ya da daha fazla alıcı tarafından
tespit edilmiş, vericilerden gelen sinyallerin %62,1’i 600 m bir alanda en az
bir alıcı tarafından belirlenebilmiştir. Ülkemiz için bir ilk olma özelliği
taşıyan bu çalışmanın, yapay resif alanlarında yapılacak bilimsel çalışmalar
için gerekli literatür katkısını sağlaması beklenmektedir.



References

  • Andrews, K.S., Tolimieri, N., Williams, G.D., Samhouri, J.F., Harvey, C.J. & Levin, P.S., (2011). Comparison of fine-scale acoustic monitoring systems using home range size of a demersal fish. Marine Biology, 158: 2377–2387. doi:10.1007/s00227-011-1724-5
  • Bombace, G. (1989). Artificial Reefs in the Mediterranean Sea. Bulletin of Marine Science, 44: 1023-1032.
  • Bortone, S.A. & Kimmel, J.J. (1991). Environmental assessment and monitoring of artificial reefs. In: Artificial Habitats for Marine and Freshwater Fisheries (pp. 177–236). W. Seaman Jr, and L. Sprague (Ed.). New York, Academic Press Inc.
  • Bortone, S.A. & Mille, K.J. (1999). Data needs for assessing marine reserves with an emphasis on estimating fish size in situ. Naturalista Siciliano, 23: 13-31.
  • D'Anna, G., Giacalone, V.M., Pipitone, C. & Badalamenti, F. (2011). Movement pattern of white seabream, Diplodus sargus (L.,1758) (Osteichthyes, Sparidae) acoustically tracked in an artificial reef area. Italian Journal of Zoology, 78: 255-263. doi:10.1080/11250000903464059
  • Doray, M., Josse, E., Gervain, P., Reynal, L. & Chantrel, J. (2006). Acoustic characterization of pelagic fish aggregations around moored fish aggregating devices in Martinique (Lesser Antilles), Fisheries Research, 82: 162–175. doi:10.1016/j.fishres.2011.01.011
  • Espinoza, M., Farrugia, T.J., Webber, D.M., Smith, F. & Lowe, C.G. (2011). Testing a new acoustic telemetry technique to quantify long-term, fine-scale movements of aquatic animals. Fisheries Research, 108: 364–371. doi:10.1016/j.fishres.2011.01.011
  • FAO (2015). Practical guidelines for the use of artificial reefs in the Mediterranean and the Black Sea. Studies and Reviews. Fabi, G., Scarcella G., Spagnolo, A., Bortone, A.S., Charbonnel, E., Goutayer, J.J., Haddad, N., Lök, A., Trommelen, M., (Eds). General Fisheries Commission for the Mediterranean. No. 96. Rome, Italy.
  • Giacalone, V.M., D’Anna, G., Garofalo, G., Collins, K. & Badalamenti, F. (2005). Estimation of positioning error from an array of automated omni-directional receivers in an artificial reef area. In: Aquatic telemetry: advances and applications: Proceedings of the Fifth Conference on Fish Telemetry held in Europe, (pp. 245–253). Spedicato MT, Lembo G, Marmulla G, (Eds.). Ustica, Italy, 9–13 June 2003. Rome, Italy: FAO/COISPA,
  • Hallier, J. & Gaertner, D. (2008). Drifting fish aggregation devices could act as an ecological trap for tropical tuna species. Marine Ecology Progress Series, 353: 255-264. doi:10.3354/meps07180
  • Heupel, M.R., Semmens, J.M. & Hobday, A.J. (2006). Automated acoustic tracking of aquatic animals: scales, design, and deployment of listening station arrays. Marine & Freshwater Research, 57: 1-13. doi:10.1071/MF05091
  • Ito, Y., 2011. Artificial Reef Function in Fishing Grounds off Japan. In: Artificial Reefs in Fisheries Management (pp: 239-264). Bortone, S., A. Brandini, F.P., Fabi G., and Otake, S., (Eds). CRC Press, Taylor & Francis Group, New York.
  • Josse, E. & Bertrand, A. (2000). In situ acoustic target strength measurements of tuna associated with a fish aggregating device, ICES Journal of Marine Science, 57: 911–918. doi:10.1006/jmsc.2000.0578
  • Klimley, A.P., Voegeli, F., Beavers, S.C. & Le Boeuf, B.J. (1998). Automated listening stations for tagged marine fishes. Marine Technology Society Journal, 32:94-101.
  • Klimley, A., Le Boeuf, B., Cantara, K., Richert, J., Davis, S. & Van Sommeran, S. (2001). Radio acoustic positioning as a tool for studying site-specific behavior of the white shark and other large marine species. Marine Biology, 138(2): 429–446.
  • Lacroix, G.L. & Voegeli, F.A. (2000). Development of automated monitoring systems for ultrasonic transmitters. A. Moore and I. Russell. (Eds.), In: Advances in Fish Telemetry; Proceedings of the Third Conference on Fish Telemetry in Europe (pp. 37–50). CEFAS. Suffolk, UK.
  • Lök, A. (1995). A study on the feasibility of artificial reefs (in Turkish with English abstract), Ph.D thesis. Ege University, Graduate School of Natural and Applied Sciences, 54pp.
  • Lök, A., Metin, C., Düzbastılar, F.O., Ulaş, A. & Özgül, A. (2013). Research report on a study on observation of fish community structure and physicochemical parameters in Edremit Bay artificial reef project (in Turkish), Ege University, Research and Application Center of Underwater, Bornova, İzmir, 21.
  • Nakamura, T. & Hamano, A. (2009). Seasonal differences in the vertical distribution pattern of Japanese jack mackerel, Trachurus japonicus: changes according to age? ICES Journal of Marine Sciences, 66 (6): 1289-1295. doi:10.1093/icesjms/fsp114
  • Özgül, A., (2010). The adaptation of floating artificial reefs for pelagic fisheries in the Aegean Sea (in Turkish with English abstract), Ph.D thesis. Ege University, Graduate School of Natural and Applied Sciences, 168 pp.
  • Özgül, A., Lök, A., Ulaş, A., Düzbastılar, F.O., Tanrıkul, T.T. & Pelister, C. (2015). Preliminary study on the use of the Vemco Positioning System to determine fish movements in artificial reef areas: a case study on Sciaena umbra Linnaeus, 1758. Journal of Applied Ichthyology, 31: 41–47.
  • doi: 10.1111/jai.12922
  • Payne, N.C., Gillanders, B.M., Webber, D.M., & Semmens, J.M. (2010). Interpreting diel activity patterns from acoustic telemetry: the need for controls. Marine Ecology Progress Series, 419, 295–301.
  • doi: 10.3354/meps08864
  • Piraino, M.N. & Szedlmayer, S.T., (2014). Fine-Scale Movements and Home Ranges of Red Snapper around Artificial Reefs in the Northern Gulf of Mexico. Transactions of the American Fisheries Society, 143, (4): 988-998. doi:10.1080/00028487.2014.901249
  • Reubens, J., Pasotti, F., Degraer, S. & Vincx, M., (2013). Residency, Site Fidelity and Habitat Use of Atlantic Cod (Gadus morhua) at an Offshore Wind Farm Using Acoustic Telemetry. Marine Environmental Research, 90: 128-135. doi:10.1016/j.marenvres.2013.07.001
  • Simpfendorfer, C.A., Heupel, M.R. & Collins, A.B., (2008). Variation in the performance of acoustic receivers and its implication for positioning algorithms in a riverine setting. Canadian Journal of Fisheries and Aquatic Sciences, 65, 482-492.
  • doi:10.1139/F07-180
  • Smedbol, S.J., Smith, F., Webber, D.M., Vallée, R.E. & King, T.D. (2014). Using underwater coded acoustic telemetry for fine scale positioning of aquatic animals. 20th Symposium of the International Society on Biotelemetry Proceedings (pp. 9-11). Kyoto University–Japan,
  • Szedlmayer, S.T. & Schroepfer, R.L. (2005). Long-term residence of red snapper on artificial reefs in the northeastern Gulf of Mexico. Transactions of the American Fisheries Society, 134: 315-325.
  • doi:10.1577/T04-070.1
  • Thorne, R.E., Hedgepeth, J.B. & Campos, J.A. (1989). Hydroacoustic observations of fish abundance and behavior around an artificial reef in Costa Rica. Bulletin of Marine Science, 44 (2):1058-1064.
  • Topping, D.T. & Szedlmayer, S.T., (2011). Home range and movement patterns of red snapper (Lutjanus campechanus) on artificial reefs. Fisheries Research, 112: 77–84.
  • Voegeli, F.A. & Pincock, D.G. (1996). Overview of underwater acoustics as it applies to telemetry. In: Underwater Biotelemetry: Proceedings of the First Conference and Workshop on Fish Telemetry in Europe (pp. 23–40). E. Baras, and J.C. Phillipart, (Eds.), University of Liège, Belgium.
  • Welsh, J.Q., Fox, R.J., Webber, D.M. & Bellwood, D.R. (2012). Performance of remote acoustic receivers within a coral reef habitat: implications for array design. Coral Reefs, 31: 693-702. doi:10.1007/s00338-012-0892-1
There are 35 citations in total.

Details

Journal Section Short Communications
Authors

Aytaç Özgül

Publication Date November 25, 2016
Submission Date May 9, 2016
Published in Issue Year 2016Volume: 33 Issue: 4

Cite

APA Özgül, A. (2016). Use of the acoustic positioning system in artificial reef sites. Ege Journal of Fisheries and Aquatic Sciences, 33(4), 405-411. https://doi.org/10.12714/egejfas.2016.33.4.15