Research Article
BibTex RIS Cite

Hibrit yenilenebilir enerji üretimi/depolama sisteminde yük frekansı kontrolünün kararlılığı için zaman gecikme marjları hesaplanması

Year 2022, Volume: 9 Issue: 2, 382 - 393, 31.05.2022
https://doi.org/10.31202/ecjse.946278

Abstract

Yük frekansı kontrolünde (LFC), kontrol sinyallerini kontrol merkezinden tesis tarafına ve uzak terminal ünitelerinden (RTU) kontrol merkezine iletmek önemlidir. Bu nedenle, sinyal iletiminde zaman gecikmelerinin olması kaçınılmaz hale gelmektedir. Bu gecikmeler LFC sisteminin dinamik performansını azaltmaktadır. Bu makale, yenilenebilir enerji üretimi alt sistemi için, LFC de gecikmeye bağlı olarak kararlılık analizini yapmaktadır. Sistemin gecikme marjı, farklı atalet değerleri, sönümleme faktörü ve kontrolör kazanımları için teorik olarak analiz edilmektedir. Teorik olarak elde edilen sonuçlar simülasyon çalışmaları ile karşılaştırılmıştır. Kontrolör kazancı ile gecikme marjı arasındaki ilişki incelenmiştir. Çalışılan sistem fotovoltaik sistem (PV), enerji depolama için ultra-kapasitör (UC) bankası, rüzgar türbini jeneratörü (WTG), dizel jeneratör (DG) ve yakıt hücresi (FC) sistemi içerir. LFC sisteminin kararlılık gecikmesinde üst sınırı, gecikme marjı olarak kullanılmaktadır. Bu çalışmada, gecikme marjları analitik bir yöntem kullanılarak hesaplanmıştır. Gecikme marjı analizi, oransal integral (PI) kontrolör kullanılarak geniş bir parametre aralığı için hesaplanmıştır. Bu sonuçlar, PI kontrolörlerini, dinamik performans ile gecikme marjı arasında bir uygun değer ayarlaması yapmak için kullanılabilir. MATLAB ortamında yapılan simülasyon çalışmaları kullanılan yöntemin etkinliğini doğrulamaktadır.

References

  • 1. Farid, K., Damir, Novosel. Sustainable Energy Trends, Opportunities, and Challenges. in Power Electronics Integration and Applications in Distribution Sixth Conference on Innovative Smart Grid Technologies (ISGT 2015). 2014.
  • 2. Wang, L., et al., Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link. Journal of Power Sources, 2008. 185(2): p. 1284-1292.
  • 3. Doolla, S. and T.S. Bhatti, Load Frequency Control of an Isolated Small-Hydro Power Plant With Reduced Dump Load. IEEE Transactions on Power Systems, 2006. 21(4): p. 1912-1919.
  • 4. Obara, S.y., Analysis of a fuel cell micro-grid with a small-scale wind turbine generator. International Journal of Hydrogen Energy, 2007. 32(3): p. 323-336.
  • 5. Wang, C. and M.H. Nehrir, Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System. IEEE Transactions on Energy Conversion, 2008. 23(3): p. 957-967.
  • 6. Erol, H., Stability analysis of pitch angle control of large wind turbines with fractional order PID controller. Sustainable Energy, Grids and Networks, 2021. 26: p. 100430.
  • 7. Yong, H., et al. Output Feedback Stabilization for Discrete-time Systems with A Time-varying Delay. in 2007 Chinese Control Conference. 2007.
  • 8. Jiang, L., et al. Delay-dependent stability for load frequency control with constant and time-varying delays. in 2009 IEEE Power & Energy Society General Meeting. 2009.
  • 9. Xiaofeng, Y. and K. Tomsovic, Application of linear matrix inequalities for load frequency control with communication delays. IEEE Transactions on Power Systems, 2004. 19(3): p. 1508-1515.
  • 10. S, B.K., Tomsovic ; A, Bose, Communication models for third party load frequency control. IEEE Trans. Power Syst., 2004. 19(1): p. 543-548.
  • 11. Bevrani, H. and T. Hiyama, On Load-Frequency Regulation With Time Delays: Design and Real-Time Implementation. IEEE Transactions on Energy Conversion, 2009. 24(1): p. 292-300.
  • 12. Walton, K. and J.E. Marshall, Direct method for TDS stability analysis. IEE Proceedings D - Control Theory and Applications, 1987. 134(2): p. 101-107.
  • 13. Erol, H., H. Sezer, and S. Ayasun. Computation of all stabilizing PI controller parameters of hybrid load frequency control system with communication time delay. in 2017 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG). 2017.
  • 14. Erol, H. and S. Ayasun, Time delay margins computation for stability of hybrid power systems. Journal of Polytechnic, Politeknik Dergisi, 2020. 23(4): p. 1131-1139.
  • 15. S Sonmez and S. Ayasun, Stability Region in the Parameter Space of PI Controller for a Single-Area Load Frequency Control System With Time Delay. IEEE Transactions on Power Systems, 2016. 31(1): p. 829-830.
  • 16. Nayeripour, M., M. Hoseintabar, and T. Niknam, Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system. Renewable Energy, 2011. 36(6): p. 1741-1746.
  • 17. Ayasun, S. and A. Gelen, Stability analysis of a generator excitation control system with time delays. Electrical Engineering, 2009. 91(6): p. 347-355.

Time delay margins computation for stability of load frequency control in hybrid renewable energy power generation/storage system

Year 2022, Volume: 9 Issue: 2, 382 - 393, 31.05.2022
https://doi.org/10.31202/ecjse.946278

Abstract

In load frequency control (LFC), it is important to transmit control signals from remote terminal units (RTU) to the control center and from the control center to the plant side. Therefore, time delays in signal transmission become unavoidable. These delays reduce the dynamic performance of the LFC system. This paper is dedicated to the delay-dependent stability analysis of the LFC scheme for renewable energy power generation subsystem. The delay margin of the system is analyzed theoretically for different values of inertia, damping factor as well as controller gains. Theoretically obtained results are compared with simulation studies. The relation between the controller gain and the delay margin is investigated. The system studied includes photovoltaic system (PV), ultra-capacitor (UC) bank for energy storage, wind turbine generator (WTG), diesel generator (DG) and fuel cell (FC) system. The upper bound of the delay time, while LFC system is in stable condition, is known as delay margin. Delay margin computations are realized by using an analytical method approach. Proportional-integral (PI) controller is used for controlling proposed power generation storage system. PI Controller parameters are chosen in a wide range to observe the effect of the parameter space on delay margin variation. Simulation studies verify the effectiveness of the proposed method.

References

  • 1. Farid, K., Damir, Novosel. Sustainable Energy Trends, Opportunities, and Challenges. in Power Electronics Integration and Applications in Distribution Sixth Conference on Innovative Smart Grid Technologies (ISGT 2015). 2014.
  • 2. Wang, L., et al., Analysis of a novel autonomous marine hybrid power generation/energy storage system with a high-voltage direct current link. Journal of Power Sources, 2008. 185(2): p. 1284-1292.
  • 3. Doolla, S. and T.S. Bhatti, Load Frequency Control of an Isolated Small-Hydro Power Plant With Reduced Dump Load. IEEE Transactions on Power Systems, 2006. 21(4): p. 1912-1919.
  • 4. Obara, S.y., Analysis of a fuel cell micro-grid with a small-scale wind turbine generator. International Journal of Hydrogen Energy, 2007. 32(3): p. 323-336.
  • 5. Wang, C. and M.H. Nehrir, Power Management of a Stand-Alone Wind/Photovoltaic/Fuel Cell Energy System. IEEE Transactions on Energy Conversion, 2008. 23(3): p. 957-967.
  • 6. Erol, H., Stability analysis of pitch angle control of large wind turbines with fractional order PID controller. Sustainable Energy, Grids and Networks, 2021. 26: p. 100430.
  • 7. Yong, H., et al. Output Feedback Stabilization for Discrete-time Systems with A Time-varying Delay. in 2007 Chinese Control Conference. 2007.
  • 8. Jiang, L., et al. Delay-dependent stability for load frequency control with constant and time-varying delays. in 2009 IEEE Power & Energy Society General Meeting. 2009.
  • 9. Xiaofeng, Y. and K. Tomsovic, Application of linear matrix inequalities for load frequency control with communication delays. IEEE Transactions on Power Systems, 2004. 19(3): p. 1508-1515.
  • 10. S, B.K., Tomsovic ; A, Bose, Communication models for third party load frequency control. IEEE Trans. Power Syst., 2004. 19(1): p. 543-548.
  • 11. Bevrani, H. and T. Hiyama, On Load-Frequency Regulation With Time Delays: Design and Real-Time Implementation. IEEE Transactions on Energy Conversion, 2009. 24(1): p. 292-300.
  • 12. Walton, K. and J.E. Marshall, Direct method for TDS stability analysis. IEE Proceedings D - Control Theory and Applications, 1987. 134(2): p. 101-107.
  • 13. Erol, H., H. Sezer, and S. Ayasun. Computation of all stabilizing PI controller parameters of hybrid load frequency control system with communication time delay. in 2017 5th International Istanbul Smart Grid and Cities Congress and Fair (ICSG). 2017.
  • 14. Erol, H. and S. Ayasun, Time delay margins computation for stability of hybrid power systems. Journal of Polytechnic, Politeknik Dergisi, 2020. 23(4): p. 1131-1139.
  • 15. S Sonmez and S. Ayasun, Stability Region in the Parameter Space of PI Controller for a Single-Area Load Frequency Control System With Time Delay. IEEE Transactions on Power Systems, 2016. 31(1): p. 829-830.
  • 16. Nayeripour, M., M. Hoseintabar, and T. Niknam, Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system. Renewable Energy, 2011. 36(6): p. 1741-1746.
  • 17. Ayasun, S. and A. Gelen, Stability analysis of a generator excitation control system with time delays. Electrical Engineering, 2009. 91(6): p. 347-355.
There are 17 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Makaleler
Authors

Halil Erol 0000-0001-6171-0362

Saffet Ayasun 0000-0002-6785-3775

Publication Date May 31, 2022
Submission Date July 7, 2021
Acceptance Date September 30, 2021
Published in Issue Year 2022 Volume: 9 Issue: 2

Cite

IEEE H. Erol and S. Ayasun, “Time delay margins computation for stability of load frequency control in hybrid renewable energy power generation/storage system”, ECJSE, vol. 9, no. 2, pp. 382–393, 2022, doi: 10.31202/ecjse.946278.