Research Article
BibTex RIS Cite

Meme Kanseri Tümörlerinin Radar Tabanlı Mikrodalga Tekniği ile Görüntülenmesinde Bant Genişliğinin Çözünürlüğe Etkisinin İncelenmesi

Year 2020, Volume: 11 Issue: 1, 151 - 160, 27.03.2020
https://doi.org/10.24012/dumf.687422

Abstract

Meme kanseri tümörlerinin erken evrede görüntülenmesinde kullanılan mevcut görüntüleme tekniklerinin bazı dezavantajları, radar tabanlı mikrodalga görüntüleme yönteminin güçlü bir alternatif olarak doğmasını sağlamıştır. Bu yöntemde, verici antenden gönderilen Gauss darbe sinyali memeye nüfuz etmekte ve geri saçılan sinyaller alıcı anten tarafından kaydedilmektedir. Kaydedilen bu sinyaller, çeşitli sinyal işleme aşamalarından geçirildikten sonra görüntüye dönüştürülmektedir. Görüntünün çözünürlüğünü belirleyen en önemli faktörlerden biri de antenin bant genişliğidir. Bant genişliği, verici anten tarafından gönderilen Gauss darbe sinyalinin süresini belirlemektedir. Bant genişliği arttıkça Gauss darbe sinyali kısalmakta, bant genişliği azaldıkça darbe sinyali uzamaktadır. Bu çalışmada 3-11 GHz arasında farklı bant genişliği kombinasyonlarının tümör görüntüsünün çözünürlüğü üzerindeki etkileri araştırılmıştır. 3-5 GHz, 5-7 GHz, 7-9 GHz, 9-11 GHz, 3-7 GHz, 7-11 GHz ve 3-11 GHz frekans aralığında farklı Gauss darbe sinyalleri ile görüntüleme işlemi gerçekleştirilmiştir. Araştırmanın sonunda, en yüksek görüntü çözünürlüğünün, en yüksek bant aralığı olan 3-11 GHz aralığında elde edildiği görülmüştür

Supporting Institution

Dicle Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

MÜHENDİSLİK.19.001

Thanks

Yazarlar finansal destek için Dicle Üniversitesi Bilimsel Araştırma Projeleri (DÜBAP) koordinatörlüğüne (proje numarası MÜHENDİSLİK.19.001) teşekkür ederler.

References

  • [1] S. Kwon ve S. Lee, “Recent Advances in Microwave Imaging for Breast Cancer Detection”, International Journal of Biomedical Imaging Volume 2016, Article ID 5054912, 25 pages
  • [2] A. Berrington de González ve S. Darby, “Risk of cancer from diagnosticX-rays:Estimatesfor the U.K.and 14 othercountries”, Lancet, vol. 363, no. 9406, pp. 345–351, Jan. 2004.
  • [3] S. S. Chaudhary, R. K. Mishra, A. Swarup, ve J. M. Thomas, “Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies,”, Indian Journal of Biochemistry and Biophysics, vol. 21, no. 1, pp. 76–79, 1984.
  • [4] A. J. Surowiec, S. S. Stuchly, J. R. Barr, ve A. Swarup, “Dielectric properties of breast carcinoma and the surrounding tissues,” International Journal of Biomedical Imaging 21 IEEE Transactions on Biomedical Engineering, vol. 35, no. 4, pp. 257–263, 1988.
  • [5] New public safety applications and broadband internet access among uses envisioned by FCC authorization of ultra-wideband technology FCC news release (February 14, 2002). Available at (http://ftp.fcc. Gov /Bureaus/ Engineering Technology/ News Releases/2002/ nret0203.pdf)
  • [6] S.C. Hagness, A. Taflove ve J. Bridges. “Two-Dimensional FDTD Analysis of a Pulsed Microwave Confocal System for Breast Cancer Detection: Fixed-Focus and Antenna-Array Sensors”, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 45, NO. 12, DECEMBER 1998
  • [7] X. Li ve S. C. Hagness, “A confocal microwave imaging algorithm for breast cancer detection,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 3, pp. 130–132, 2001.
  • [8] EC Fear, SC Hagness, Meaney, PM Okoniewski, MA Stuchly, “Enhancing breast tumor detection with near-field imaging. IEEE Microwave Magazine 3(1):48–56, 2002.
  • [9] B. Guo, Y. Wang, J. Li, P. Stoica ve R. Wu, “Microwave Imaging via Adaptive Beamforming Methods for Breast Cancer Detection”, Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26
  • [10] R. Nilavalan, A. Gbedemah, I.J. Craddock, X. Li ve S. C. Hagness, “Numerical Investigation of Breast Tumour Detectionusing Multi-Static Radar”. Electronics Letters 39(25):1787–1789
  • [11] A. M. Campbell ve D. V. Land, “Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz,” Physics in Medicine and Biology, vol. 37, no. 1, pp. 193–210, 1992.
  • [12] W. T. Joines, Y. Zhang, C. Li, ve R. L. Jirtle, “The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz,” Medical Physics, vol. 21, no. 4, pp. 547–550, 1994.
  • [13] M. Lazebnik, D. Popovic, L. McCartney et al., “A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained fromcancer surgeries,” Physics in Medicine and Biology, vol. 52, no.20, pp. 6093–6115, 2007.
  • [14] M. Okoniewski, M. Mrozowski, ve M. A. Stuchly, “Simple treatment of multi-term dispersion in fdtd,” IEEE Microwave and Guided Wave Letters, Vol. 7, 121–123, 1997.
  • [15] C. Gabriel, S. Gabriel, ve E. Corthout, “The dielectric properties of biological tissues: I. literature survey,” Phys. Med. Biol., Vol. 41, No. 11, 2231–2249, Nov. 1996.
  • [16] E. Zastrow, S. K. Davis, M. Lazebnik, F. Kelcz, B. D. V. Veen, ve S. Hagness, “Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast,” IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792–2800, Dec. 2008.
  • [17] E. J. Bond, X. Li, S. C. Hagness, ve B. D. V. Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Transactions on Antennas and Propagation, 1690– 1705, 2003.
  • [18] Zhang, H. Microwave Imaging for Ultra-Wideband Antenna Based Cancer Detection. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2015.
  • [19] J. Li, P. Stoica, Z. Wang, ”On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing 51(7):1702–1715, 2003.
  • [20] S.C. Hagness, A. Taflove and J. Bridges. "Three-Dimensional FDTD Analysis of a Pulsed Microwave Confocal System for Breast Cancer Detection: Design of an Antenna-Array Element". IEEE Transactıons On Antennas And Propagatıon, Vol. 47, No. 5, May 1999
  • [21] S. Hagness, A. Taflove, and J. Bridges, “Wideband ultralow reverberation antenna for biological sensing,” Electronics Letters, vol. 33, no. 19, pp. 1594-1595, 1997.
Year 2020, Volume: 11 Issue: 1, 151 - 160, 27.03.2020
https://doi.org/10.24012/dumf.687422

Abstract

Project Number

MÜHENDİSLİK.19.001

References

  • [1] S. Kwon ve S. Lee, “Recent Advances in Microwave Imaging for Breast Cancer Detection”, International Journal of Biomedical Imaging Volume 2016, Article ID 5054912, 25 pages
  • [2] A. Berrington de González ve S. Darby, “Risk of cancer from diagnosticX-rays:Estimatesfor the U.K.and 14 othercountries”, Lancet, vol. 363, no. 9406, pp. 345–351, Jan. 2004.
  • [3] S. S. Chaudhary, R. K. Mishra, A. Swarup, ve J. M. Thomas, “Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies,”, Indian Journal of Biochemistry and Biophysics, vol. 21, no. 1, pp. 76–79, 1984.
  • [4] A. J. Surowiec, S. S. Stuchly, J. R. Barr, ve A. Swarup, “Dielectric properties of breast carcinoma and the surrounding tissues,” International Journal of Biomedical Imaging 21 IEEE Transactions on Biomedical Engineering, vol. 35, no. 4, pp. 257–263, 1988.
  • [5] New public safety applications and broadband internet access among uses envisioned by FCC authorization of ultra-wideband technology FCC news release (February 14, 2002). Available at (http://ftp.fcc. Gov /Bureaus/ Engineering Technology/ News Releases/2002/ nret0203.pdf)
  • [6] S.C. Hagness, A. Taflove ve J. Bridges. “Two-Dimensional FDTD Analysis of a Pulsed Microwave Confocal System for Breast Cancer Detection: Fixed-Focus and Antenna-Array Sensors”, IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 45, NO. 12, DECEMBER 1998
  • [7] X. Li ve S. C. Hagness, “A confocal microwave imaging algorithm for breast cancer detection,” IEEE Microwave and Wireless Components Letters, vol. 11, no. 3, pp. 130–132, 2001.
  • [8] EC Fear, SC Hagness, Meaney, PM Okoniewski, MA Stuchly, “Enhancing breast tumor detection with near-field imaging. IEEE Microwave Magazine 3(1):48–56, 2002.
  • [9] B. Guo, Y. Wang, J. Li, P. Stoica ve R. Wu, “Microwave Imaging via Adaptive Beamforming Methods for Breast Cancer Detection”, Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26
  • [10] R. Nilavalan, A. Gbedemah, I.J. Craddock, X. Li ve S. C. Hagness, “Numerical Investigation of Breast Tumour Detectionusing Multi-Static Radar”. Electronics Letters 39(25):1787–1789
  • [11] A. M. Campbell ve D. V. Land, “Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz,” Physics in Medicine and Biology, vol. 37, no. 1, pp. 193–210, 1992.
  • [12] W. T. Joines, Y. Zhang, C. Li, ve R. L. Jirtle, “The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz,” Medical Physics, vol. 21, no. 4, pp. 547–550, 1994.
  • [13] M. Lazebnik, D. Popovic, L. McCartney et al., “A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained fromcancer surgeries,” Physics in Medicine and Biology, vol. 52, no.20, pp. 6093–6115, 2007.
  • [14] M. Okoniewski, M. Mrozowski, ve M. A. Stuchly, “Simple treatment of multi-term dispersion in fdtd,” IEEE Microwave and Guided Wave Letters, Vol. 7, 121–123, 1997.
  • [15] C. Gabriel, S. Gabriel, ve E. Corthout, “The dielectric properties of biological tissues: I. literature survey,” Phys. Med. Biol., Vol. 41, No. 11, 2231–2249, Nov. 1996.
  • [16] E. Zastrow, S. K. Davis, M. Lazebnik, F. Kelcz, B. D. V. Veen, ve S. Hagness, “Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast,” IEEE Transactions on Biomedical Engineering, Vol. 55, No. 12, 2792–2800, Dec. 2008.
  • [17] E. J. Bond, X. Li, S. C. Hagness, ve B. D. V. Veen, “Microwave imaging via space-time beamforming for early detection of breast cancer,” IEEE Transactions on Antennas and Propagation, 1690– 1705, 2003.
  • [18] Zhang, H. Microwave Imaging for Ultra-Wideband Antenna Based Cancer Detection. Ph.D. Thesis, The University of Edinburgh, Edinburgh, UK, 2015.
  • [19] J. Li, P. Stoica, Z. Wang, ”On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing 51(7):1702–1715, 2003.
  • [20] S.C. Hagness, A. Taflove and J. Bridges. "Three-Dimensional FDTD Analysis of a Pulsed Microwave Confocal System for Breast Cancer Detection: Design of an Antenna-Array Element". IEEE Transactıons On Antennas And Propagatıon, Vol. 47, No. 5, May 1999
  • [21] S. Hagness, A. Taflove, and J. Bridges, “Wideband ultralow reverberation antenna for biological sensing,” Electronics Letters, vol. 33, no. 19, pp. 1594-1595, 1997.
There are 21 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hüseyin Özmen

Muhammed Bahaddin Kurt

Project Number MÜHENDİSLİK.19.001
Publication Date March 27, 2020
Submission Date February 10, 2020
Published in Issue Year 2020 Volume: 11 Issue: 1

Cite

IEEE H. Özmen and M. B. Kurt, “Meme Kanseri Tümörlerinin Radar Tabanlı Mikrodalga Tekniği ile Görüntülenmesinde Bant Genişliğinin Çözünürlüğe Etkisinin İncelenmesi”, DUJE, vol. 11, no. 1, pp. 151–160, 2020, doi: 10.24012/dumf.687422.
DUJE tarafından yayınlanan tüm makaleler, Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır. Bu, orijinal eser ve kaynağın uygun şekilde belirtilmesi koşuluyla, herkesin eseri kopyalamasına, yeniden dağıtmasına, yeniden düzenlemesine, iletmesine ve uyarlamasına izin verir. 24456