Research Article
BibTex RIS Cite

The Resistance of Some Tomato Lines against Tomato Spotted Wild Virus, Tomato Yellow Leaf Curl Virus and Root Knot Nematodes (Meloidogyne spp.) by Molecular Markers

Year 2022, Volume: 5 Issue: 4, 401 - 405, 01.10.2022
https://doi.org/10.47115/bsagriculture.1161306

Abstract

In this study, it was attempted to determine the resistance of different tomato lines to tomato spotted wilt virus (TSWV), tomato yellow leaf curl virus (TYLCV), and root-origin nematodes (Meloidogyne spp.) using molecular DNA markers. For this purpose, out of 96 different tomato lines to be tested, Sw5-2 for resistance to tomato spotted wilt ripening virus (TSWV), Ty3P6-25 for resistance to tomato yellow leaf curl virus (TYLCV) and the DNA marker Mi23, which determines resistance to root-knot nematodes (Meloidogyne spp.), were used by PCR. In this study, Ty3P6-25, the marker that determines resistance to TYLCV, was found to be susceptible (rr) in 34 tomato lines, heterozygous resistant (Rr) in 56 tomato lines, and homozygous resistant (RR) in 4 tomato lines. In addition, no results were obtained in 2 tomato lines. Marker Sw5-2, which determines resistance to TSWV, was found to be homozygous susceptible (rr) in 57 tomato lines, heterozygous resistant (Rr) in 27 tomato lines, and homozygous resistant (RR) in 5 tomato lines. No results were obtained in 7 tomato lines. For the marker (Mi23) that determines resistance to root-knot nematodes (Meloidogyne spp.), 44 tomato lines were found to be homozygous susceptible (rr), 11 tomato lines were heterozygous resistant (Rr), and 35 tomato lines were homozygous resistant. No results were obtained for 6 tomato lines. It was concluded that the DNA molecular markers used are useful in determining resistance responses to TSWV, TYLCV and Meloidogyne spp. in tomato and can give reproducible and reliable results in a short time.

Supporting Institution

Scientific and Technological Research Council and İstanbul Tarım A.Ş.

Project Number

TEYDEB-1501- 3200930

Thanks

This work was supported by the Scientific and Technological Research Council under Grant [Number 3200930) and Istanbul Tarım AŞ.

References

  • Agrios GN. 2005. Plant pathology. Elsevier, New York, USA, 5th ed., pp. 702.
  • Crill P, Strobel JW, Burgis DS, Bryan HH, John CA, Everett PH, Hartz JA, Hayslip NC,vDeen WW. 1971. Florida MH-1, Florida’s first machine harvest fresh market tomato. Agri Exper Stat, Instit Food Agri Sci, Univ Florida, 12: 212.
  • Dianese EC, de Fonseca MEN, Goldbach R, Kormelink R, Inoue- Nagata AK, Resende RO, Boiteux LS. 2010. Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molec Breed, 25(1): 133-142.
  • Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus 12(1): 13-15.
  • Foolad MR, Panthee DR. 2012. Marker-assisted selection in tomato breeding. Critical Rev Plant Sci, 31(2): 93-123.
  • Gardner RG. 1982. NC50–7 breeding line, ‘Cherokee’ and ‘Mountain Pride’ tomato. Hort Sci, 23: 92–93.
  • Gardner RG. 2006. Plum Crimson fresh-market plum tomato hybrid and its parents, NC EBR-7 and NC EBR-8. Hort Sci 41: 259–260.
  • Jensen KS, Betteray BV, Smeets J, Ji Y, Scott JW, Mejía L, Havey MJ, Maxwell DP. 2007. Co-dominant SCAR marker, P6-25, for detection of the ty-3, Ty-3, and Ty-3a alleles at 25cM of chromosome 6 of tomato. College of Agricultural and Life Sciences at University of Wisconsin-Madison, and by grants from Unilever Bestfoods Ltd. and the Florida Tomato Committee to JW. Scott. p.25
  • Kiewnick S, Dessimoz M, Franck L. 2009. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars. J Nematol, 41: 134–139.
  • Luria N, Smith E, Reingold V, Bekelman I, Lapidot M, Levin I. 2017. A new Israeli tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS One 12: e01704.
  • Oğuz A. 2010. Bazı yerel domates genotiplerinde farklı yöntemler kullanılarak, domates lekeli solgunluk virüsü (Tomato spotted wilt virus=TSWV)’ne dayanıklılığın ve genetic varyasyonun araştırılması. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Türkiye, 178s.
  • Salem N, Mansour A, Ciuffo M, Falk BW, Turina M. 2016. A new tobamovirus infecting tomato crops in Jordan. Arch Vir, 161: 503–506.
  • Seah S, Williamson VM, Garcia BE, Mej´ıa L, Salus MS, Martin CT, Maxwell DP. 2007. Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Rep Tomato Genet Coop, 57: 37–40.
  • Tanksley SD. 1983. Molecular markers in plant breeding. Plant Mol Biol Rep, 1: 3–8.
  • Tanksley SD, Ganal MW, Prince JP, Devicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB. 1992. High-density molecular linkage maps of the tomato and potato genomes. Genetics, 132: 141–1160.
  • TUİK, 2020. Türkiye İstatistik Kurumu, http://www.tuik.gov.tr. (accessed date: August 08, 2021).
  • Wani SH, Sanghera GS, Singh NB. 2010. Biotechnology and plant disease control-role of RNA interference. American J Plant Sci, 1(2): 55-68.
  • Yılmaz F, Sipahioğlu M. 2020. Diyarbakır ili domates üretim alanlarındaki bazı önemli virüslerin moleküler yöntemler ile teşhisi ve moleküler karakterizasyonu. Bitki Koruma Bülten, 60(4): 49-58.
Year 2022, Volume: 5 Issue: 4, 401 - 405, 01.10.2022
https://doi.org/10.47115/bsagriculture.1161306

Abstract

Project Number

TEYDEB-1501- 3200930

References

  • Agrios GN. 2005. Plant pathology. Elsevier, New York, USA, 5th ed., pp. 702.
  • Crill P, Strobel JW, Burgis DS, Bryan HH, John CA, Everett PH, Hartz JA, Hayslip NC,vDeen WW. 1971. Florida MH-1, Florida’s first machine harvest fresh market tomato. Agri Exper Stat, Instit Food Agri Sci, Univ Florida, 12: 212.
  • Dianese EC, de Fonseca MEN, Goldbach R, Kormelink R, Inoue- Nagata AK, Resende RO, Boiteux LS. 2010. Development of a locus-specific, co-dominant SCAR marker for assisted-selection of the Sw-5 (Tospovirus resistance) gene cluster in a wide range of tomato accessions. Molec Breed, 25(1): 133-142.
  • Doyle JJ, Doyle JL. 1990. Isolation of plant DNA from fresh tissue. Focus 12(1): 13-15.
  • Foolad MR, Panthee DR. 2012. Marker-assisted selection in tomato breeding. Critical Rev Plant Sci, 31(2): 93-123.
  • Gardner RG. 1982. NC50–7 breeding line, ‘Cherokee’ and ‘Mountain Pride’ tomato. Hort Sci, 23: 92–93.
  • Gardner RG. 2006. Plum Crimson fresh-market plum tomato hybrid and its parents, NC EBR-7 and NC EBR-8. Hort Sci 41: 259–260.
  • Jensen KS, Betteray BV, Smeets J, Ji Y, Scott JW, Mejía L, Havey MJ, Maxwell DP. 2007. Co-dominant SCAR marker, P6-25, for detection of the ty-3, Ty-3, and Ty-3a alleles at 25cM of chromosome 6 of tomato. College of Agricultural and Life Sciences at University of Wisconsin-Madison, and by grants from Unilever Bestfoods Ltd. and the Florida Tomato Committee to JW. Scott. p.25
  • Kiewnick S, Dessimoz M, Franck L. 2009. Effects of the Mi-1 and the N root-knot nematode-resistance gene on infection and reproduction of Meloidogyne enterolobii on tomato and pepper cultivars. J Nematol, 41: 134–139.
  • Luria N, Smith E, Reingold V, Bekelman I, Lapidot M, Levin I. 2017. A new Israeli tobamovirus isolate infects tomato plants harboring Tm-22 resistance genes. PLoS One 12: e01704.
  • Oğuz A. 2010. Bazı yerel domates genotiplerinde farklı yöntemler kullanılarak, domates lekeli solgunluk virüsü (Tomato spotted wilt virus=TSWV)’ne dayanıklılığın ve genetic varyasyonun araştırılması. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Türkiye, 178s.
  • Salem N, Mansour A, Ciuffo M, Falk BW, Turina M. 2016. A new tobamovirus infecting tomato crops in Jordan. Arch Vir, 161: 503–506.
  • Seah S, Williamson VM, Garcia BE, Mej´ıa L, Salus MS, Martin CT, Maxwell DP. 2007. Evaluation of a co-dominant SCAR marker for detection of the Mi-1 locus for resistance to root-knot nematode in tomato germplasm. Rep Tomato Genet Coop, 57: 37–40.
  • Tanksley SD. 1983. Molecular markers in plant breeding. Plant Mol Biol Rep, 1: 3–8.
  • Tanksley SD, Ganal MW, Prince JP, Devicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB. 1992. High-density molecular linkage maps of the tomato and potato genomes. Genetics, 132: 141–1160.
  • TUİK, 2020. Türkiye İstatistik Kurumu, http://www.tuik.gov.tr. (accessed date: August 08, 2021).
  • Wani SH, Sanghera GS, Singh NB. 2010. Biotechnology and plant disease control-role of RNA interference. American J Plant Sci, 1(2): 55-68.
  • Yılmaz F, Sipahioğlu M. 2020. Diyarbakır ili domates üretim alanlarındaki bazı önemli virüslerin moleküler yöntemler ile teşhisi ve moleküler karakterizasyonu. Bitki Koruma Bülten, 60(4): 49-58.
There are 18 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Hüseyin Basım 0000-0002-8059-3680

Osman Kandil 0000-0003-3806-423X

Ramazan İğdirli 0000-0001-9155-4970

Mehmet Mor 0000-0002-5381-3174

Project Number TEYDEB-1501- 3200930
Publication Date October 1, 2022
Submission Date August 12, 2022
Acceptance Date August 29, 2022
Published in Issue Year 2022 Volume: 5 Issue: 4

Cite

APA Basım, H., Kandil, O., İğdirli, R., Mor, M. (2022). The Resistance of Some Tomato Lines against Tomato Spotted Wild Virus, Tomato Yellow Leaf Curl Virus and Root Knot Nematodes (Meloidogyne spp.) by Molecular Markers. Black Sea Journal of Agriculture, 5(4), 401-405. https://doi.org/10.47115/bsagriculture.1161306

                                                  24890