Research Article
BibTex RIS Cite

Sülfodiazin, Sülfomerazin ve Sülfometazinin İyonlaşma Sabitlerinin Potansiyometrik Titrasyon Yöntemi ile Tayini

Year 2020, Volume: 9 Issue: 3, 1071 - 1079, 26.09.2020
https://doi.org/10.17798/bitlisfen.664126

Abstract

Bu çalışmada sülfonamit grubu ilaçlardan sülfodiazin, sülfomerazin ve sülfometazinin biyolojik sıvılardaki çözünürlük, lipofilisite, asitlik, transfer davranışı, reseptörlere bağlanma ve geçirgenlik gibi özellikleri hakkında kritik bilgiler elde etmemizi sağlayan iyonlaşma sabiti değerleri potansiyometrik titrasyon yöntemiyle tayin edilmiştir. Bileşiklerin suda çözünürlükleri az olması sebebiyle belirli yüzdelerde metanol-su (v/v) ikili karışımlarında 25oC’de çalışılmış ve verilerin değerlendirilmesinde PKPOT programı ile Gran metodu kullanılmıştır. Metanol-su ortamında hesaplanan iyonlaşma sabiti değerlerinden sudaki iyonlaşma sabiti değerlerine geçişte Yasuda- Shedlovsky ekstrapolasyon yöntemi kullanılmıştır. Sülfodiazin için iyonlaşma sabiti değerleri 2,915-6,936; sülfomerazin için 2,734-6,955; sülfometazin için ise 2,466-7,537 olarak bulunmuştur. İyonlaşma sabitlerinin potansiyometrik titrasyon yöntemiyle tayininden elde edilen veriler bu ilaç aktif bileşiklerle çalışan araştırmacılara bilgi kaynağı oluşturacaktır.

Supporting Institution

Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Yönetim Birimi

Project Number

YL-1060

Thanks

Bu çalışma Yüksek Lisans Tez Projesi olarak, Bilimsel Araştırma Projeleri Yönetim Birimi tarafından YL-1060 numaralı proje olarak desteklenmiştir. Süleyman Demirel Üniversitesi Araştırma Projeleri Yönetim birimine teşekkür ederim.

References

  • 1. Kishore D., Pareek A. 2013. A short review on sulphonamides, International journal of pharma and bio sciences, 4 : 812-820.
  • 2. Gomes J.R.B., Gomes P. 2005. Gas-phase acidity of sulfonamides: implications for reactivity and prodrug design, Tetrahedron, 61: 2705-2712.
  • 3. Özalp E.A.D., 2002. Farmakoloji, Nobel Tıp Kitabevleri, 804s. İstanbul.
  • 4. Yousef F., Mansour O., Herbali J. 2018. Sulfonamides: Historical Discovery Development (Structure-Activity Relationship Notes), In-vitro In-vivo In-silico Journal, 1 (1): 1-15.
  • 5. Dragostin O.M.P, Lapuşcu F.G, Pânzariu A, Vasincu I.G, Profire L. 2013. Importance of Sulfonamide Moiety in Current and Future Theraphy, Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi. 117 (2): 558-564.
  • 6. Demiralay E.Ç., Basat D., Canbay H.S., Alsancak G., Uslu B. 2012. Determination of pKa values of opipramol in acetonitrile-water binary mixtures by using chromatographic and spectrophotometric methods, Global Journal of Analytical Chemistry, 3 (11): 1-9.
  • 7. Rossotti J.C., Rossotti H. 1961. The Determination of Stability Constants. McGraw-Hill, 425s. New York.
  • 8. Paul W.W., Lois E.W. 1966. Spectrophotometric determination of the acid dissociation constants of 3-hydroxypyridine, Analytical Biochemistry, 15 (3): 421-425.
  • 9. Demiralay E.Ç., Yılmaz H. 2012. Potentiometric pKa Determination of Piroxicam and Tenoxicam in Acetonitrile-Water Binary Mixtures, SDU Journal of Science,7 (1): 34-44.
  • 10. Benet L.Z., Goyan J.E. 1967. Potentiometric determination of dissociation constants, Journal of Pharmaceutical Sciences, 56 (6): 665-680.
  • 11. Sixma F.L.J., Wynberg H. 1964. A Manual of Physical Methods in Organic Chemistry, John Wiley & Sons, Inc., 342s. New York.
  • 12. Kroflic A., Apelblat A., Bešter-Rogac M. 2012. Dissociation constants of parabens and limiting conductances of their ions in water, The Journal of Physical Chemistry B. 116 (4): 1385-1392.
  • 13. Rabenstein D.L., Sayer T.L. 1976. Determination of microscopic acid dissociation constants by nuclear magnetic resonance spectrometry, Analytical Chemistry. 48 (8): 1141-1146.
  • 14. Zimmerman I. 1982. Determination of pKa values from solubility data, International Journal of Pharmaceutics. 13 (1): 57-65.
  • 15. Horvath C., Melander W., Molnár I. 1977. Liquid chromatography of ionogenic substances with nonpolar stationary phases (Solvophobic Theory of Reversed Phase Chromatography, Part II), Analytical Chemistry. 49 (1): 142-154.
  • 16. Demiralay E.Ç., Alsancak G., Ozkan S.A. 2009. Determination of pKa values of nonsteroidal antiinflammatory drug-oxicams by RP-HPLC and their analysis in pharmaceutical dosage forms, Journal of Separation Science. 32 (17): 2928-2936.
  • 17. Beltran J.L., Sanli N., Fonrodona G., Barron D., Özkan A.G., Barbosa J. 2003. Spectrophotometric potentiometric and chromatographic pKa values of polyphenolic substances in water and acetonitrile water media, Analytica Chimica Acta. 484 (2): 253-264.
  • 18. Chung T.D., Kim H. 2001. Voltammetric determination of the pKa of various acids in polar aprotic solvents using 1,4-benzoquinone, Journal of Electroanalytical Chemistry. 498 (1-2), 209-215.
  • 19. Tajc S.G., Tolbert B.S., Basavappa R., Mille, B.L. 2004. Direct determination of thiol pKa by isothermal titration microcalorimetry, Journal of the American Chemical Society. 126 (34): 10508-10509.
  • 20. Fuguet E., Ràfols C., Bosch E., Roses M. 2009. Fast highthroughput method for the determination of acidity constants by capillary electrophoresis, Journal of Chromatography A. 1216 (17): 3646-3651.
  • 21. Rosenberg L.S., Simons J., Schulman S.G. 1979. Determination of pKa values of N-heterocyclic bases by fluorescence spectrophotometry, Talanta. 26 (9): 867-871.
  • 22. Katzin L.I., Gulyas E. 1960. Dissociation constants of tartaric acid with the aid of polarimetry. Journal of Physical Chemistry. 64 (11): 1739-1741.
  • 23. Bunnett J.F., Nudelman N.S. 1969. Independent, Kinetic Method for Determining Acid Dissociation Constants in Methanol, Journal of Organic Chemistry. 34 (7): 2043-2046.
  • 24. Tehan B.G., Lloyd E.J., Wong M.G., Pitt W.R., Montana J.G. 2002. Estimation of pKa using semi empirical molecular orbital methods. Part 1: Application to phenols and carboxylic acids, QSAR. 21 (5): 457-472.
  • 25. Gran G., 1952. Determination of the equvalence points in potentiometric titrations.Part II, Analyst. 77, 661-671.
  • 26. Gran G., 1988. Equivalence volumes in potentiometric titrations, Analytica Chimica Acta. 206, 111-123.
  • 27. Levie R., 1997. Principles of quantitative chemical analysis, 737s, Singapore.
  • 28. Yasuda M. 1959. Dissociation constants of some carboxylic acids in mixed aqueous solvents, Bulletin of the Chemical Society of Japan. 32: 429-432.
  • 29. Shedlovsky T., Pesce B (Ed.) 1962. Electrolytes, Pergamon, New York.
  • 30. Barbosa J., Barrón D., Beltrán J.L., Nebot V.S. 1995. PKPOT, a program for the potentiometric study of ionic equilibria in aqueous and non-aqueous media, Analytica Chimica Acta. 317: 75-81.
  • 31. Sanli N., Sanli S., Özkan G., Denizli A. 2010. Determination of pKa Values of Some Sulfonamides by LC and LC-PDA Methods in Acetonitrile-Water Binary Mixtures. The Journal of the Brazilian Chemical Society. 21(10): 1952-1960.
  • 32. Lin C.E., Chang C.C., Lin W.C. J. 1997. Migration behavior and separation of sulfonamides in capillary zone electrophoresis III. Citrate buffer as a background electrolyte, Journal of Chromatography A, 768: 105-112.
  • 33. Babić S., Horvat A.J.M., Pavlović D.M., Macan M.K. 2007. Determination of pKa values of active pharmaceutical ingredients, Trends in Analytical Chemistry. 26(11): 1043-1061.
  • 34. Benet L.Z., Goyan J.E. 1967. Potentiometric determination of dissociation constants, Journal of Pharmaceutical Sciences. 56: 665–80.
  • 35. Albert A., Serjeant E.P. 1984. The Determination of Ionization Constants, Chapman and Hall, London.
  • 36. Altun, Y. 2004. Study of Solvent Composition Effects on the Protonation Equilibria of Various Anilines by Multiple Linear Regression and Factor Analysis Applied to the Correlation Between Protonation Constants and Solvatochromic Parameters in Ethanol–Water Mixed Solvents. Journal of Solution Chemistry. 33 (5): 479-497.
  • 37. Polster J., Lachmann H. 1989. Spectrometric Titrations: Analysis of Chemical Equilibria, VCH Publishers: Weinheim.
  • 38. Maren T.H., Conroy C.W. 1993. A New Class of Carbonic Anhydrase Inhibito, The Journal of Bıologıcal Chemıst., 268 (35): 26233-9.
  • 39. Völgyi G., Ruiz R.,. Box K, Comer J., Bosch E., Takács-Novák K., 2007. Potentiometric and spectrophotometric pKa determination of water-insoluble compounds: validation study in a new cosolvent system. Anal. Chim. Acta. 583 (2): 418-428.
  • 40. Qiang Z., Adams C., 2004. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 38 (12): 2874-90.
  • 41. Lin C.E., Chang C.C., Lin W.C., 1997. Migration behavior and separation of sulfonamides in capillary zone electrophoresis II. Positively charged species at low pH, Journal of Chromatography A, 759 (1-2): 203-209.
  • 42. Ricci M.C., Cross R.F. 1993. Capillary electrophoresis seperation of sulphonamides and dihydrofolate reductase inhibitors, J. Microcol. Sep. 5: 207-215.
  • 43. Maren T.H., Conroy C.W. J. 1993. Biol. Chem., 268, 26233.
  • 44. Guttmann V. 1960. Coordination Chemistry in Nonaqueous Solutions, Springer, New York.
Year 2020, Volume: 9 Issue: 3, 1071 - 1079, 26.09.2020
https://doi.org/10.17798/bitlisfen.664126

Abstract

Project Number

YL-1060

References

  • 1. Kishore D., Pareek A. 2013. A short review on sulphonamides, International journal of pharma and bio sciences, 4 : 812-820.
  • 2. Gomes J.R.B., Gomes P. 2005. Gas-phase acidity of sulfonamides: implications for reactivity and prodrug design, Tetrahedron, 61: 2705-2712.
  • 3. Özalp E.A.D., 2002. Farmakoloji, Nobel Tıp Kitabevleri, 804s. İstanbul.
  • 4. Yousef F., Mansour O., Herbali J. 2018. Sulfonamides: Historical Discovery Development (Structure-Activity Relationship Notes), In-vitro In-vivo In-silico Journal, 1 (1): 1-15.
  • 5. Dragostin O.M.P, Lapuşcu F.G, Pânzariu A, Vasincu I.G, Profire L. 2013. Importance of Sulfonamide Moiety in Current and Future Theraphy, Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi. 117 (2): 558-564.
  • 6. Demiralay E.Ç., Basat D., Canbay H.S., Alsancak G., Uslu B. 2012. Determination of pKa values of opipramol in acetonitrile-water binary mixtures by using chromatographic and spectrophotometric methods, Global Journal of Analytical Chemistry, 3 (11): 1-9.
  • 7. Rossotti J.C., Rossotti H. 1961. The Determination of Stability Constants. McGraw-Hill, 425s. New York.
  • 8. Paul W.W., Lois E.W. 1966. Spectrophotometric determination of the acid dissociation constants of 3-hydroxypyridine, Analytical Biochemistry, 15 (3): 421-425.
  • 9. Demiralay E.Ç., Yılmaz H. 2012. Potentiometric pKa Determination of Piroxicam and Tenoxicam in Acetonitrile-Water Binary Mixtures, SDU Journal of Science,7 (1): 34-44.
  • 10. Benet L.Z., Goyan J.E. 1967. Potentiometric determination of dissociation constants, Journal of Pharmaceutical Sciences, 56 (6): 665-680.
  • 11. Sixma F.L.J., Wynberg H. 1964. A Manual of Physical Methods in Organic Chemistry, John Wiley & Sons, Inc., 342s. New York.
  • 12. Kroflic A., Apelblat A., Bešter-Rogac M. 2012. Dissociation constants of parabens and limiting conductances of their ions in water, The Journal of Physical Chemistry B. 116 (4): 1385-1392.
  • 13. Rabenstein D.L., Sayer T.L. 1976. Determination of microscopic acid dissociation constants by nuclear magnetic resonance spectrometry, Analytical Chemistry. 48 (8): 1141-1146.
  • 14. Zimmerman I. 1982. Determination of pKa values from solubility data, International Journal of Pharmaceutics. 13 (1): 57-65.
  • 15. Horvath C., Melander W., Molnár I. 1977. Liquid chromatography of ionogenic substances with nonpolar stationary phases (Solvophobic Theory of Reversed Phase Chromatography, Part II), Analytical Chemistry. 49 (1): 142-154.
  • 16. Demiralay E.Ç., Alsancak G., Ozkan S.A. 2009. Determination of pKa values of nonsteroidal antiinflammatory drug-oxicams by RP-HPLC and their analysis in pharmaceutical dosage forms, Journal of Separation Science. 32 (17): 2928-2936.
  • 17. Beltran J.L., Sanli N., Fonrodona G., Barron D., Özkan A.G., Barbosa J. 2003. Spectrophotometric potentiometric and chromatographic pKa values of polyphenolic substances in water and acetonitrile water media, Analytica Chimica Acta. 484 (2): 253-264.
  • 18. Chung T.D., Kim H. 2001. Voltammetric determination of the pKa of various acids in polar aprotic solvents using 1,4-benzoquinone, Journal of Electroanalytical Chemistry. 498 (1-2), 209-215.
  • 19. Tajc S.G., Tolbert B.S., Basavappa R., Mille, B.L. 2004. Direct determination of thiol pKa by isothermal titration microcalorimetry, Journal of the American Chemical Society. 126 (34): 10508-10509.
  • 20. Fuguet E., Ràfols C., Bosch E., Roses M. 2009. Fast highthroughput method for the determination of acidity constants by capillary electrophoresis, Journal of Chromatography A. 1216 (17): 3646-3651.
  • 21. Rosenberg L.S., Simons J., Schulman S.G. 1979. Determination of pKa values of N-heterocyclic bases by fluorescence spectrophotometry, Talanta. 26 (9): 867-871.
  • 22. Katzin L.I., Gulyas E. 1960. Dissociation constants of tartaric acid with the aid of polarimetry. Journal of Physical Chemistry. 64 (11): 1739-1741.
  • 23. Bunnett J.F., Nudelman N.S. 1969. Independent, Kinetic Method for Determining Acid Dissociation Constants in Methanol, Journal of Organic Chemistry. 34 (7): 2043-2046.
  • 24. Tehan B.G., Lloyd E.J., Wong M.G., Pitt W.R., Montana J.G. 2002. Estimation of pKa using semi empirical molecular orbital methods. Part 1: Application to phenols and carboxylic acids, QSAR. 21 (5): 457-472.
  • 25. Gran G., 1952. Determination of the equvalence points in potentiometric titrations.Part II, Analyst. 77, 661-671.
  • 26. Gran G., 1988. Equivalence volumes in potentiometric titrations, Analytica Chimica Acta. 206, 111-123.
  • 27. Levie R., 1997. Principles of quantitative chemical analysis, 737s, Singapore.
  • 28. Yasuda M. 1959. Dissociation constants of some carboxylic acids in mixed aqueous solvents, Bulletin of the Chemical Society of Japan. 32: 429-432.
  • 29. Shedlovsky T., Pesce B (Ed.) 1962. Electrolytes, Pergamon, New York.
  • 30. Barbosa J., Barrón D., Beltrán J.L., Nebot V.S. 1995. PKPOT, a program for the potentiometric study of ionic equilibria in aqueous and non-aqueous media, Analytica Chimica Acta. 317: 75-81.
  • 31. Sanli N., Sanli S., Özkan G., Denizli A. 2010. Determination of pKa Values of Some Sulfonamides by LC and LC-PDA Methods in Acetonitrile-Water Binary Mixtures. The Journal of the Brazilian Chemical Society. 21(10): 1952-1960.
  • 32. Lin C.E., Chang C.C., Lin W.C. J. 1997. Migration behavior and separation of sulfonamides in capillary zone electrophoresis III. Citrate buffer as a background electrolyte, Journal of Chromatography A, 768: 105-112.
  • 33. Babić S., Horvat A.J.M., Pavlović D.M., Macan M.K. 2007. Determination of pKa values of active pharmaceutical ingredients, Trends in Analytical Chemistry. 26(11): 1043-1061.
  • 34. Benet L.Z., Goyan J.E. 1967. Potentiometric determination of dissociation constants, Journal of Pharmaceutical Sciences. 56: 665–80.
  • 35. Albert A., Serjeant E.P. 1984. The Determination of Ionization Constants, Chapman and Hall, London.
  • 36. Altun, Y. 2004. Study of Solvent Composition Effects on the Protonation Equilibria of Various Anilines by Multiple Linear Regression and Factor Analysis Applied to the Correlation Between Protonation Constants and Solvatochromic Parameters in Ethanol–Water Mixed Solvents. Journal of Solution Chemistry. 33 (5): 479-497.
  • 37. Polster J., Lachmann H. 1989. Spectrometric Titrations: Analysis of Chemical Equilibria, VCH Publishers: Weinheim.
  • 38. Maren T.H., Conroy C.W. 1993. A New Class of Carbonic Anhydrase Inhibito, The Journal of Bıologıcal Chemıst., 268 (35): 26233-9.
  • 39. Völgyi G., Ruiz R.,. Box K, Comer J., Bosch E., Takács-Novák K., 2007. Potentiometric and spectrophotometric pKa determination of water-insoluble compounds: validation study in a new cosolvent system. Anal. Chim. Acta. 583 (2): 418-428.
  • 40. Qiang Z., Adams C., 2004. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics. Water Res. 38 (12): 2874-90.
  • 41. Lin C.E., Chang C.C., Lin W.C., 1997. Migration behavior and separation of sulfonamides in capillary zone electrophoresis II. Positively charged species at low pH, Journal of Chromatography A, 759 (1-2): 203-209.
  • 42. Ricci M.C., Cross R.F. 1993. Capillary electrophoresis seperation of sulphonamides and dihydrofolate reductase inhibitors, J. Microcol. Sep. 5: 207-215.
  • 43. Maren T.H., Conroy C.W. J. 1993. Biol. Chem., 268, 26233.
  • 44. Guttmann V. 1960. Coordination Chemistry in Nonaqueous Solutions, Springer, New York.
There are 44 citations in total.

Details

Primary Language Turkish
Journal Section Araştırma Makalesi
Authors

Dilara Dereli 0000-0003-1328-077X

Abbase Güleren Alsancak 0000-0001-5889-1537

Project Number YL-1060
Publication Date September 26, 2020
Submission Date December 24, 2019
Acceptance Date April 9, 2020
Published in Issue Year 2020 Volume: 9 Issue: 3

Cite

IEEE D. Dereli and A. G. Alsancak, “Sülfodiazin, Sülfomerazin ve Sülfometazinin İyonlaşma Sabitlerinin Potansiyometrik Titrasyon Yöntemi ile Tayini”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 9, no. 3, pp. 1071–1079, 2020, doi: 10.17798/bitlisfen.664126.

Bitlis Eren University
Journal of Science Editor
Bitlis Eren University Graduate Institute
Bes Minare Mah. Ahmet Eren Bulvari, Merkez Kampus, 13000 BITLIS