Research Article
BibTex RIS Cite

Neonikotinoid insektisit thiamethoxamın Oreochromis niloticus’ta oksidatif stres parametreleri üzerine etkisi

Year 2018, Volume: 20 Issue: 2, 224 - 234, 01.12.2018
https://doi.org/10.25092/baunfbed.427757

Abstract

Araştırmamızda neonikotinoid insektisit olan thiamethoxamın toksik etkileri, Nil tilapyası Oreochromis niloticus’ta oksidatif stres parametreleri ile araştırılmıştır. Bu amaçla balıklar 4 ve 14 günlük sürelerle 60 ve 120 mg/L thiamethoxam etkisine bırakılmış ve solungaç ve bağırsak dokularındaki katalaz (CAT) ve süperoksit dismutaz (SOD) aktiviteleri ile glutatyon (GSH) ve malondialdehit (MDA) düzeyleri belirlenmiştir. Thiamethoxamın etkisinde özellikle de yüksek ortam derişiminde CAT aktivitesinde solungaç ve bağırsak dokularında 4 günlük süre sonunda anlamlı bir artış; 14 günlük süre sonunda ise solungaç dokusunda anlamlı bir azalış belirlenmiştir (P˂0.05). SOD aktivitesi solungaçta her iki etki süresi sonunda insektisidin düşük ve yüksek ortam derişimlerinde; bağırsakta ise 14 günlük süre sonunda ve yüksek ortam derişiminde artış göstermiştir (P˂0.05). GSH düzeyi özellikle de 120 mg/L thiametoxam etkisinde her iki dokuda da 4 günlük süre sonunda anlamlı bir artış; 14 günlük süre sonunda ise önemli bir azalış göstermiştir (P˂0.05). Solungaç ve bağırsak dokularındaki MDA düzeyi ise, 14 günlük süre sonunda thiametoxamın yüksek ortam derişiminde önemli düzeyde artmıştır (P˂0.05). Sonuç olarak çalışmamız, thiametoxamın özellikle de yüksek ortam derşiminde O. niloticus’ta oksidatif strese neden olduğunu göstermektedir. 

References

  • Kovganko, N.V. ve Kashkan ZhN., Advances in the synthesis of neonicotinoids, Russian Journal of Organic Chemistry, 40(12), 1709-1726, (2004).
  • Jeschke, P., Nauen, R., Schindler, M. ve Elbert, A., Overview of the status and global strategy for neonicotinoids, Journal of Agricultural and Food Chemistry, 59, 2897–2908, (2011).
  • Casida, J.E. ve Durkin, K.A., Neuroactive insecticides: targets, selectivity, resistance, and secondary effects, Annual Review of Entomology, 58, 99–117, (2013).
  • Thany, S.H., Neonicotinoid insecticides: Historical evolution and resistance mechanisms, Advances in Experimental Medicine and Biology, 683, 75–83, (2010).
  • Karmakar, R. ve Kulshrestha, G., Persistence, metabolism and safety evaluation of thiamethoxam in tomato crop, Pest Management Science, 65, 931–937, (2009).
  • Laycock, I., Cotterell, K.C., O’Shea-Wheller, T.A. ve Cresswell, J.E., Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees, Ecotoxicology and Environmental Safety, 100, 153–158, (2014).
  • European Commission., Europa press release—Bees & pesticides: Commission to proceed with plan to better protect bees, (2013). http://europa.eu/rapid/press-release_IP-13- 379_en.htm, (11, 2014).
  • Maienfisch, P., Angst, M., Brandl, F., Fischer, W., Hofer, D., Kayser, H., Kobel, W., Rindlisbacher, A., Senn, R., Steinemann, A. ve Widmer, H., Chemistry and biology of thiamethoxam: a second generation neonicotinoid, Pest Management Science, 57, 906-913, (2001).
  • Yonar, M.E. ve Sakin, F., Ameliorative effect of lycopene on antioxidant status in Cyprinus carpio during pyrethroid deltamethrin exposure, Pesticide Biochemistry and Physiology, 99, 226–231, (2011).
  • Zirong, X. ve Shijun, B., Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver, Ecotoxicology and Environmental Safety, 67, 89–94, (2007).
  • Toroser, D., Orr, W.C. ve Sohal, R.S., Carbonylation of mitochondrial proteins in Drosophila melanogaster during aging, Biochemical and Biophysical Research Communications, 363, 418–424, (2007).
  • Albinati, A.C.L., Albinati, R.C.B., Lira, A.D. ve Soares, P.C., Acute toxicity and ecotoxicological risk of thiamethoxam insecticide in nile tilapia fingerlings, Brazilian Journal of Veterinary and Animal Science, 68, 1343-1350, (2016).
  • Lartillot, S., Kadziora, P. ve Athios, A., Purification and characterization of new fungal catalase, Preparative Biochemistry, 18(3), 241-246, (1988).
  • Sun, Y., Oberley, L.W. ve Li, Y., A simple method for clinical assay of superoxide dismutase, Clinical Chemistry, 34, 497-500, (1988).
  • Beutler, E., Red cell metabolism: a manual of biochemical methods 2nd. ed., Grune and Stration Company, New York, (1975).
  • Dubovskiy, I.M., Martemyanov, V.V., Vorontsova, Y.L., Rantala, M.J., Gryzanova, E.V. ve Glupov, V.V., Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae), Comparative Biochemistry and Physiology, 148, 1–5, (2008).
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. ve Randall, R.J., Protein measurements with the folin phenol reagent, Journal of Biological Chemistry, 193, 265-275, (1951).
  • Bose, S., Nath, S. ve Sahana, S.S., Toxic impact of thiıamethoxam on the growth performance and liver protein concentration of a freshwater fish Oreochromis niloticus (Trewavas), Indian Journal of Fundamental and Applied Life Science, 1(4), 274-280, (2011).
  • Yan, S.H., Wang, J.H., Zhu, L.S., Chen, A.M. ve Wang, J., Toxic effects of nitenpyram on antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers, Ecotoxicology and Environmental Safety, 122, 54–60, (2015).
  • Tutuş, R., Oreochromis niloticus’un karaciğer dokusundaki antioksidan sistemler ve lipid peroksidasyonu üzerine chlorpyrifos, emamectin benzoate ve abamectin türü pestisitlerin etkileri, Yüksek Lisans Tezi, Adıyaman Üniversitesi, Fen Bilimleri Enstitüsü, Adıyaman, (2016).
  • Ballesteros, M.L., Wunderlin, D.A. ve Bistoni, M.A., Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan, Ecotoxicology and Environmental Safety, 72, 199–205, (2009).
  • Yan, S.H., Wang, J.H., Zhu, L.S., Chen, A.M. ve Wang, J., Thiamethoxam induces oxidative stress and antioxidant response in zebrafish (Danio rerio) Livers, Environmental Toxicology, 3, 2006-2015, (2016).
  • Kavitha, P. ve Venkateswara Rao, J., Oxidative stress and locomotor behaviour response as biomarkers for assessing recovery status of mosquito fish, Gambusia affinis after lethal effect of an organophosphate pesticide, monocrotophos. Pesticide Biochemistry and Physiology, 87, 182–188, (2007).
  • Elia, A.C., Galarini, R., Dorr, A.J.M. ve Taticchi, M.I., Bioaccumulation of heavy metals, organochlorine pesticides, and detoxication biochemical indexes in tissues of Ictalurus melas of lake Trasimeno, Bulletin of Environmental Contamination and Toxicology, 76, 132–139, (2006).
  • Zhang, J.F., Shen, H., Wang, X.R., Wu, J.C. ve Xue, Y.Q., Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus, Chemosphere, 55, 167–174, (2004).

Effect of neonicotinoid insectiside thiamethoxam on oxidative stress parameters in Oreochromis niloticus

Year 2018, Volume: 20 Issue: 2, 224 - 234, 01.12.2018
https://doi.org/10.25092/baunfbed.427757

Abstract

In our study, toxic effects of thiamethoxam, a neonicotinoid insectiside, were investigated by oxidative stress parameters in Nile tilapia, Oreochromis niloticus. For this purpose fish were exposed to 60 and 120 mg/L thiamethoxam for 4 and 14 days and activities of catalase (CAT) and superoxide dismutase (SOD) and levels of glutathione (GSH) and malondialdehyde (MDA) in the gill and intestine were determined. In exposure of thiametoxam especially in its higher medium concentration, it was determined a significant increase in CAT activities of gill and intestine tissues after 4 days and a significant decrease in its activity of gill after 14 days (P˂0.05). SOD activity elevated in gill in all the tested concentrations of thiamethoxam after both exposure periods and in intestine in its higher concentration at 14 days (P<0.05). In both gill and intestine tissues, especially in higher medium concentration of thiamethoxam GSH levels indicated significantly an increase after 4 days and a decline after 14 days (P˂0.05). MDA levels in the both tissues significantly elevated in exposed to higher concentration of thiamethoxam at the end of the exposure period (P<0.05). In conclusion the present research showed that exposure of thiamethoxam, especially its higher concentration, caused oxidative stress in O. niloticus.

References

  • Kovganko, N.V. ve Kashkan ZhN., Advances in the synthesis of neonicotinoids, Russian Journal of Organic Chemistry, 40(12), 1709-1726, (2004).
  • Jeschke, P., Nauen, R., Schindler, M. ve Elbert, A., Overview of the status and global strategy for neonicotinoids, Journal of Agricultural and Food Chemistry, 59, 2897–2908, (2011).
  • Casida, J.E. ve Durkin, K.A., Neuroactive insecticides: targets, selectivity, resistance, and secondary effects, Annual Review of Entomology, 58, 99–117, (2013).
  • Thany, S.H., Neonicotinoid insecticides: Historical evolution and resistance mechanisms, Advances in Experimental Medicine and Biology, 683, 75–83, (2010).
  • Karmakar, R. ve Kulshrestha, G., Persistence, metabolism and safety evaluation of thiamethoxam in tomato crop, Pest Management Science, 65, 931–937, (2009).
  • Laycock, I., Cotterell, K.C., O’Shea-Wheller, T.A. ve Cresswell, J.E., Effects of the neonicotinoid pesticide thiamethoxam at field-realistic levels on microcolonies of Bombus terrestris worker bumble bees, Ecotoxicology and Environmental Safety, 100, 153–158, (2014).
  • European Commission., Europa press release—Bees & pesticides: Commission to proceed with plan to better protect bees, (2013). http://europa.eu/rapid/press-release_IP-13- 379_en.htm, (11, 2014).
  • Maienfisch, P., Angst, M., Brandl, F., Fischer, W., Hofer, D., Kayser, H., Kobel, W., Rindlisbacher, A., Senn, R., Steinemann, A. ve Widmer, H., Chemistry and biology of thiamethoxam: a second generation neonicotinoid, Pest Management Science, 57, 906-913, (2001).
  • Yonar, M.E. ve Sakin, F., Ameliorative effect of lycopene on antioxidant status in Cyprinus carpio during pyrethroid deltamethrin exposure, Pesticide Biochemistry and Physiology, 99, 226–231, (2011).
  • Zirong, X. ve Shijun, B., Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver, Ecotoxicology and Environmental Safety, 67, 89–94, (2007).
  • Toroser, D., Orr, W.C. ve Sohal, R.S., Carbonylation of mitochondrial proteins in Drosophila melanogaster during aging, Biochemical and Biophysical Research Communications, 363, 418–424, (2007).
  • Albinati, A.C.L., Albinati, R.C.B., Lira, A.D. ve Soares, P.C., Acute toxicity and ecotoxicological risk of thiamethoxam insecticide in nile tilapia fingerlings, Brazilian Journal of Veterinary and Animal Science, 68, 1343-1350, (2016).
  • Lartillot, S., Kadziora, P. ve Athios, A., Purification and characterization of new fungal catalase, Preparative Biochemistry, 18(3), 241-246, (1988).
  • Sun, Y., Oberley, L.W. ve Li, Y., A simple method for clinical assay of superoxide dismutase, Clinical Chemistry, 34, 497-500, (1988).
  • Beutler, E., Red cell metabolism: a manual of biochemical methods 2nd. ed., Grune and Stration Company, New York, (1975).
  • Dubovskiy, I.M., Martemyanov, V.V., Vorontsova, Y.L., Rantala, M.J., Gryzanova, E.V. ve Glupov, V.V., Effect of bacterial infection on antioxidant activity and lipid peroxidation in the midgut of Galleria mellonella L. larvae (Lepidoptera, Pyralidae), Comparative Biochemistry and Physiology, 148, 1–5, (2008).
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. ve Randall, R.J., Protein measurements with the folin phenol reagent, Journal of Biological Chemistry, 193, 265-275, (1951).
  • Bose, S., Nath, S. ve Sahana, S.S., Toxic impact of thiıamethoxam on the growth performance and liver protein concentration of a freshwater fish Oreochromis niloticus (Trewavas), Indian Journal of Fundamental and Applied Life Science, 1(4), 274-280, (2011).
  • Yan, S.H., Wang, J.H., Zhu, L.S., Chen, A.M. ve Wang, J., Toxic effects of nitenpyram on antioxidant enzyme system and DNA in zebrafish (Danio rerio) livers, Ecotoxicology and Environmental Safety, 122, 54–60, (2015).
  • Tutuş, R., Oreochromis niloticus’un karaciğer dokusundaki antioksidan sistemler ve lipid peroksidasyonu üzerine chlorpyrifos, emamectin benzoate ve abamectin türü pestisitlerin etkileri, Yüksek Lisans Tezi, Adıyaman Üniversitesi, Fen Bilimleri Enstitüsü, Adıyaman, (2016).
  • Ballesteros, M.L., Wunderlin, D.A. ve Bistoni, M.A., Oxidative stress responses in different organs of Jenynsia multidentata exposed to endosulfan, Ecotoxicology and Environmental Safety, 72, 199–205, (2009).
  • Yan, S.H., Wang, J.H., Zhu, L.S., Chen, A.M. ve Wang, J., Thiamethoxam induces oxidative stress and antioxidant response in zebrafish (Danio rerio) Livers, Environmental Toxicology, 3, 2006-2015, (2016).
  • Kavitha, P. ve Venkateswara Rao, J., Oxidative stress and locomotor behaviour response as biomarkers for assessing recovery status of mosquito fish, Gambusia affinis after lethal effect of an organophosphate pesticide, monocrotophos. Pesticide Biochemistry and Physiology, 87, 182–188, (2007).
  • Elia, A.C., Galarini, R., Dorr, A.J.M. ve Taticchi, M.I., Bioaccumulation of heavy metals, organochlorine pesticides, and detoxication biochemical indexes in tissues of Ictalurus melas of lake Trasimeno, Bulletin of Environmental Contamination and Toxicology, 76, 132–139, (2006).
  • Zhang, J.F., Shen, H., Wang, X.R., Wu, J.C. ve Xue, Y.Q., Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus, Chemosphere, 55, 167–174, (2004).
There are 25 citations in total.

Details

Primary Language Turkish
Journal Section Research Articles
Authors

Özgür Fırat

Tüzin Aytekin

Publication Date December 1, 2018
Submission Date January 23, 2018
Published in Issue Year 2018 Volume: 20 Issue: 2

Cite

APA Fırat, Ö., & Aytekin, T. (2018). Neonikotinoid insektisit thiamethoxamın Oreochromis niloticus’ta oksidatif stres parametreleri üzerine etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(2), 224-234. https://doi.org/10.25092/baunfbed.427757
AMA Fırat Ö, Aytekin T. Neonikotinoid insektisit thiamethoxamın Oreochromis niloticus’ta oksidatif stres parametreleri üzerine etkisi. BAUN Fen. Bil. Enst. Dergisi. December 2018;20(2):224-234. doi:10.25092/baunfbed.427757
Chicago Fırat, Özgür, and Tüzin Aytekin. “Neonikotinoid Insektisit thiamethoxamın Oreochromis niloticus’ta Oksidatif Stres Parametreleri üzerine Etkisi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20, no. 2 (December 2018): 224-34. https://doi.org/10.25092/baunfbed.427757.
EndNote Fırat Ö, Aytekin T (December 1, 2018) Neonikotinoid insektisit thiamethoxamın Oreochromis niloticus’ta oksidatif stres parametreleri üzerine etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20 2 224–234.
IEEE Ö. Fırat and T. Aytekin, “Neonikotinoid insektisit thiamethoxamın Oreochromis niloticus’ta oksidatif stres parametreleri üzerine etkisi”, BAUN Fen. Bil. Enst. Dergisi, vol. 20, no. 2, pp. 224–234, 2018, doi: 10.25092/baunfbed.427757.
ISNAD Fırat, Özgür - Aytekin, Tüzin. “Neonikotinoid Insektisit thiamethoxamın Oreochromis niloticus’ta Oksidatif Stres Parametreleri üzerine Etkisi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 20/2 (December 2018), 224-234. https://doi.org/10.25092/baunfbed.427757.
JAMA Fırat Ö, Aytekin T. Neonikotinoid insektisit thiamethoxamın Oreochromis niloticus’ta oksidatif stres parametreleri üzerine etkisi. BAUN Fen. Bil. Enst. Dergisi. 2018;20:224–234.
MLA Fırat, Özgür and Tüzin Aytekin. “Neonikotinoid Insektisit thiamethoxamın Oreochromis niloticus’ta Oksidatif Stres Parametreleri üzerine Etkisi”. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 20, no. 2, 2018, pp. 224-3, doi:10.25092/baunfbed.427757.
Vancouver Fırat Ö, Aytekin T. Neonikotinoid insektisit thiamethoxamın Oreochromis niloticus’ta oksidatif stres parametreleri üzerine etkisi. BAUN Fen. Bil. Enst. Dergisi. 2018;20(2):224-3.