Research Article
BibTex RIS Cite

Çaça (Sprattus sprattus, L., 1758) Protein Hidrolizatının Fizikokimyasal Özellikleri ve Alabalık (Oncorhynchus mykiss, Walbaum, 1792) Filetolarında Kaplama Malzemesi Olarak Kullanımı

Year 2023, Volume: 19 Issue: 3, 218 - 234, 01.09.2023
https://doi.org/10.22392/actaquatr.1190473

Abstract

Alabalık ülkemizde ve birçok Avrupa ülkesinde yetiştiriciliği ve ticareti en fazla yapılan balık türüdür ve 2021 yılında ülkemiz denizleri ve içsularında toplam 471686 tonluk üretimi gerçekleştirilmiştir. Besleyici değerinin yanısıra sürekli ve yoğun üretiminden dolayı bu balık su ürünleri sektöründe önemli bir yere sahiptir. Bu çalışmada +4 ˚C’de depolanan alabalık filetolarının kalite ve raf ömrünü uzatmak amacıyla çaçadan üretilen yenilikçi biyoaktif protein hidrolizatları (PH) kaplama olarak kullanılmıştır. Geleneksel hidrolizat (TH) ve ultrason destekli hidrolizat (UH) verimleri sırasıyla %8.66 ve %12.63 olarak hesaplanmıştır. TH ve UH’a ait protein değerleri sırasıyla %75.88 ve %74.45 olarak belirlenmiştir. Kaplamasız kontrol grubu (K), geleneksel enzimatik protein hidrolizatı ile kaplanmış grup (GHKS) ve ultrases destekli enzimatik protein hidrolizatı ile kaplanmış grup (UHKS) olmak üzere 3 fileto grubu hazırlanmıştır. Taze alabalıkta 12,96 mg/100g olan TVB-N değeri K grubunda depolamanın 9. gününde 38,52 mg/100g ile tüketilebilirlik sınırını aşmıştır. Bu değer GHKS ve UHKS için 12. günde sırasıyla 32,92 mg/100g ve 33,62 mg/100g’a ulaşmıştır. Depolamanın başında 0,21 mg MA/kg TBA değeri 9. günde K grubunda 7,72 mg MA/kg ile tüketilebilirlik sınırına ulaşırken GHKS ve UHKS de sırasıyla 6,67 mg MA/kg ve 6,79 mg MA/kg ile sınırın içerisinde kalmıştır. Depolamanın 0. gününde toplam aerobik mezofilik bakteri (TAMB) ve toplam aerobik psikrofilik bakteri (TAPB) sayıları sırasıyla 2,13 log kob/g ve 1,66 log kob/g olarak bulunmuştur. Bu değerler depolamanın 12. gününde K, GHKS ve UHKS için sırasıyla 6,90, 5,20, 5,04 ve 6,95, 3,48 ile 3,22 log kob/g olarak hesaplanmıştır. PH kaplamalar alabalık filetolarında kimyasal, fiziksel ve mikrobiyal bozulmayı geciktirerek depolama süresini uzatmıştır. Elde edilen sonuçlar PH’ın, soğuk koşullarda depolanan balık filetolarında kaplama olarak kullanılabileceğini göstermiştir.

Supporting Institution

Tarım ve Orman Bakanlığı, Tarımsal Araştırmalar ve Politikalar Genel Müdürlüğü

Project Number

TAGEM/HSGYAD/B/19/A3/P3/1024

References

  • Abreu, D.A.P., De Losada, Maroto, P.P.J., & Cruz, J.M. (2011). Lipid damage during frozen storage of Atlantic halibut (Hippoglossus hippoglossus) in active packaging film containing antioxidants, Food Chemistry, 126, 315-320
  • Amanatidou, A., Schlüter, O., Lemkau, K., Gorris, L.G.M., Smid, E.J. & Knorr, D. (2000). Effect of combined appilcation of high-pressure treatment and modified atmospheres on the shelf life of fresh atlantik salmon, Innovative Food Science and Emerging Technologies, 1, 87-98.
  • Anal, A. K. (2017). Food processing by-products, in B. Tiwari, N. P. Brunton, & C. S. Brennan (Eds.), Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction (pp. 180-192). Wiley Science, Oxford.
  • Arredondo-Parada, I., Torres-Arreola, W., Guadalupe, M. Suárez-Jiménez, J. C. Ramírez-Suárez, J., Juárez-Onofre, E., Rodríguez-Félix F. & Marquez-Rios,E. (2020). Effect of ultrasound on physicochemical and foaming properties of a protein concentrate from giant squid (Dosidicus gigas) mantle. LWT, 121, 108954, https://doi.org/10.1016/j.lwt.2019.108954
  • Antonacopoulos, N. & Vyncke, W. (1989). Determination of volatile basic nitrogen in fish: A third collaborative study by the West European Fish Technologists' Association (WEFTA). Z Lebensm Unters Forch, 189, 309–316. https://doi.org/10.1007/BF01683206
  • AOAC. (1995). Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists.
  • Arslan, E. (2016). Determination of some quality changes during cold storage of rainbow trout fillets coated with powder protein hydrolysate obtained by-products of rainbow trout [Master’s Thesis, Recep Tayyip Erdoğan University].
  • Balcik Mısır, G. & Koral, S. (2021). The impacts of ultrasound-assisted protein hydrolysate coating on the quality parameters and shelf life of smoked bonito fillets stored at 4 ± 1 °C. Ege Journal of Fisheries and Aquatic Sciences, 38, 427–435.
  • Barcellos, C. C. C., Bassil, P. E., Duarte, M. C. K. H., Franco, R. M., Keller, L. A. M., & Mesquita E. D. F. M. D. (2020). The effect of the commercial fish gelatin protein hydrolysate on rainbow trout (oncorhynchus mykiss) fillet quality. Food Sci Technology, 40, 929–37. https://doi.org/10.1590/fst.20119
  • Batista, I., Pires, C., & Nelhas, R. (2010). Extraction of sardine proteins by acidic and alkaline solubilization. Food Science and Technology International, 13, 189, https://doi.org/10.1177/1082013207079619
  • Benjakul, S., & Morrissey, M. T., (1997). Protein Hydrolysates from Pacific Whiting Solid Wastes. Journal of Agricultural and Food Chemistry, 45, 3423–30.
  • Biji, K. B., Ravishankar, C. N., Mohan, C. O. & Gopal, T. K. S. (2015). Smart packaging systems for food applications: a review. Journal of Food Science and Technology, 52, 6125–6135. https://doi.org/10.1007/s13197-015-1766-7
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 1, 25-30 https://doi.org/10.1016/S0023-6438(95)80008-5
  • Cai, L., Wu, X., Dong, Z., Li, X., Yi, S., & Li, J. (2014). Physicochemical responses and quality changes of red sea bream (Pagrosomus major) to gum Arabic coating enriched with ergothioneine treatment during refrigerated storage. Food Chemistry, 160, 82-89.
  • Chalamaiah, M., Narsing, R. G., Rao, D. G., & Jyothirmayi, T. (2010). Protein hydrolysates from meriga (cirrhinus mrigala) egg and evaluation of their functional properties. Food Chemistry, 120, 652–657.
  • Choi, Y.J., Hur, S., Choi, B.-D., Konno, K., & Park, J.W. (2009). Enzymatic hydrolysis of recovered protein from frozen small croaker and functional properties of ıts hydrolysates. Journal of Food Science, 74, C17-C24. https://doi.org/10.1111/j.1750-3841.2008.00988.x
  • Code Of Federal Regulatıons (CFR), (2003). The CRC Master Keyword Guide for Food: 21 CFR Regulations of the Food and Drug Administration 2003-2004. CRC Press, Taylor & Francis Group.
  • Dağtekin B. B., Balçık Mısır, G., Kutlu, S., & Yeşilsu, A. F. (2021). Determination of Storage Stability of Protein Isolates and Hydrolyzates Obtained from Sprat (Sprattus sprattus L., 1758), TAGEM/HSGYAD/B/18/A3/P4/402, 73 pp.
  • Erkan, N., Doğruyol, H., Günlü, A., & Genç, İ. Y. (2015). Use of natural preservatives in seafood: Plant extracts, edible film and coating. Journal of Food and Health Sciences, 1, 33–49. https://doi.org/10.3153/JFHS15004
  • FAO, (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en
  • Ghanbari, M., Jami, M., Domig, K. J., & Kneifel, W. (2013). Seafood bio-preservation by lactic acid bacteria-A review. LWT-Food Science and Technology, 54, 315-324.
  • Gobantes, I. Choubert, G., & Gomez, R. (1998). Quality of pigmented (astaxanthin and canthaxanhin) rainbow trout (Oncorhynchus mykiss) fillets stored under vacuum packaging during chilled storage. Journal Agriculture Food Chemistry, 46, 4358- 4362.
  • Gomez-Guille, M. C., Gimenez, B., Lopez, C. M. E., &Montero, M. P. (2011). Functional bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids, 25, 1813-1827.
  • Hau, E. H., Zin, M. Z., Zuraidah, N., Shaharudin, N. A., & Zainol, M. K. (2018). Physicochemical properties of powdered protein hydrolysate from Yellowstripe scad (Selaroides leptolepis) fish. International Food Research Journal, 25(6), 2553-2559.
  • Hoek, A.C., Malekpour, S., Raven, R., Court, E., & Byrne, E. (2021). Towards environmentally sustainable food systems: decision-making factors in sustainable food production and consumption. Sustainable Production and Consumption, 26, 610-626.
  • Huang, L., Dai, C., Li, Z., & Ma, H. (2015). Antioxidative Activities and Peptide Compositions of Corn Protein Hydrolysates Pretreated by Different Ultrasesic Methods, Journal of Food and Nutrition Research, 3(7), 415–421. https://doi.org/10.12691/jfnr-3-7-2
  • Jambrak, A. R., Lelas, V., Mason, T. J., Krešić, G., & Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93(4), 386–393. https://doi.org/10.1016/j.jfoodeng.2009.02.001
  • Junior, P. G., Assunção, A. W. A., Baldin, J. C., & Amaral, L. A. (2014). Microbiological quality of whole and filleted shelf-tilapia. Aquaculture 433, 196-200. https://doi.org/10.1016/j.aquaculture.2014.06.015
  • Kangsanant, S., Murkovic, M., & Thongraung, C. (2014). Antioxidant and nitric oxide inhibitory activities of tilapia (Oreochromis niloticus) protein hydrolysate: effect of ultrasonic pretreatment and ultrasonic-assisted enzymatic hydrolysis. International Journal of Food Science and Technology, 49(8), 1932-1938. https://doi.org/10.1111/ijfs.12551
  • Karaçalı, İ., (2002). Meyve ve sebze değerlendirme. Ege Üniversitesi Ziraat Fakültesi Yayınları 19, Ofset Basımevi.
  • Koç, S. (2016). A study on nutritional, functional and bioactive properties of protein hydrolysates from anchovy (Engraulis encrasicolus) flesh and by-products [Ph.D. Thesis, Çanakkale Onsekiz Mart Üniversity].
  • Kristinsson, H. G., & Rasco, B. A. (2000). Biochemical and Functional Properties of Atlantic Salmon (Salmo Salar) Muscle Proteins Hydrolyzed with Various Alkaline Proteases. Journal of Agricultural and Food Chemistry, 48, 657–666.
  • Kristinsson, H. G., & Ingadottir, B. (2005). Recovery and properties of muscle proteins extracted from tilapia (Oreochromis niloticus) light muscle by pH shift processing. Journal of Food Science, 71(3), 132-141. https://doi.org/10.1111/j.1365-2621.2006.tb15626.x
  • Kulawik, P., Jamróz, E., Zając, M., Guzik, P., & Tkaczewska, J. (2019). The effect of furcellaran-gelatin edible coatings with green and puerh tea extracts on the microbiological, physicochemical and sensory changes of salmon sushi stored at 4 °C. Food Control, 100, 83-91. https://doi.org/10.1016/j.foodcont.2019.01.004
  • Linn, N. C. C., Waiprib, Y., & Wilaipun, P. (2021). Shelf-life extension of refrigerated hybrid catfish (clarias macrocephalus × clarias gariepinus) fillet by chitosan- and alginate-based edible coatings. Journal of Fisheries and Environment, 45(3), 77-88.
  • Loi, C. C., G. T. Eyres, and E. J. Birch. 2019. Effect of milk protein composition on physicochemical properties, creaming stability and volatile profile of a protein-stabilised oil-in-water emulsion. Food Research International, 120, 83–91. https://doi.org/10.1016/j.foodres.2019.02.026
  • Lorenzo, J. M., Munekata, P. E. S., Gomez, B., Barba, F. J., Mora, L., Pérez-Santaescolástica, C., & Toldrá, F. (2018). Bioactive peptides as natural antioxidants in food products – A review. Trends in Food Science & Technology, 79, 136-147, https://doi.org/10.1016/j.tifs.2018.07.003
  • Ludorff, W., & Meyer, V. (1973). Fische und Fisherzeugnisse. Z. Auflage. Verlag Paul Parey in Berlin und Hamburg, 209-210.
  • Mattissek, R., Shengel, F. M., & Steiner, G. (1988). Lebensmittel-Analytick. Springer Verlag Berlin, Tokyo.
  • Mintah, B. K., He, R., Dabbour, M., Xiang, J., Hui, J., Agyekum, A. A., & Ma, H. (2020). Characterization of edible soldier fly protein and hydrolysate altered by multiple-frequency ultrasound: Structural, physical, and functional attributes, Process Biochemistry, 95, 157-165. https://doi.org/10.1016/j.procbio.2020.05.021
  • Parvathy, U., Nizam, K.M., Zynudheen, A.A., Ninan, G., Panda, S. K., & Ravishankar, C. N. (2018). Characterization of fish protein hydrolysate from red meat of Euthynnus affinis and its application as an antioxidant in iced sardine, Journal of Scientific & Industrial Research, 77, 111-119.
  • Rodriguez-Turienzo, L., Cobos, A. & Diaz, O. (2012). Effects of edible coatings based on ultrasound-treated whey proteins in quality attributes of frozen Atlantic salmon (Salmo salar). Innovative Food Science and Emerging Technologies, 14, 92-98. https://doi.org/10.1016/j.ifset.2011.12.003
  • Sardari, R. R. R., & Nordberg Karlsson, E. (2018). Marine poly and oligosaccharides as prebiotics. Journal of Agriculture and Food Chemistry, 66, 11544-11549.
  • Sathıvel, S., (2005). Chitosan and protein coatings affect yield, moisture loss, and lipid oxidation of pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. Food Engineering and Physical Properties, 70(8), E455-E459.
  • Šimat, V., Čagalj, M., Skroza, D., Gardini F., Tabanelli, G., Montanari, C., Hassoun, A., & Özogul, F. (2021). Chapter two - Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products, Advances in Food and Nutrition Research, 94, 55-118. https://doi.org/10.1016/BS.AFNR.2021.03.001
  • Sinthusamran, S., Benjakul, S., Kijroongrojana, K., & Prodpran, T. (2019). Chemical, physical, rheological and sensory properties of biscuit fortified with protein hydrolysate from cephalothorax of Pacific white shrimp. Journal of Food Science and Technology, 56(3), 1145-1154.
  • Sohaib, M., Anjum, F. M., Sahar, A., Arshad, S., Rahman, U. U., Imran, A., Hussain, S., Sohaib, M., Anjum, F. M., & Sahar, A. (2017). Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: a comprehensive review, International Journal of Food Properties. 20(11), 2581-2593.
  • Sun, X., Guo, X., Ji, M., Wu, J., Zhu, W., Wang, J., Cheng, C., Chen, L., & Zhang, Q. (2019). Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. Food Chemistry, 272, 643-652. https://doi.org/10.1016/j.foodchem.2018.08.040
  • Tarladgis, B. G., Watts, B. M., Younathan, M. T. & Dugan, L. (1960). A distillation method for the quantitative determination of malonaldehyde in rancid foods. Journal of American Oil Chemistry Society, 37, 44-48. https://doi.org/10.1007/BF02630824
  • Tiwari, A., & Khawas, R. (2021). Food Waste and Agro By-Products: A Step towards Food Sustainability. In A. O. de Barros & I. Gouvinhas (Eds.), Innovation in the food sector through the valorization of food and agro-food by-products. IntechOpen. https://doi.org/10.5772/intechopen.96177
  • Varlık, C., Uğur, M., Gökoğlu, N., & Gün, H. (1993). Su ürünlerinde kalite kontrol ilke ve yöntemleri. Gıda Teknolojisi Derneği Yayınları.
  • Wasswa, J., Tang, J., Gu, X., & Yuan, X., (2007). Influence of the Extent of Enzymatic Hydrolysis on the Functional Properties of Protein Hydrolysate from Grass Carp (Ctenopharyngodon idella) Skin. Food Chemistry, 104, 1698–1704.
  • Wrolstad, R. E., Acree, T. E., Decker, E. A., Penner M. H., Reid, D. S., Schwartz, S. J., Shoemaker, C. F., Smith, D. M., & Sporns, P. (2005). Handbook of Food Analytical Chemistry. Wiley - Interscience.
  • Yu, D., Regenstein, J. M., & Xia, W. (2019). Bio-based edible coatings for the preservation of fishery products: A review, Critical Reviews in Food Science and Nutrition, 59, 2481-2493.
  • Zou, Y., Wang, W., Li, Q., Chen, Y., Zheng, D., Zou, Y., Zhang, M., Zhao, T., Mao, G., Feng, W., Wu, X., & Yang, L. (2016). Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochemistry, 51(3), 43-443.

Physicochemical Properties of Sprat (Sprattus sprattus L., 1758) Protein Hydrolysate and Usage as a Coating Material on Trout (Oncorhynchus mykiss, Walbaum, 1792) Fillets

Year 2023, Volume: 19 Issue: 3, 218 - 234, 01.09.2023
https://doi.org/10.22392/actaquatr.1190473

Abstract

Trout is the most widely cultivated and traded fish species in Turkey and many European countries, and a total of 471686 tons of production was realized in Turkey’s seas and inland waters in 2021. In addition to its nutritive value, this fish takes a crucial position in the aquaculture sector due to its continuous and intensive production. In this study, innovative bioactive protein hydrolysates (PH) produced from sprat were used as a coating to increase the quality and shelf life of trout fillets stored at +4 ˚C. The yields of traditional hydrolysate (TH) and ultrasound-assisted hydrolysate (UH) were 8.66% and 12.63%, respectively. Protein values of TH and UH were 75.88 and 74.45%, respectively. Three fillet groups were prepared from trout: uncoated control group (C), traditional enzymatic protein hydrolysate coated group (THC), and ultrasound-assisted enzymatic protein hydrolysate coated group (UHC). TVB-N value, which was 12.96 mg/100g in fresh trout, exceeded the consumable limit with 38.52 mg/100g on the 9th day of storage in the C. This value reached 32.92 mg/100g and 33.62 mg/100g on the 12th day for THC and UHC, respectively. At the beginning of storage, 0.21 mg MA/kg TBA reached the consumable limit with 7.72 mg MA/kg in the C on the 9th day, while THC and UHC remained within the limit with 6.67 mg MA/kg and 6.79 mg MA/kg, respectively. Total aerobic mesophilic bacteria (TAMB) and total aerobic psychrophilic bacteria (TAPB) counts on day 0 of storage were 2.13 log cfu/g and 1.66 log cfu/g, respectively. These values were calculated as 6.90, 5.20, 5.04, 6.95, 3.48, and 3.22 log cfu/g for C, THC, and UHC on the 12th day of storage, respectively. The application of ultrasound during the production of protein hydrolysate significantly increased the yield and hydrolysis degree of UH compared to TH. The lipid ratio of UH was also found to be significantly lower than TH. In these respects, the application of ultrasound has provided an advantage. Although both coatings have provided significant protection compared to the C, generally similar results were obtained between the THC and UHC. PH coatings delayed the chemical, physical, and microbial spoilage of trout fillets and extended the storage period. The results showed that PH can be used as a coating on fish fillets stored in cold conditions.

Project Number

TAGEM/HSGYAD/B/19/A3/P3/1024

References

  • Abreu, D.A.P., De Losada, Maroto, P.P.J., & Cruz, J.M. (2011). Lipid damage during frozen storage of Atlantic halibut (Hippoglossus hippoglossus) in active packaging film containing antioxidants, Food Chemistry, 126, 315-320
  • Amanatidou, A., Schlüter, O., Lemkau, K., Gorris, L.G.M., Smid, E.J. & Knorr, D. (2000). Effect of combined appilcation of high-pressure treatment and modified atmospheres on the shelf life of fresh atlantik salmon, Innovative Food Science and Emerging Technologies, 1, 87-98.
  • Anal, A. K. (2017). Food processing by-products, in B. Tiwari, N. P. Brunton, & C. S. Brennan (Eds.), Handbook of Plant Food Phytochemicals: Sources, Stability and Extraction (pp. 180-192). Wiley Science, Oxford.
  • Arredondo-Parada, I., Torres-Arreola, W., Guadalupe, M. Suárez-Jiménez, J. C. Ramírez-Suárez, J., Juárez-Onofre, E., Rodríguez-Félix F. & Marquez-Rios,E. (2020). Effect of ultrasound on physicochemical and foaming properties of a protein concentrate from giant squid (Dosidicus gigas) mantle. LWT, 121, 108954, https://doi.org/10.1016/j.lwt.2019.108954
  • Antonacopoulos, N. & Vyncke, W. (1989). Determination of volatile basic nitrogen in fish: A third collaborative study by the West European Fish Technologists' Association (WEFTA). Z Lebensm Unters Forch, 189, 309–316. https://doi.org/10.1007/BF01683206
  • AOAC. (1995). Official Methods of Analysis of AOAC International. Association of Official Analytical Chemists.
  • Arslan, E. (2016). Determination of some quality changes during cold storage of rainbow trout fillets coated with powder protein hydrolysate obtained by-products of rainbow trout [Master’s Thesis, Recep Tayyip Erdoğan University].
  • Balcik Mısır, G. & Koral, S. (2021). The impacts of ultrasound-assisted protein hydrolysate coating on the quality parameters and shelf life of smoked bonito fillets stored at 4 ± 1 °C. Ege Journal of Fisheries and Aquatic Sciences, 38, 427–435.
  • Barcellos, C. C. C., Bassil, P. E., Duarte, M. C. K. H., Franco, R. M., Keller, L. A. M., & Mesquita E. D. F. M. D. (2020). The effect of the commercial fish gelatin protein hydrolysate on rainbow trout (oncorhynchus mykiss) fillet quality. Food Sci Technology, 40, 929–37. https://doi.org/10.1590/fst.20119
  • Batista, I., Pires, C., & Nelhas, R. (2010). Extraction of sardine proteins by acidic and alkaline solubilization. Food Science and Technology International, 13, 189, https://doi.org/10.1177/1082013207079619
  • Benjakul, S., & Morrissey, M. T., (1997). Protein Hydrolysates from Pacific Whiting Solid Wastes. Journal of Agricultural and Food Chemistry, 45, 3423–30.
  • Biji, K. B., Ravishankar, C. N., Mohan, C. O. & Gopal, T. K. S. (2015). Smart packaging systems for food applications: a review. Journal of Food Science and Technology, 52, 6125–6135. https://doi.org/10.1007/s13197-015-1766-7
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28, 1, 25-30 https://doi.org/10.1016/S0023-6438(95)80008-5
  • Cai, L., Wu, X., Dong, Z., Li, X., Yi, S., & Li, J. (2014). Physicochemical responses and quality changes of red sea bream (Pagrosomus major) to gum Arabic coating enriched with ergothioneine treatment during refrigerated storage. Food Chemistry, 160, 82-89.
  • Chalamaiah, M., Narsing, R. G., Rao, D. G., & Jyothirmayi, T. (2010). Protein hydrolysates from meriga (cirrhinus mrigala) egg and evaluation of their functional properties. Food Chemistry, 120, 652–657.
  • Choi, Y.J., Hur, S., Choi, B.-D., Konno, K., & Park, J.W. (2009). Enzymatic hydrolysis of recovered protein from frozen small croaker and functional properties of ıts hydrolysates. Journal of Food Science, 74, C17-C24. https://doi.org/10.1111/j.1750-3841.2008.00988.x
  • Code Of Federal Regulatıons (CFR), (2003). The CRC Master Keyword Guide for Food: 21 CFR Regulations of the Food and Drug Administration 2003-2004. CRC Press, Taylor & Francis Group.
  • Dağtekin B. B., Balçık Mısır, G., Kutlu, S., & Yeşilsu, A. F. (2021). Determination of Storage Stability of Protein Isolates and Hydrolyzates Obtained from Sprat (Sprattus sprattus L., 1758), TAGEM/HSGYAD/B/18/A3/P4/402, 73 pp.
  • Erkan, N., Doğruyol, H., Günlü, A., & Genç, İ. Y. (2015). Use of natural preservatives in seafood: Plant extracts, edible film and coating. Journal of Food and Health Sciences, 1, 33–49. https://doi.org/10.3153/JFHS15004
  • FAO, (2020). The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en
  • Ghanbari, M., Jami, M., Domig, K. J., & Kneifel, W. (2013). Seafood bio-preservation by lactic acid bacteria-A review. LWT-Food Science and Technology, 54, 315-324.
  • Gobantes, I. Choubert, G., & Gomez, R. (1998). Quality of pigmented (astaxanthin and canthaxanhin) rainbow trout (Oncorhynchus mykiss) fillets stored under vacuum packaging during chilled storage. Journal Agriculture Food Chemistry, 46, 4358- 4362.
  • Gomez-Guille, M. C., Gimenez, B., Lopez, C. M. E., &Montero, M. P. (2011). Functional bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids, 25, 1813-1827.
  • Hau, E. H., Zin, M. Z., Zuraidah, N., Shaharudin, N. A., & Zainol, M. K. (2018). Physicochemical properties of powdered protein hydrolysate from Yellowstripe scad (Selaroides leptolepis) fish. International Food Research Journal, 25(6), 2553-2559.
  • Hoek, A.C., Malekpour, S., Raven, R., Court, E., & Byrne, E. (2021). Towards environmentally sustainable food systems: decision-making factors in sustainable food production and consumption. Sustainable Production and Consumption, 26, 610-626.
  • Huang, L., Dai, C., Li, Z., & Ma, H. (2015). Antioxidative Activities and Peptide Compositions of Corn Protein Hydrolysates Pretreated by Different Ultrasesic Methods, Journal of Food and Nutrition Research, 3(7), 415–421. https://doi.org/10.12691/jfnr-3-7-2
  • Jambrak, A. R., Lelas, V., Mason, T. J., Krešić, G., & Badanjak, M. (2009). Physical properties of ultrasound treated soy proteins. Journal of Food Engineering, 93(4), 386–393. https://doi.org/10.1016/j.jfoodeng.2009.02.001
  • Junior, P. G., Assunção, A. W. A., Baldin, J. C., & Amaral, L. A. (2014). Microbiological quality of whole and filleted shelf-tilapia. Aquaculture 433, 196-200. https://doi.org/10.1016/j.aquaculture.2014.06.015
  • Kangsanant, S., Murkovic, M., & Thongraung, C. (2014). Antioxidant and nitric oxide inhibitory activities of tilapia (Oreochromis niloticus) protein hydrolysate: effect of ultrasonic pretreatment and ultrasonic-assisted enzymatic hydrolysis. International Journal of Food Science and Technology, 49(8), 1932-1938. https://doi.org/10.1111/ijfs.12551
  • Karaçalı, İ., (2002). Meyve ve sebze değerlendirme. Ege Üniversitesi Ziraat Fakültesi Yayınları 19, Ofset Basımevi.
  • Koç, S. (2016). A study on nutritional, functional and bioactive properties of protein hydrolysates from anchovy (Engraulis encrasicolus) flesh and by-products [Ph.D. Thesis, Çanakkale Onsekiz Mart Üniversity].
  • Kristinsson, H. G., & Rasco, B. A. (2000). Biochemical and Functional Properties of Atlantic Salmon (Salmo Salar) Muscle Proteins Hydrolyzed with Various Alkaline Proteases. Journal of Agricultural and Food Chemistry, 48, 657–666.
  • Kristinsson, H. G., & Ingadottir, B. (2005). Recovery and properties of muscle proteins extracted from tilapia (Oreochromis niloticus) light muscle by pH shift processing. Journal of Food Science, 71(3), 132-141. https://doi.org/10.1111/j.1365-2621.2006.tb15626.x
  • Kulawik, P., Jamróz, E., Zając, M., Guzik, P., & Tkaczewska, J. (2019). The effect of furcellaran-gelatin edible coatings with green and puerh tea extracts on the microbiological, physicochemical and sensory changes of salmon sushi stored at 4 °C. Food Control, 100, 83-91. https://doi.org/10.1016/j.foodcont.2019.01.004
  • Linn, N. C. C., Waiprib, Y., & Wilaipun, P. (2021). Shelf-life extension of refrigerated hybrid catfish (clarias macrocephalus × clarias gariepinus) fillet by chitosan- and alginate-based edible coatings. Journal of Fisheries and Environment, 45(3), 77-88.
  • Loi, C. C., G. T. Eyres, and E. J. Birch. 2019. Effect of milk protein composition on physicochemical properties, creaming stability and volatile profile of a protein-stabilised oil-in-water emulsion. Food Research International, 120, 83–91. https://doi.org/10.1016/j.foodres.2019.02.026
  • Lorenzo, J. M., Munekata, P. E. S., Gomez, B., Barba, F. J., Mora, L., Pérez-Santaescolástica, C., & Toldrá, F. (2018). Bioactive peptides as natural antioxidants in food products – A review. Trends in Food Science & Technology, 79, 136-147, https://doi.org/10.1016/j.tifs.2018.07.003
  • Ludorff, W., & Meyer, V. (1973). Fische und Fisherzeugnisse. Z. Auflage. Verlag Paul Parey in Berlin und Hamburg, 209-210.
  • Mattissek, R., Shengel, F. M., & Steiner, G. (1988). Lebensmittel-Analytick. Springer Verlag Berlin, Tokyo.
  • Mintah, B. K., He, R., Dabbour, M., Xiang, J., Hui, J., Agyekum, A. A., & Ma, H. (2020). Characterization of edible soldier fly protein and hydrolysate altered by multiple-frequency ultrasound: Structural, physical, and functional attributes, Process Biochemistry, 95, 157-165. https://doi.org/10.1016/j.procbio.2020.05.021
  • Parvathy, U., Nizam, K.M., Zynudheen, A.A., Ninan, G., Panda, S. K., & Ravishankar, C. N. (2018). Characterization of fish protein hydrolysate from red meat of Euthynnus affinis and its application as an antioxidant in iced sardine, Journal of Scientific & Industrial Research, 77, 111-119.
  • Rodriguez-Turienzo, L., Cobos, A. & Diaz, O. (2012). Effects of edible coatings based on ultrasound-treated whey proteins in quality attributes of frozen Atlantic salmon (Salmo salar). Innovative Food Science and Emerging Technologies, 14, 92-98. https://doi.org/10.1016/j.ifset.2011.12.003
  • Sardari, R. R. R., & Nordberg Karlsson, E. (2018). Marine poly and oligosaccharides as prebiotics. Journal of Agriculture and Food Chemistry, 66, 11544-11549.
  • Sathıvel, S., (2005). Chitosan and protein coatings affect yield, moisture loss, and lipid oxidation of pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. Food Engineering and Physical Properties, 70(8), E455-E459.
  • Šimat, V., Čagalj, M., Skroza, D., Gardini F., Tabanelli, G., Montanari, C., Hassoun, A., & Özogul, F. (2021). Chapter two - Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products, Advances in Food and Nutrition Research, 94, 55-118. https://doi.org/10.1016/BS.AFNR.2021.03.001
  • Sinthusamran, S., Benjakul, S., Kijroongrojana, K., & Prodpran, T. (2019). Chemical, physical, rheological and sensory properties of biscuit fortified with protein hydrolysate from cephalothorax of Pacific white shrimp. Journal of Food Science and Technology, 56(3), 1145-1154.
  • Sohaib, M., Anjum, F. M., Sahar, A., Arshad, S., Rahman, U. U., Imran, A., Hussain, S., Sohaib, M., Anjum, F. M., & Sahar, A. (2017). Antioxidant proteins and peptides to enhance the oxidative stability of meat and meat products: a comprehensive review, International Journal of Food Properties. 20(11), 2581-2593.
  • Sun, X., Guo, X., Ji, M., Wu, J., Zhu, W., Wang, J., Cheng, C., Chen, L., & Zhang, Q. (2019). Preservative effects of fish gelatin coating enriched with CUR/βCD emulsion on grass carp (Ctenopharyngodon idellus) fillets during storage at 4 °C. Food Chemistry, 272, 643-652. https://doi.org/10.1016/j.foodchem.2018.08.040
  • Tarladgis, B. G., Watts, B. M., Younathan, M. T. & Dugan, L. (1960). A distillation method for the quantitative determination of malonaldehyde in rancid foods. Journal of American Oil Chemistry Society, 37, 44-48. https://doi.org/10.1007/BF02630824
  • Tiwari, A., & Khawas, R. (2021). Food Waste and Agro By-Products: A Step towards Food Sustainability. In A. O. de Barros & I. Gouvinhas (Eds.), Innovation in the food sector through the valorization of food and agro-food by-products. IntechOpen. https://doi.org/10.5772/intechopen.96177
  • Varlık, C., Uğur, M., Gökoğlu, N., & Gün, H. (1993). Su ürünlerinde kalite kontrol ilke ve yöntemleri. Gıda Teknolojisi Derneği Yayınları.
  • Wasswa, J., Tang, J., Gu, X., & Yuan, X., (2007). Influence of the Extent of Enzymatic Hydrolysis on the Functional Properties of Protein Hydrolysate from Grass Carp (Ctenopharyngodon idella) Skin. Food Chemistry, 104, 1698–1704.
  • Wrolstad, R. E., Acree, T. E., Decker, E. A., Penner M. H., Reid, D. S., Schwartz, S. J., Shoemaker, C. F., Smith, D. M., & Sporns, P. (2005). Handbook of Food Analytical Chemistry. Wiley - Interscience.
  • Yu, D., Regenstein, J. M., & Xia, W. (2019). Bio-based edible coatings for the preservation of fishery products: A review, Critical Reviews in Food Science and Nutrition, 59, 2481-2493.
  • Zou, Y., Wang, W., Li, Q., Chen, Y., Zheng, D., Zou, Y., Zhang, M., Zhao, T., Mao, G., Feng, W., Wu, X., & Yang, L. (2016). Physicochemical, functional properties and antioxidant activities of porcine cerebral hydrolysate peptides produced by ultrasound processing. Process Biochemistry, 51(3), 43-443.
There are 55 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Gülsüm Balçık Mısır 0000-0001-8675-8768

Büket Buşra Dağtekin 0000-0003-1706-6228

Sebahattin Kutlu 0000-0001-6688-9971

Project Number TAGEM/HSGYAD/B/19/A3/P3/1024
Early Pub Date August 25, 2023
Publication Date September 1, 2023
Published in Issue Year 2023 Volume: 19 Issue: 3

Cite

APA Balçık Mısır, G., Dağtekin, B. B., & Kutlu, S. (2023). Physicochemical Properties of Sprat (Sprattus sprattus L., 1758) Protein Hydrolysate and Usage as a Coating Material on Trout (Oncorhynchus mykiss, Walbaum, 1792) Fillets. Acta Aquatica Turcica, 19(3), 218-234. https://doi.org/10.22392/actaquatr.1190473