# Ege Journal of Fisheries and Aquatic Sciences

# www.egejfas.org

E-ISSN 2418-3140

# EgeJFAS

# Su Ürünleri Dergisi

Volume 41 Number 1

2024



**Ege University Faculty of Fisheries** 



## **Authors Guidelines**

Thank you for deciding to submit your article to the Ege Journal of Fisheries and Aquatic Sciences (EgeJFAS). The journal welcomes the submission of articles that are of interest and high scientific quality. Authors should check the "Author Guidelines" very carefully before submitting their manuscripts. The instructions given here will ensure that your article's evaluation process (referee, publication, etc.) can proceed smoothly. Make sure your article is prepared and submitted in accordance with journal rules.

Submitted manuscripts will be checked primarily for compliance with journal subjects and rules. Manuscripts not complying with required formatting will be returned for correction. Papers outside the scope of the journal will be rejected.

### GENERAL INFORMATION

### Aim & Scope

Ege Journal of Fisheries and Aquatic Sciences (EgeJFAS) is open access, international, double-blind peer-reviewed journal publishing original research articles, short communications, technical notes, reports, and reviews in all aspects of fisheries and aquatic sciences.

The journal does not charge any submission and publication fees.

All articles receive DOI, are citable, published in PDF format.

The journal focuses on interdisciplinary studies that present new and useful information to the international scientific community/readership, and contribute to scientific progress. Before submitting your article, make sure it is suitable for the journal scopes.

The main functional areas accepted into the journal are listed as follows:

Marine and freshwater fisheries, Aquaculture, Vertebrate and invertebrate aquaculture (marine/freshwater), Planktonology and plankton culture, Living resources, Management and economics, Aquaponic, Seafood processing technology, Feeding and feed technologies, Fishing technology, Fisheries management, Population dynamics, Disease and treatment, Aquatic microbiology, Biology, physiology, Macroalgae, Biotechnology, Conservation and sustainability, Environments and ecology, Biogeography, Biodiversity, Climate effects, Pollution studies.

Ege Journal of Fisheries and Aquatic Sciences (EgeJFAS) (Su Ürünleri Dergisi) published quarterly (March, June, September, December) by Ege University Faculty of Fisheries since 1984.

The journal is published only as an e-journal since the 1st issue of 2020.

### Language

Although articles in English and Turkish are accepted, priority is given to articles prepared in English in order to increase international readability and citation. Limited Turkish articles are published in each issue.

Manuscripts should comply with the standard rules of grammar and style of the language (English or Turkish) with appropriate spelling and punctuation in which they are written.

### **Editorial Policy and Referee Process**

Manuscripts should not be copied elsewhere or submitted to another journal for parallel evaluation. Only original manuscripts are considered. It is evaluated with the understanding that the content is approved by all co-authors. Submitted manuscripts are first checked in terms of journal scope, language, presentation, and style. Manuscripts that are not suitable for these aspects will be returned without review.

In order to evaluate the appropriate articles, at least 2 or 3 external and independent referees who are experts in their fields are appointed by a member of the editorial board/section editor. Each manuscript is reviewed through a double-blind peer-review process (identities of neither authors nor peer reviewers are disclosed). Manuscripts returned to authors with referee reports should be revised and sent back to the editor as soon as possible.

Editor-in-chief/editors take the final decision (Accept, Reject) of the manuscript in line with the reviewer's opinions. All responsibility for the scientific content and expressions in the published article belongs to the authors. In accordance with the publication policies of EgeJFAS, the plagiarism report for the relevant manuscript is requested to be uploaded to the submission system by the responsible author.

### Article Types

The types of articles accepted include original research articles (priority), short communications, reviews, reports, and technical notes in all aspects, focusing on interdisciplinary studies in the field of fisheries and aquatic sciences.

**Original research papers:** These are the article type that the Journal gives the most importance and priority. Should contain data obtained from original studies such as experimental results, field data, and/or theoretical studies.

Short communication: It should include original results and headings, like research papers. Articles provide important new research results/methods or discoveries that do not possible to publish as a full research paper. These articles that are narrowly focused deserve to be published faster than other articles.

Review: Reviews may summarize current research areas of broad importance or provide the readers with an insightful introduction to new and groundbreaking areas of research. It should be examined and discussed in-depth and comprehensively written by the author(s) who have expertise in the subject area, not just the literature surveys. Only invited reviews (in English) are considered for publication. If you would like to submit an invited review, please contact the editor-in-chief (editor@egejfas.org) and upload a review cover letter containing the requested information. As of 2023, reviews in Turkish will not be accepted. Publication of those accepted in the previous year will be completed in 2023.

### Reports

Case reports encourage the submission of reports containing feature novel findings or new management strategies. Well-written and illustrated reports are taken into account.

Brief reports are short, observational studies that report the initial results or completion of a study or protocol.

Technical notes: They are short articles that focus on a new technique, method or procedure. It should identify significant changes or unique applications for the method described.

### MANUSCRIPT SUBMISSION

The manuscript, when submitted together with the Cover Letter (Submission declaration and verification) and Copyright Form signed by the corresponding author on behalf of all authors,

© Published by Ege University Faculty of Fisheries, Izmir, Türkiye

warrants (confirms) that it is original and has not been published elsewhere, has been approved - tacitly or expressly - by all co-authors and the responsible authorities at the institute where the work was carried out. The publisher will not be held legally responsible in case of any claim for compensation.

Before you start submitting an article, please ensure that the article complies with the journal guidelines (instructions) and that you are ready to upload all requested documents (Article File, Similarity Report, Cover Letter, Copyright Release Form, Ethics Committee Approval (if necessary). Please note that submissions that do not contain the required documents/statements will be returned incomplete.

Authorship Contributions, Conflict of Interest Statement, Ethics Approval, Data Availability should be written in the article after Acknowledgements and Funding section.

### While starting

For submission of your manuscript prepared in accordance with the guideline to EGEJFAS please click here and after logging into your account (if you don't have an account please register at https://dergipark.org.tr/en/. Your default login ID is your email address. Use your existing account; do not create new accounts with new submissions) use the "Submit Article" button on the home page of the journal to start submission. Before submitting a manuscript, do not forget to check the Submission Checklist.

After log in, the article submission process is completed in 5 steps. Upload your article information, article file, and other necessary documents step by step correctly. There is no transition to the next step until a step is completed.

### To follow the status of the article;

When log into the system (Dergipark) with user information, the related journal appears when the dashboard is clicked. By clicking on the journal, the status of the article can be followed.

After you submit your article via the online system, you will be able to follow the status of your article and you will be automatically notified by e-mail when there is any action.

### Similarity Report

To verify the authenticity of the submitted article, a similarity report should be obtained by using the services of plagiarism detection software (Crossref Similarity Check, iThenticate: Plagiarism Detection Software). This report should be uploaded as a separate file named "similarity report".

Although a similarity report is requested for all submitted articles, a second check will be made with the plagiarism detection software.

### Cover Letter

When submitting a manuscript, Cover Letter should be uploaded under the subheading "Cover Letter". Cover letter should be prepared separately from the manuscript file.

### Ethics in Publishing

Please see our information on Ethical Principles and Publication Policy. Before submission, do not forget to read the "Ethical Responsibilities of the Authors".

Please ensure that any manuscript you submit to this Journal conforms to the Committee on Publication Ethics (COPE) recommendations for ethics, Best Practice Guidelines and as well as to the rules of Egelfas.

### **PREPARATION OF MANUSCRIPTS**

Papers must be clearly written in Turkish or English. Manuscripts should be typed double spaced on A4 size paper in 12-point Times New Roman font including the references, table headings and figure captions with standard margins (25 mm) all around. The author's name should appear centred under the title. Numbered (1) note should give the author's institutional address and an asterisked (\*) note should indicate the corresponding author's e-mail address. Degrees and qualifications should not be included.

Line and page numbers should be given from the first page of the manuscript.

Please prepare your typescript text using a word-processing package (save in .doc or .docx). The complete manuscript should be in a single file containing full text, references, figures and tables. Figures and tables should be inside the manuscript placed properly (not at the end of manuscript). The line number should be given to the whole manuscript.

- Research papers and reviews must not exceed 25 manuscript pages including tables and figures (except systematic checklists).
- Short communications, technical notes, and reports which are results of brief but significant work, must not exceed 10 manuscript pages including tables and figures.

Papers must be clearly written in Turkish or English. Manuscripts should be typed double spaced on A4 size paper in 12-point Times New Roman font including the references, table headings and figure captions with standard margins (25 mm) all around. The author's name should appear centered under the title. Numbered (<sup>1</sup>) note should give the author's institutional address and an asterisked (\*) note should indicate the correspondence author's e-mail address. Degrees and qualifications should not be included.

Please prepare your typescript text using a word-processing package (save in .doc or .docx). The complete manuscript should be in a single file containing full text, references, figures and tables. Figures and tables should be at the end of the manuscript file and the locations should be indicated in the text.

- Research papers and reviews must not exceed 25 manuscript pages including tables and figures (except checklists).
- Short communications, technical notes and reports which are results of brief but significant work, must not exceed 10 manuscript pages including tables and figures.

### First Page

The title should be short concise and informative, and be a statement of the main result/conclusion presented in the manuscript. The title should not contain abbreviations. Do not forget to add English title for Turkish article. The title should be written in sentence order.

### Author Names and Affiliation

The first name and sumame of each author should be clearly listed together and separated by commas. Provide exact and correct author names (forenames-sumames) as these will be indexed in official archives. Occasionally, the distinction between sumames and forenames can be ambiguous, and this is to ensure that the authors' full sumames and forenames are tagged correctly, for accurate indexing online.

Present the authors' affiliation addresses should be indicated at the author's name with superscript numbers immediately after the author's name. The full postal address of each

affiliation at the time of research should be listed in order: Department, institution, city with postcode, and country name.

Please clearly indicate who will handle correspondence at all stages of refereeing and publication, also post-publication. Provide an active e-mail address of the corresponding author. It is editorial policy to list only one author for correspondence.

ORCID numbers of all authors should be listed on the article title page as of June 2017. Authors who do not have an ORCID number are required to register their number at www.orcid.org. The orcid number is mandatory. Articles that do not have an ORCID number or are incorrect will not be evaluated.

Please refer to the journal's "Ethical Responsibilities of Authors" policy in the Ethical Principles and Publication Policy section for details on eligibility for author listing.

### Abstract

English and Turkish abstracts (contributors who are not native Turkish speakers may submit their manuscripts with an English abstract only) of a maximum of 300 words should be included in all submissions. The abstract should be comprehensible to readers before they have read the full paper, and reference citations must be avoided. In the abstract, the importance of the work should be clearly stated; what, why, how it was done should be answered and the contribution of the results to the scientific world should be expressed. It should not contain undefined abbreviations.

Abstract should clearly the importance of the work described in the paper and reflect what was done, why it was done and what important results were achieved. It should not contain any undefined abbreviations and not be written in the first person.

### Keywords

Below the abstract, please provide 4-6 keywords related to the study that will help to increase the discoverability of your manuscript. It is especially important to include words that are fundamental to your manuscript but are not included in the manuscript title or abstract to increase discoverability by indexing services.

### Following pages

Following pages should contain the rest of the paper and should be organized into an Introduction, Material and Methods, Results, Discussion, Conclusion(s), Acknowledgements and Funding, Authorship Contributions, Conflict of Interest Statement, Ethics Approval, Data Availability, References. These should be capitalized. Please note that submissions without required documents/statements will not be accepted.

### Introduction

Provide clearly and an adequate background, avoiding a detailed literature survey or a summary of the results. State the specific objective or hypothesis of the study.

### Material and Methods

Provide adequate detail to allow the work/experiment to be reproduced. Methods already published should be mentioned by references. Significant modifications of published methods and new methods should be described in detail.

If the study requires "Ethics Committee Permission Certificate", be sure to report after the "Acknowledgements" section that permission has been obtained from the relevant institution. A copy of the "Ethics Committee Permission Documents" should be uploaded to the system. A detailed explanation on this subject has been made in the "Ethics Approval" heading above.

### Results

Results should be clear and concise. Results for different parameters should be described under subheadings or in separate paragraph. Present your results in a logical sequence in the text, tables, and figures.

### Discussion

The discussion should not repeat the results, but should provide a detailed interpretation of the data. The discussion should highlight the importance of the work and the resulting new insights. Only in exceptional cases may the results and discussion be combined with the editor's consent. Avoid extensive citations and discussion of published literature.

### Conclusions

This should briefly state the major findings of the study.

### Acknowledgements and Funding

Acknowledgements including people, grants, funds, projects, etc. should be kept brief and placed after conclusion section. Names of contributing people should be written clearly and fully.

### Examples:

Project Number:

"The authors are grateful to John Nare, for his friendly collaboration and hospitality during the lipid analysis."

"The authors would like to thank Ken More for language revision."

Please clearly and fully specify the relevant funding information (name) with the grant number or codes.

Financial support acknowledgwment should be written like the example given: "This study was supported by the Turkish Scientific and Technological Research Institution

(Grant number: ......)." "This work was supported by Ege University Scientific Research Projects Coordination Unit.

"Author Mary Lee has received research support from Company A."

If the research has no specific financial support, please include the following statement

"This research has not received a specific grant, fund or other support from any funding agency in the public, commercial, or not-for-profit sectors."

### **Authorship Contributions**

Identifying individual author contributions (CRediT - Contributor Roles Taxonomy, ICMJE-Defining the Role of Authors and Contributors, Transparency in authors' contributions) is important to reduce authorship disputes and facilitate collaboration. The publisher recommends that authors include statements of contribution stating each author's contribution to the work to promote transparency. This gives authors the opportunity to share an accurate and detailed description of their various contributions to the work. The corresponding author is responsible for ensuring that the disclosures are correct and accepted by all authors.

The roles of all authors should be listed. Authors may have contributed to more than one role. These contributions should be placed in the text with the heading of "Authorship Contributions", after the "Acknowledgements" section of the article. See below examples:

Example: All authors contributed to the idea and design of the study. Material preparation and investigation were performed by [full name], [full name] and [full name]. The writing/editing was carried out by [full name] and all authors have read and approved the article. Example: CRediT author statement (Click for more information about CRediT)

Full name/s: Conceptualization, Methodology, Software

Full name: Data curation, Writing- Original draft preparation Full name/s: Visualization, Investigation

Full name/s: Supervision

Full name/s: Software, Validation

Full name/s: Project administration, Resources, Funding acquisition

Full name/s: Writing- Reviewing and Editing

For review article; it should be stated whose idea, who did the literature survey and data analysis, who wrote the draft, and who revised the criticisms.

For articles produced from student's dissertations or thesis, it is generally recommended that the student is listed as the principal author (A Graduate Student's Guide-APA Science Student Council 2006).

### **Changes to Authorship**

At the time of submission, the author (s) information, the corresponding author and the order of the authors must be correct. Changing the author order, adding/deleting are not allowed during the revision phases. However, in rare cases, it can be applied when detailed and acceptable reasons are presented. All authors must agree with any addition, removal or rearrangement and the reasons for changes should be explained in detail. After the article is accepted, no changes can be made to the authorships.

### **Conflict of Interest Statement**

Authors should declare if they have any financial or personal relationships with any institution/organization or person that may adversely affect their work. Conflict of interest statement should be attached to the article after the Acknowledgements section.

If the authors have financial or personal relationships with any institution/organization or person that may adversely affect their work, they should declare within a separate file by selecting the 'conflict of interest' subheading as the file type when submitting the manuscript. Conflict of interest statement should also be attached to the article after the Acknowledgements section of the article.

In the event of a potential conflict of interest, the authors must state: "The following financial interests / personal relationships may be potential competitive interests."

Conflict of interest statement should be provided even if the authors have no competition or conflict of interest.

If there is no conflict of interest; "The authors declare that there is no known financial or personal conflict that may affect the research (article)" or "The authors declare that there are no conflicts of interest or competing interests".

### Ethics Approval

All animal and human experiments conducted in the manuscript research should comply with the ARRIVE guidelines, EU Directive 2010/63/EU, The Code of Ethics of the World Medical Association (Declaration of Helsinki), and National Ethics Committee for Animal Experiments (HADMEK, HADYEK). If there is a human study in the article, it must comply with The Code of Ethics of the World Medical Association (Declaration of Helsinki).

If the submitted article involves the use of animal (vertebrate) and human subjects, authors should prove that they have carried out the manuscript studies in accordance with the relevant laws and regulations and they have received the approval of the authorized institutional committee (s) (including the ethics committee name and reference number, if possible). If a study was granted exemption or did not require ethics approval, this should also be detailed in the manuscript.

Copies of approval should be uploaded to the system under the subheading "Ethics Committee Approval". In addition, an explanation should be added to the article with the title of "Ethics Approval" after the Acknowledgements section.

### Examples

"Approval was granted by the Ethics Committee of University B (Date ... /No....)."

"This is an observational study. The ABC Research Ethics Committee has confirmed that no ethical approval is required."

"This article does not contain any human or animal studies performed by any authors."

"The authors declare that all applicable guidelines for sampling, care, and experimental use of animals in this study have been followed."

"Sampling and handling procedures of the fish were in accordance with an ..... protocol approved by University of ......".

"No specific ethical approval was necessary for this study."

### **Retrospective Ethics Approval**

If necessary, an application should be made to the ethics committee and approval should be obtained before starting a study. Generally, retrospective ethical approval cannot be obtained. It may not be possible to consider such articles for peer review. In such cases, it is at the Editor's discretion to decide whether to proceed with the peer review.

### Data Availability

Articles are open access and free to use. Published articles are archived permanently. Proper citation is required when using an article published in a journal.

In order for the datasets reflecting the results of the article should be accessible to the readers; the journal encourages that datasets may be stored in public repositories (where available and appropriate) and addressed in the article, provided in the article, or in supplementary files whenever possible, or available from the corresponding author upon request. Regarding data availability, authors can follow one of the ways described. Enquiries about data availability should be directed to the authors. This information should be placed in the text with the heading "Data Availability" after the "Acknowledgements" section of the article. See examples below:

### Examples:

Data availability: All of the data summarized in the study are available in the (name) Data Repository, (link address).

Data availability: The data sets generated during and/or analysed during the current study will be provided by the corresponding author upon the request of the editor or reviewers.

Data availability: For questions regarding datasets, the corresponding author should be contacted.  $% \label{eq:contacted}$ 

Data availability: All relevant data is in the article.

### Scientific Style

In writing of systematic /biological papers, international terminology such as "International Codes of Zoological Nomenclature (ICZN), and International Code of Nomenclature for Algae Fungi and Plants (ICNAFP)(Formerly known as the International Code of Botanical Nomenclature - CBN) International Code of Botanical Nomenclature (ICBN)" must be strictly followed. The first mention in the text of any taxon must be followed by its authority including the year. The names of genera and species should be given in italics. Clearly write the full genus name at the first occurrence in the text, and abbreviate it when it occurs again. When referring to a species, do not use the genus name alone; Be careful when using 'sp' (singular) or 'spp.' (plural).

### Equations and units

Please ensure that equations are editable. Leave a space on both sides of the <,  $\pm$ , =, etc. equations used in the text. For units and symbols, the SI system should be used.

### Abbreviations

Please define non-standard abbreviations at first use in the text with full form followed by the acronym in parentheses. Use only the acronym for subsequent explanations.

### Footnotes

Footnotes should be numbered consecutively. Those in tables or figures should be indicated by superscript lower-case letters. Asterisks should be used for significance values and other statistical data. Footnotes should never include the bibliographic details of a reference.

### References

Full references should be provided in accordance with the APA style. The usage of reference managers as Mendeley© or Endnote© or an online reference manager as Citefast with the output style of APA 7th edition is advised in organizing the reference list.

Please ensure that every reference cited in the text is also present in the reference list (and vice versa) and avoid excessive referencing.

### In-Text Citation

In-text citation to the references should be formatted as sumame(s) of the author(s) and the year of publication (also known as the author-date system).

If a specific part of a source (book, article, etc) is cited directly, a page number should also be included after the date. If the full source is used, the citation page number is not displayed. For example: Kocataş, 1978, p. 3

Citation can be shown in two ways: Parenthetical Citation or Narrative Citation.

References to be made at the end of the sentence should be shown in parentheses. If the cited reference is the subject of a sentence, only the date should be given in parentheses. There should be no parentheses for the citations that the year of the citation is given in the beginning of the sentence.

Citation examples according to the number of authors are given below.

### One author:

Consider the following examples:

-.....(Kocataş, 1978)

### - Kocataş (1978) states...

- In 1978, Kocataş's study of freshwater ecology showed that....

### Two authors:

If there are two authors, the sumames of both authors should be indicated and separated from each other by "and", (Geldiay and Ergen, 1972).

Consider the following examples:

-....(Geldiay and Ergen, 1972)

- Geldiay and Ergen (1972) states...

- Similar results were expressed by Geldiay and Ergen (1972), Kocataş (1978).

### More than two authors:

For citations with more than two authors, only the first author's surname should be given, followed by "et al." –in Turkish article 'vd.'- and the date (Geldiay et al., 1971; Geldiay vd., 1971).

See below examples:

-Geldiay et al. (1971) state......

-.....( Geldiay et al., 1971). There are few studies on this subject (Geldiay et al.,1971).

### Two or more works by different author:

When its needed to cite two or more works together, in-text citations should be arranged alphabetically in the same order in which they appear in the reference list and used semicolons to sparate citations.

For example: Several studies have reported similar results (Geldiay and Ergen, 1972; Kocataş 1978; Thurry 1987).

### Two or more works by the same author:

If there are two or more works by the same author, list the years of publication in order, earliest first. For example: (Kocataş, 1978, 1979, 1981) or Kocataş (1978, 1979, 1981)

### Citation to authors with more than one work in the same year:

The works should be cited as a, b, c, etc. after the date. These letters must be listed alphabetically according to the surname of the first author in the bibliography list. For Example:

-Geldiay and Ergen, 1972a -Geldiay and Ergen, 1972a, b

### No authors:

If the author is unknown, the first few words of the source should be used and dated For example: (A guide to citation, 2017).

In some cases, "Anonymous" is used for the author, accept this as the name of the author (Anonymous, 2001). Use the name Anonymous as the author in the reference list.

### No publication date:

If the publication date is unknown, write "n.d." (no date) in the in-text citation. Example: (Geldiay, n.d.).

### Citation to secondary sources:

In scientific studies, citation should be made to the original primary sources. Cite secondary sources when the original work is out of print, not available, or only available in a language you do not understand. If you want to cite a work that you can't find yourself, through a citation from another source, using the phrase ".....as cited in".

For Example:

### (Geldiay and Ergen 1972, as cited in Kocataş, 1978)

Personal communication and unpublished results:

Personal communications, such as phone calls, emails, and interviews, are not included in the reference list because readers can't access them. The in-text citation is also formatted slightly differently as follow: Example:

- Demands have been increasing lately. (A. Kale, personal communication, May 10, 2021). General use of websites and software:

### It should be showed as below.

-The website of Egejfas (www.egejfas.org) includes author guidelines. -Statistical software SPSS (version 25) was used to analyze the data.

### - -

### In References

All citations should be listed in the reference list, with the exception of personal communications and unpublished results.

All references must be written in English. If an article is written in a language other than English, give the title in English and indicate the language in which the article is in parentheses at the end of the source. Example: (in Turkish)

If the article has only an English abstract, indicate it in parentheses (English abstract) or (only English abstract)

References should be listed alphabetically ordered by the author's surname, or first author's surname if there is more than one author.

Hanging indent paragraph style should be used.

The year of the reference should be in parentheses after the author name(s).

The correct arrangement of the reference list elements should be in order as "Author surname, first letter of the name(s). (publication date). Title of work. Publication data. DOI

Article title should be in sentence case and the journal title should be in title case. Journal titles in the Reference List must be italicized and spelled out fully; do not abbreviate titles (For example; Ege Journal of Fisheries and Aquatic Sciences, not Ege J Fish Aqua Sci). Article titles are not italicized. If the journal is paginated by issue the issue number should be in parentheses.

DOI (Digital Object Identifier) information (if available) should be placed at the end of the reference as in the example. After added DOI information, "dot" should not be put. The DOI information for the reference list can be retrieved from CrossRef © Simple Text Query Form (https://doi.crossref.org/simpleTextQuery) by just pasting the reference list into the query box. After copying and pasting all the references of your article in the query box on this page, the DOI information is listed as added to the relevant reference. It is strongly recommended to provide DOI information of the references.

 For a reference with up to 20 authors, ALL authors (up to 20) are spelled in the reference list. When the number of authors is more than 21, "....." is used between the 19th author and the last author (APA 7th edition).

#### For example

Bolotov, I.N., Kondakov, A.V., Konopleva, E.S., Vikhrev, I. V., Aksenova, O. A, Aksenov, A. S., Bespalaya, Y. V., Borovskoy, A. V., Danilov, P. P., Dvoryankin, G. A. Gofarov, M. Y., Kabakov, M. B., Klishko, O. K., Kolosova, Y. S., Lyubas, A. A., Novoselov, A. P., Palatov, D. M., Savvinov, G. N., Solomonov, N. M., ......& Vinarski, M. M., (2020). Integrative taxonomy, biogeography and conservation of freshwater mussels (Unionidae) in Russia.Scientific Reports, *10*, 3072. https://doi.org/10.1038/s41598-020-59867-7

 In the reference list starting with the same sumame and names (initials), works with a single author are put in chronological order first; Then, two-author works are taken into account in alphabetical order of the second author. Multi-author works are listed only chronologically.

### For example:

Kocataş, A. (1978) Kocataş, A., & Ergen, Z. (1972).

Kocataş, A., & Geldiay, R. (1972)

Kocataş, A., Ergen, Z., & Geldiay, R. (1980)

The citation of journals, books, multi-author books and articles published online etc. should conform to the following examples:

### Journal Articles

Öztürk, B. (2010). Scaphopod species (Mollusca) of the Turkish Levantine and Aegean seas. Turkish Journal of Zoology, 35(2), 199-211. DOI:10.3906/zoo-0904-23

Özbek, M., & Ulutürk, E. (2017). First record of Spongilla lacustris (Porifera: Demospongiae) from the Eastern Black Sea (Uzungöl Lake, Trabzon) (in Turkish with English abstract). Ege Journal of Fisheries and Aquatic Sciences, 34(3), 341-346. https://doi.org/10.12714/egejfas.2017.34.3.14

### Books

Parsons, T.R., Matia, Y., & Lalli, C.M. (1984). A manual of chemical and biological methods for seawater analysis. New York, Pergamon Press.

Kleiner, F.S., Mamiya, C.J., & Tansey, R.G. (2001). Gardner's art through the ages (11th ed.). Fort Worth, USA: Harcourt College Publishers.

### Chapter in books

Gollasch, S. (2007). Is ballast water a major dispersal mechanism for marine organisms? In W. Nentwig (Ed.), Biological Invasions (pp. 29-57). Berlin: Springer.

### E-books and chapter in e-books

Mitchell, J.A., Thomson, M., & Coyne, R.P. (2017). A guide to citation. Retrieved from https://www.mendeley.com/reference-management/reference-manager

Troy, B.N. (2015). APA citation rules. In S.T, Williams (Ed.). A guide to citation rules (2nd ed., pp. 50-95). Retrieved from https://www.mendeley.com/reference-management/reference-manager

### Proceedings

Soultos, N., Lossifidou, E., Lazou, T., & Sergedilis, D. (2010). Prevalence and antibiotic susceptibility of Listeria monocytogenes isolated from RTE seafoods in Thessaloniki (Northern Greece). In Ş. Çaklı, U. Çelik, C. Altınelataman (Eds.), West European Fish Technologists Association Annual Meeting 2010 (pp. 94-98). Izmir, Turkey: Proceedings Book.

### Websites

- Mitchell, J.A. (2017, May 21). How and when to reference. https://www.howandwhentoreference.com
- If the resource was written by a group or organization, use the name of the group/organization as the author. Additionally, if the author and site name are the same, omit the site name from the citation.
- American Society for the Prevention of Cruelty to Animals. (2019, November 21). Justice served: Case closed for over 40 dogfighting victims. https://www.aspca.org/news/justice-served-case-closed-over-40-dogfighting-victims

### Thesis

Acarli, S. (2005). Larval production of oyster. Doctoral dissertation, Ege University, Turkey.

### Tables and Figures

All illustrations (drawing, photograph, image, graphics, etc.), except tables, should be labeled 'Figure'. Tables and figures should be numbered using consecutive Arabic numbers, and referred to as "Table 1, Figure 1" in the text, unless there is only one table or one figure.

Each table and figure should contain a short title. If the paper is prepared in Turkish, table and figure titles should be written in 2 languages, both English and Turkish. Table and figure captions should be placed in appropriate places.

Tables and figures should be included in the article after they are cited in the relevant text.

### Tables

Tables should be prepared by table tool in Word, tables in image form will not be accepted. Table title should be placed above the table.

- · Table fille should be placed above the table.
- If there are table notes and abbreviations, please place them below the table body.
- Prepare the tables vertically. Avoid large tables.
- Give a short heading for each column.
- Make sure that the data presented in the table does not repeat the results described elsewhere in paper.
- Please avoid using vertical lines, colour or shading in table cells.
- Tables need not to exceed 175 x 227 mm.
- The dimensions of the tables do not exceed 175 x 227 mm.

### Figures

Figures, which are recommended for electronic formats such as JPEG, TIFF and minimum 300 dpi should be also arranged in available dimensions. Do not submit files that are too low in resolution and disproportionately large for the content.

Photos can be in color or grayscale. Photographs and all illustrations(figures,maps, etc.) should be in clear format. Graphics should be pasted in editable format and not converted to image format. When it is necessary, the original copies of the figures will be asked from author(s) as separate files, after the reviewing process being concluded. Arial Narrow font should be used in the figure (graphics, etc). A brief title containing the description of the figure should be given under the figure but explain all symbols and abbreviations used.

### Permissions

If authors include figures, tables or text passages published elsewhere, or use of software, questionnaires and scales that require permission in the study, they should obtain permission from the copyright holders. Please note that some publishers do not provide electronic rights for free and Ege University/EgeJFAS (Su Ürünleri Dergisi) will not be able to reimburse or be responsible for any costs incurred in obtaining these permissions. In such cases, materials from other sources should not be used.

### Page Charges

No page charges are collected. All authors/readers have free access to all papers.

### Plagiarism Detection

In accordance with its publishing policies EgeJFAS requires plagiarism check for each study that has undergone the "Review Process". The iThenticate plagiarism checker software is used for plagiarism detection.

### Indexes

EgeJFAS is indexed in TUBITAK ULAKBIM TR Dizin, ESCI (Clarivate Analytics), Zoological Record (Clarivate Analytics), EBSCO, CABI, ProQuest, ASFA

### **COPYRIGHT NOTICE**

In order to publish and disseminate articles in Ege Journal of Fisheries and Aquatic Sciences (Su Ürünleri Dergisi), we need certain publishing rights from authors, which are determined by a publishing agreement between the author and the journal. It is a condition of publication in the journal that the authors grant an exclusive license to the journal.

As law regulations, the corresponding author should complete and sign a copyright release form on behalf of all co-authors during the submission of the article for publication in this journal.

The manuscript will not go through review without submission of this form. Authors can download the form beforehand and submit it at the same time as the manuscript.

Authors publishing in this journal accept the conditions described below.

Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution Non-Commercial License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.

Authors are able to enter into separate, additional contractual arrangements for the nonexclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.

Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

In the meanwhile, authors should be aware that they are responsible for the plagiarism check of their manuscript (Similarity Report) (using iThenticate or similar programmes) and including the plagiarism report during the manuscript uploading (as "Similarity Report") is strongly advised.

Ege Journal of Fisheries and Aquatic Sciences are in no way liable for any lawsuit derived from plagiarism, as it is author's responsibility to submit original work. However, the journal is in full right of rejecting manuscripts if detecting plagiarism of any sort.

If the study requires an ethics committee document, it should not be forgotten that the "Ethics Committee Approval" must be uploaded.

### Submission checklist

Please read carefuly the Submission Checklist before submitting your article to the journal.

### Important Note

Authors are highly recommended to read carefully EgeJFAS Ethical Principles and Publication Policy and Author Guidlines before submitting their manuscripts.

Editor-in-Chief/Editors reserve the right to reject manuscripts that do not comply with the explanations detailed above. The author/s will be responsible for incorrect/incomplete statements or failure to comply with the above-mentioned explanations.

> Corresponding Address Su Ürünleri Dergisi Ege University Faculty of Fisheries 35100 Bornova-İzmir, Turkey Phone: +90 232 311 3838 Fax: +90 232 388 3685 E-mail: editor@eqelfas.org

E- ISSN 2148-3140

Ege Journal of Fisheries and Aquatic Sciences

### Sahibi Director

Uğur SUNLU Dekan Dean Ege University Faculty of Fisheries, İzmir, Türkiye

### Sorumlu Müdür Responsible Director

Tolga DİNÇER Ege University Faculty of Fisheries, İzmir, Türkiye

### Yazı İşleri Müdürü Editor-in-Chief

Aynur LÖK

Ege University Faculty of Fisheries, İzmir, Türkiye

### Yazı İşleri Müdür Yardımcısı Co-Editor-in-Chief

Gülnur METİN

Ege University Faculty of Fisheries, İzmir, Türkiye

### **Teknik Editör Technical Editor**

Sencer AKALIN Ege University Faculty of Fisheries, İzmir, Türkiye Evrim KURTAY Ege University Faculty of Fisheries, İzmir, Türkiye

### İstatistik Editörü Statistical Editor

Hülya EMİNÇE SAYGI Ege University Faculty of Fisheries, İzmir, Türkiye

### Yabancı Dil Editörü Foreign Language Editor

Eren ALKAN Ege University School of Foreign Languages, İzmir, Türkiye

### Yayın Kurulu Editorial Board

Celal ATEŞ Muğla Sıtkı Koçman University, Muğla, Türkiye Aslı BAŞARAN Ege University, İzmir, Türkiye Nuri BAŞUSTA Fırat University, Elazığ, Türkiye Levent BAT Sinop University, Sinop, Türkiye Dagmara BŁOŃSKA University of Lodz, Poland Kurt BUCHMANN University of Copenhagen, Copenhagen, Denmark Melih Ertan CINAR Ege University, İzmir, Türkiye Yılmaz ÇİFTÇİ Ordu University, Ordu, Türkiye Deniz ÇOBAN Adnan Menderes University, Aydın, Türkiye Mark DIMECH FAO Fish. Aqua. Dept., Rome, Türkiye İbrahim DİLER Isparta University of Applied Sciences, Türkiye Ertuğ DÜZGÜNEŞ Karadeniz Technical University, Trabzon, Türkiye Ercüment GENÇ Ankara University, Ankara, Türkiye Ana GORDOA CEAB-CSIC, Madrid, Spain Nalan GÖKOĞLU Akdeniz University, Antalya, Türkiye Gertrud HAIDVOGL Uni. Nat. Res. Life Sci., Vienna, Austria Chiaki IMADA Tokyo Uni. Marine Sci. Tech., Tokyo, Japan Saadet KARAKULAK İstanbul University, İstanbul, Türkiye Pavel KOZÁK University of South Bohemia, Czech Republic

### Marcelo de Castro LEAL University of Lavras, Brazil Aysun KOP Ege University, İzmir, Türkiye Alexandra LEITÃO-BEN HAMADOU Qatar University, Qatar K. Karal MARX Fisheries College and Research Institute, Thoothukudi, India Jörg OEHLENSCHLÄGER Seafood Consultant, Hamburg, Germany M. Bahadır ÖNSOY Muğla Sıtkı Koçman University, Muğla, Türkiye Murat ÖZBEK Ege University, İzmir, Türkiye Müfit ÖZULUĞ İstanbul University, İstanbul, Türkiye Giuliana PARISI University of Florence, Florence, Italy Walter RENDA Via Bologna 18/A, 87032 Amantea (CS), Italy Haşim SÖMEK İzmir Kâtip Çelebi University, İzmir, Türkiye Radu SUCIU Danube Delta National Institute, Tulcea, Romania Tamás SZABÓ Szent Istvàn University, Gödöllő, Hungary William TAYLOR Michigan State University, East Lansing, USA Mümtaz TIRAŞIN Dokuz Eylül University, İzmir, Türkiye Adnan TOKAC Ege University, İzmir, Türkiye Sühendan Mol TOKAY İstanbul University, İstanbul, Türkiye Gary H. WIKFORS National Marine Fisheries Service, United States Argyro ZENETOS Hellenic Centre for Marine Research, Anávyssos, Greece

### **Yayın Ofisi** Yeliz TUĞGAN Hayri ARSLAN Bahar ASLANYÜREK

Su Ürünleri Dergisi yılda dört sayı olarak yayınlanır. Ege Journal of Fisheries and Aquatic Sciences is published in four issues annually.

**Editorial Office** 

Ege University Faculty of Fisheries, İzmir, Türkiye

Ege University Faculty of Fisheries, İzmir, Türkiye

Ege University Faculty of Fisheries, İzmir, Türkiye

T.C. Kültür ve Turizm Bakanlığı Sertifika No: 18679

Ministry of Culture and Tourism Sertificate No:18679

Yayımlanma Tarihi Publishing Date 15 Mart March 15<sup>th</sup>, 2024

İletişim Contact

Ege Üniversitesi Su Ürünleri Fakültesi, 35100, Bornova, İzmir Ege University Faculty of Fisheries, 35100, Bornova, İzmir, Türkiye Tel: +90 232 311 3096 Fax: +90 232 388 3685 http://www.egejfas.org info@egejfas.org

# Su Ürünleri Dergisi

**Ege Journal of Fisheries and Aquatic Sciences** 

### Volume 41 Number 1

## ISSN 1300-1590 / E-ISSN 2418-3140

## İÇİNDEKİLER CONTENTS

| ARAŞTIRMA MAKALELERİ RESEARCH ARTICLES                                                                                                                                                                                                            |       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Investigations on the zooplankton distribution and composition of Işıklı Lake (Çivril-Denizli/Türkiye), with a trophic status assessment                                                                                                          |       |
| lşıklı Gölü (Çivril-Denizli/Türkiye) zooplankton dağılımı ve kompozisyonunun trofik durum değerlendirmesi ile araştırılması<br>Maral Anardın Yağa, Pahmi Lucal, Abdulkadir Yağa, Vadat Yağan                                                      | 1.7   |
|                                                                                                                                                                                                                                                   | 1-1   |
| Comparative otolith morphology in two species of Salmo genus from Türkiye                                                                                                                                                                         |       |
| Türkiye'den <i>Salmo</i> cinsine ait iki türün karşılaştırmalı otolit morfolojisi<br>Melek Öznicak, Semra Savau, Savas Yılmaz                                                                                                                     | 8-15  |
|                                                                                                                                                                                                                                                   |       |
| A preliminary study into the influence of filtration on phytoplankton dynamics in an oligotrophic marine fish farm environment                                                                                                                    |       |
| Filtrasyonun oligotrofik deniz balik çittliği ortamındaki htoplankton dinamikleri üzerindeki etkisine dair ön çalışma<br>Betül Bardakçı Sener, Evüp Mümtaz Tıraşın                                                                                |       |
|                                                                                                                                                                                                                                                   |       |
| Karyological analysis of endemic Pseudophoxinus anatolicus (Hankó 1925) in Türkiye                                                                                                                                                                |       |
| Ahmed Sadeg Jaber Doori, Atilla Arslan                                                                                                                                                                                                            | 26-29 |
|                                                                                                                                                                                                                                                   |       |
| Some biological aspects of White seabream, <i>Diplodus sargus</i> (Linnaeus, 1758) from the northeastern Aegean Sea, Türkiye                                                                                                                      |       |
| Ismail Burak Daban, Ali İşmen, Mukadder Arslan İhsanoğlu                                                                                                                                                                                          | 30-36 |
|                                                                                                                                                                                                                                                   |       |
| The list of deep-sea decapod crustaceans and new records from Siğacık Bay (Aegean Sea, Türkiye)<br>Sığacık Körfazi (Ege Denizi, Türkiye)'nin derin deniz dekapod tür listesi ve körfazden veni kavıtlar.                                          |       |
| Cengiz Koçak                                                                                                                                                                                                                                      | 37-45 |
|                                                                                                                                                                                                                                                   |       |
| Distribution of the critically endangered fan mussel Pinna nobilis population in the Çanakkale Strait and Marmara Sea<br>Nesli kritik düzevde tehlike altında olan Pinna nobilis populasyonunun Canakkale Boğazı ve Marmara Denizi'ndeki dağılımı |       |
| Sefa Acarlı, Deniz Acarlı, Semih Kale                                                                                                                                                                                                             | 46-53 |
|                                                                                                                                                                                                                                                   |       |
| Marmara Denizi'nde (Türkiye) kış mevsimi ihtiyoplankton örneklemesi ile sardalya (Sardina pilchardus) kıtı kınıter time ichtriyoplankton sampling in the Sea ol Marmara, Türkiye                                                                  |       |
| İsmail Burak Daban, Yusuf Şen, Alkan Öztekin, Adnan Ayaz, Uğur Altınağaç, Ali İşmen, Ahsen Yüksek, Uğur Özekinci, Fikret Çakır, Tekin Demirkıran,                                                                                                 | E4 60 |
| Gençtan Erman ögür, ögüznan Ayaz, buminnan Burkay Seiçük                                                                                                                                                                                          | 94-02 |
| Prebosphoric occurrence of Korean rockfish, Sebastes schlegelii Hilgendorf, 1880 in southwestern Black Sea with notes on its morphometry and dispersal potential                                                                                  |       |
| Güneybatı Karadeniz'in boğaz önü sularında görülen Kore iskorpiti, Sebastes schlegelii Hilgendorf, 1880'in morfometrisi ve yayılım potansiyeli<br>Liğur Lizer Firdes Saadet Karakulak, Hakan Kabasakal                                            | 63-68 |
|                                                                                                                                                                                                                                                   |       |
| Gökkuşağı alabalığı (Oncorhynchus mykiss Walbaum, 1792) endüstrisinde yeni bir yaklaşım: "Türk Somonu" üretim ve pazarlama eğilimleri                                                                                                             |       |
| A new approach in rainbow trout (Uncorhynchus mykiss Walbaum, 1792) industry: "Turkish Salmon" production and marketing trends<br>Evüp Cakmak. Osman Tolga Özel. Esin Batır. Derva Evin                                                           | 69-81 |
| - , - , - ,,,,,,,                                                                                                                                                                                                                                 |       |



Published by



Ege University Faculty of Fisheries, İzmir, Türkiye

**RESEARCH ARTICLE** 

# Investigations on the zooplankton distribution and composition of lşıklı Lake (Çivril-Denizli/Türkiye), with a trophic status assessment

Işıklı Gölü (Çivril-Denizli/Türkiye) zooplankton dağılımı ve kompozisyonunun trofik durum değerlendirmesi ile araştırılması

**Meral Apaydın Yağcı<sup>1\*®</sup>** • **Rahmi Uysal<sup>2®</sup>** • **Abdulkadir Yağcı<sup>1®</sup>** • **Vedat Yeğen<sup>3®</sup>** <sup>1</sup>Sheep Breeding Research Institute, Republic of Türkiye Ministry of Agriculture and Forestry, Bandırma, Balıkesir, Türkiye <sup>2</sup>Isparta Directorate of Provincial Agriculture and Forestry, Republic of Türkiye Ministry of Agriculture and Forestry, Eğirdir, Isparta, Türkiye <sup>3</sup>Fisheries Research Institute, Republic of Türkiye Ministry of Agriculture and Forestry, Eğirdir, Isparta, Türkiye

\*Corresponding author: meral.apaydinyagci@tarimorman.gov.tr

Received date: 15.09.2023

Accepted date: 22.11.2023

### How to cite this paper:

Apaydın Yağcı, M., Üysal, R., Yağcı, A., Yeğen, V. (2024). Investigations on the zooplankton distribution and composition of Işıklı Lake (Çivril-Denizli/Türkiye), with a trophic status assessment. Ege Journal of Fisheries and Aquatic Sciences, 41(1), 1-7. https://doi.org/10.12714/egejfas.41.1.01

Abstract: In this study, the zooplankton distribution and composition of Işıklı Lake, located in the Inner West Anatolia region of Türkiye, were examined monthly between 2003-2005. Zooplankton samples were collected with Hydro-Bios plankton net (55 µm) at the surface and fixed in formaldehyde (4 %). Physiological parameters such as surface water temperature, pH, dissolved oxygen, and conductivity were also measured. Also, the frequency index (F %) and the *Brachionus / Trichocerca* (Q<sub>B/T</sub>) were determined to assess the trophic composition of Lake Işıklı. A total of 49 species have been identified. Rotifera (55 %), Cladocera (27 %) and Copepoda (18%) were represented by the species. The maximum species was found in May 2004 (21 species), while the minimum was found in October 2003 (5 species). *Asplanchna priodonta, Keratella cochlearis, Keratella tecta, Polyarthra dolichoptera, Synchaeta pectinata, Bosmina longirostris* and *Chydorus sphaericus* are common species in the lake. The water temperature varied between 3.9-24.6 °C; pH ranged from 8.1 to 8.8; the electrical conductivity ranged from 341 µS/cm to 434 µS/cm; the dissolved oxygen values changed from 5.8 mg/L to 11.1 mg/L. According to the frequency index (F %), the most dominant species are *B. longirostris* (74 %), *K. cochlearis* (62 %), *A. priodonta* (54 %), and *C. sphaericus* (51 %). A total of 20 species are reported for the first time from the region. Newly reported species from the lake were: the rotifers, *A. priodonta, Brachionus angularis, Brachionus calyciflorus, Colurella colurus, Keratella quadrata, Lecane clostrocerca, Lecane ludwigi, Lecane luna, Lecane luna, Lecane ohioensis, Lecane quadridentata, Lecane sp., Mytilina mucronata, Notholca acuminata, Notholca squamula, Trichotria tetractis, the cladocerans Acroperus harpae, Daphnia cucullata, and the copepods <i>Eucyclops macrurus* and *Megacyclops gigas*. Considering the *Brachionus / Trichocerca* (Q<sub>B/T</sub>) ratio according to the Sládeček (1983) index, the lake showed mesotrophic features.

Keywords: Mesotrophic level, Işıklı Lake, Rotifera, Cladocera, Copepoda

**Öz:** Bu çalışmada Türkiye'nin İç Batı Anadolu bölgesinde yer alan lşıklı Gölü'nün zooplankton dağılımı ve kompozisyonu 2003-2005 yılları arasında aylık olarak incelenmiştir. Zooplankton örnekleri yüzeyden Hydro-Bios plankton ağı (55 µm) ile toplanmıştır ve formaldehit (% 4) içerisine sabitlenmiştir. Yüzey suyu sıcaklığı, pH, çözünmüş oksijen ve elektriksel iletkenlik gibi bazı fizikokimyasal parametreler de ölçülmüştür. Ayrıca lşıklı Gölü'nün trofik kompozisyonunu değerlendirmek amacıyla frekans indeksi (% F) ve *Brachionus / Trichocerca* (Q<sub>B/T</sub>) belirlenmiştir. Toplam 49 tür tespit edilmiştir. Rotifera (%55), Cladocera (%27) ve Copepoda (%18) türleri tarafından temsil edilmiştir. Maksimum tür Mayıs 2004'te (21 tür), minimum tür ise Ekim 2003'te (5 tür) bulunmuştur. *Asplanchna priodonta, Keratella cochlearis, Keratella tecta, Polyarthra dolichoptera, Synchaeta pectinata, Bosmina longirostris* ve *Chydorus sphaericus* gölde yaygın olarak görülen türlerdir. Su sıcaklığı 3,9-24,6 °C arasında; pH 8,1 ila 8,8 arasında; elektriksel iletkenlik 341 µS/cm ile 434 µS/cm arasında; çözünmüş oksijen değerleri 5,8 mg/L'den 11,1 mg/L'ye kadar değişimiştir. Sıklık indeksine (% F) göre en baskın türler *B.longirostris* (%74), *K. cochlearis* (%62), *A. priodonta* (%54) ve *C. sphaericus* (%51)'dur. Bölgeden ilk kez toplam 20 tür rapor edilmiştir. Gölde yeni bildirilen türler: rotifera, *A. priodonta, Brachionus calyciflorus, Colurella colurus, Keratella quadrata, Lecane clostrocerca, Lecane ludwigi, Lecane luna, Lecane lunaris, Lecane ohioensis, Lecane quadridentata, Lecane sp., Mytilina mucronata, Notholca acuminata, Notholca squamula, Trichotria tetractis, cladocera (Q<sub>B/T</sub>) oranı dikkate alındığında; göl mezotrofik östellik göstermiştir.* 

Anahtar kelimeler: Mesotrofik seviye, Işıklı Gölü, Rotifera, Cladocera, Copepoda

### INTRODUCTION

In freshwater and aquatic ecosystems, zooplankton is an essential component in the food web, carbon transfer, suppressing phytoplankton abundance (Bozkurt and Genç, 2018; Çolak and Alper, 2020; Karpowicz and Ejsmont-Karabin, 2021; Özdemir et al., 2021). Cladocera, Copepoda and Rotifera are the main representatives of zooplankton. While zooplankton is an essential indicator of the health of the ecosystem (Ateş and Kırkağaç, 2020), the Rotifera group is

also an important indicator of the water quality, pollution and eutrophication process (Altındağ, 2000). They are also highly suitable for biological monitoring of water quality, as environmental changes strongly influence them and because of their rapid response to changes in water quality (Chalkia and Kehayias, 2013; Saler and Selamoğlu, 2020). Indeed, although zooplankton is still not included, according to the implementation of the EU Water Framework Working Directive as a biological quality indicator for aquatic ecosystems, several studies have shown its usefulness as an indicator of changes in the trophic dynamics and ecological status of lakes related to nutrient loading and climate changes (Jeppesen et al., 2011). Zooplanktonic organisms constitute the primary food source of fish in freshwater sources and they constitute the leading food of many pelagic-feeding fish species and young periods of demersal-feeding fish (Gürleyen and Ustaoğlu, 2017). Zooplanktonic organisms, which form the second food pyramid ring in fresh waters, are essential in ensuring the continuity of the material and energy cycle (Bulut et al., 2021). Rotifera group is an indicator for determining water quality and trophic status (Muñoz-Colmenares et al., 2021). Long-term limnological studies, especially research on water chemistry and zooplankton, are effective in the management of water bodies (Nandini et al., 2008). It has been stated that the rotifer community structure, which changes from lake to lake, can indicate the lake's real-time environmental health (Umi et al., 2017).

Işıklı (Çivril) Lake is within the scope of Class A wetland according to the International Ramsar Convention. It is at an altitude of about 800 m and its area is around 3500 ha. It is fed by Işıklı Springs, Büyük Menderes River, Karanlık Creek and Kufi Stream (Anonymous, 2022). When the studies carried out in Işıklı Lake are examined chronologically, the Çivril Lake limnological research project was carried out by Anonymous (1992). In addition, there are limited number of zooplankton studies that have been done before in Çivril Lake (Gündüz, 1997; Aygen and Balık, 2005; Barinova et al., 2014). This research aims to study the zooplankton species comprehensively, to present them in detail with their monthly distributions, and to compare the results with the previous state of the lake. It is thought that the studies in which Rotifera, Cladocera and Copepoda groups are presented as a whole will form an important infrastructure for future studies in ecological terms.

### MATERIALS AND METHODS

Zooplankton sampling was carried out monthly from 2 stations in Işıklı Lake between 2003 (only January, September, October, November, December),2004 (all months from January to December) and 2005 (January, February, March) (Figure 1). Located in the Civril district of Denizli province, the lake's average water level area is 64.53 km<sup>2</sup>, and its depth is 7 m. (Uysal et al., 2006). 1st station is close to the residential area and there is no water inlet or outlet at this station. The ground is loamy and the vegetation is sparse and shallow. 2<sup>nd</sup> station is the area where irrigation gates are located. There is a partial water exchange. Gökgöl incoming water exits from the area close to the steam station. There are aquatic plants and reeds, and it is deeper than the 1st station. Zooplankton samples were taken horizontally with a plankton net (mesh size of 55 µm, diameter = 57 cm), and samples were fixed with formaldehyde (4%) immediately after collection in 250 ml bottles. Species were examined under a binocular microscope (Olympus model) and the species were determined to the species level using the keys of Kiefer (1952, 1955), Dussart (1967, 1969), Koste (1978), Negrea (1983), Smirnov (1996), Nogrady and Segers (2002). Also, a zooplankton species checklist was prepared according to Ustaoğlu (2004) and Ustaoğlu et al. (2012). Soyer's (1970) frequency index (F %) was used to define the frequency of species in the study area. Results were determined as constant (F  $\geq$  50%), common (50% > F  $\geq$  25%), or rare (F < 25%). Regardless of the Soyers index; few, abundant and most abundant indicators expressed in Table 1. The values are observed qualitatively at the stations every month. Brachionus/Trichocerca coefficient (QB/T) was calculated to evaluate the trophic structure of Işıklı Lake. In this formula, Sládeček (1983) stated that a quotient of 1 indicates oligotrophic conditions, while a quotient between 1 and 2 corresponds to mesotrophic conditions, and a ratio of >2 is encountered in eutrophic lakes. In the simultaneous study where fishing research was carried out in Lake Iskli; Some measurements of water guality were taken in July-December 2004 and January-March 2005. Water guality values are presented additionally for data recording in the study. Temperature and pH were recorded with a WTW electrode sentix 41 pH meter, dissolved oxygen was measured with a WTW CellOx-325 type oxygen meter, and electrical conductivity was measured using a WTW tetracon 325 type conductivity meter.



Figure 1. The study area and stations (Stn 1: 38°14'44.6"N, 29°55'55.1"E; Stn 2: 38°12'40.9"N, 29°52'15.6"E)

### RESULTS

A total of 49 species, 27 from Rotifera, 13 from Cladocera and 9 from Copepoda, were identified in Lake Işıklı (Table 1). The most common group is Rotifera. The distribution of zooplankton groups by stations is shown in Figure 2.

When evaluated according to the frequency index, 4 species ( $F \ge 50\%$ ) were classified as constant, 8 species ( $50\% > F \ge 25\%$ ) were classified as common, and 37 species (F < 25%) were classified as rare. Among these dense species, *B. longirostris* was determined with the highest frequency (74%) in almost all months.

|                                                 |        | 2003       |     |            |          | 2004   |     |      |       | 2005       |            |        |     |           |                   |       |     |          |            |     |            |            |      |
|-------------------------------------------------|--------|------------|-----|------------|----------|--------|-----|------|-------|------------|------------|--------|-----|-----------|-------------------|-------|-----|----------|------------|-----|------------|------------|------|
|                                                 | Jan    | Sep        | Oct | Nov        | Dec      | Jan    | Feb | Ma   | r Ap  | r Ma       | ıy J       | un     | Jul | Au        | g Sep             | Oct   | N   | ov       | Dec        | Jan | Feb        | Ma         | r    |
|                                                 | 1      | 1 2        | 1 2 | 1 2        | 1 2      | 1 2    | 1 2 | 1 2  | , 1 3 | 2 1        | 2 1        | 2      | 1 2 | 1         | $\frac{2}{2}$ 1 2 | , 1 2 | 1   | 2        | 1 2        | 1 2 | 1.2        | 1.2        | 9 F% |
|                                                 | -      |            |     |            |          |        |     |      |       |            | - 1        | -      |     | -         |                   |       |     | -        |            |     |            |            |      |
| KUTIFERA<br>Asplanhpa priodonta                 | +      |            |     |            |          | т.     |     | -    |       | <b>د</b> م |            |        |     |           | <u>т</u> т        |       |     |          | т т        | +   | <u>ц</u>   | _          | 54   |
| Aspianinia priodonia<br>Prochionuo colvoifloruo | т      | <b>-</b> - |     |            |          | -<br>- |     | т    | ~ ^   |            |            |        |     |           | <b>- -</b>        |       |     |          | <b>- -</b> | Ŧ   |            | -          | 10   |
| Brachionus caryclilorus                         |        |            |     | Ŧ          |          | Ŧ      |     |      |       |            | т т        |        |     |           |                   |       |     |          |            |     |            |            | 5    |
| Brachionus augularis                            |        |            |     |            |          |        |     |      |       |            | T          |        |     |           | т<br>             |       |     |          |            |     |            |            | 3    |
|                                                 |        |            |     |            |          |        |     |      |       |            |            | т.     |     |           | -<br>-            |       |     |          |            |     |            |            | 10   |
| Euchlanic dilatata                              |        |            |     |            |          | т.     |     |      | +     |            | <u>т</u>   | т<br>_ |     |           | -<br>-            |       |     |          | -          |     | т.         | ц. ц       | 23   |
| Koratolla cochloaric                            | +      |            |     | <u>т</u> т | <u>т</u> | т<br>  | +   | +    |       | ц. ц.      |            | т<br>_ |     |           | -<br>-            |       | -   | т.       | т<br>1 — 1 | ⊥ * |            |            | 20   |
| Keratella tecta                                 | +      |            |     | + +        |          | +      |     | +    | -     | · ·        | + *        | +      |     |           | '                 | + +   | . ' | +        |            | 1   |            |            | 31   |
| Koratolla quadrata                              | +      |            |     |            | +        | +      | +   | +    | + +   | '<br>ب     | '<br>+ +   |        |     |           |                   |       |     | +        | + +        | + + | <b>A</b> 3 | ,<br>, , , | _ /0 |
| Polvarthra dolichontera                         |        |            |     | + +        | +        | +      |     | +    |       | ·          | +          | +      |     |           | +                 | + +   |     | +        | +          | + + | + +        |            | - 46 |
| Svnchaeta nectinata                             | +      |            |     | + +        |          | +      |     |      |       |            |            |        |     |           |                   | +     | +   | ʻ.       | + +        | + ▲ | + +        | - +        | 33   |
| Testudinella natina                             |        |            | +   |            |          |        |     |      |       |            | + *        |        |     | +         |                   |       |     | +        | + +        | . – | +          |            | 26   |
| l ocano hulla                                   |        |            |     |            |          |        |     |      | -     |            | +          |        |     | ,<br>+ .  | + +               |       | _   |          |            |     | +          |            | 15   |
|                                                 |        |            |     |            |          |        |     |      |       |            | '          |        |     |           | + +               | +     | +   | +        |            |     | ,<br>+ +   | _          | 18   |
| Lecane ludwini                                  |        |            |     |            |          |        |     |      |       |            |            |        |     |           | + +               | '     | 17  | 1        |            | +   | т т        |            | 8    |
|                                                 |        |            |     |            |          |        |     |      |       | +          |            |        |     | +         | . F               |       |     | +        | +          | -   |            |            | 10   |
| Locano lunario                                  |        |            |     |            |          |        |     |      |       |            |            | +      |     | + -       | + +               | +     |     | E.       | '          |     | + -        | -          | 21   |
|                                                 |        |            |     |            |          |        |     |      |       | Ŧ          |            | т      |     | Τ.        | <br>-             | т     | -   | <u>т</u> |            |     | Τ Τ        |            | 10   |
| Lecalle Ullielisis                              |        |            |     |            |          |        |     |      |       |            | <u>т</u>   |        |     | <u></u> . | т<br>1. 1.        |       | Т   | т        |            |     |            | T          | 10   |
|                                                 |        |            |     |            |          |        |     |      |       |            | Ŧ          |        |     | Τ.        | <b>- -</b>        |       |     |          |            |     |            |            | 3    |
| Lecalle sp.                                     |        |            |     |            |          |        |     |      |       |            |            |        |     |           |                   | Т     |     |          |            |     |            |            | 2    |
| Lepauella sp.<br>Mutilina muoronata             | +      |            |     |            |          |        |     | Ŧ    |       |            | 1          |        |     |           | L                 |       |     |          |            |     | Ŧ          |            | 2    |
| Nytillina mucronata                             | т      |            |     |            |          |        |     |      |       |            | т          |        |     |           | т                 |       |     |          |            |     | -<br>      |            | 0    |
| Notholog acumula                                |        |            |     |            |          |        |     | т    |       |            |            |        |     |           |                   |       |     |          |            |     |            | -          | 12   |
| Triabasaraa aimilia                             |        |            |     |            |          |        |     | т    |       | 1          | <b>A</b> 1 |        |     |           |                   |       |     |          |            | Ŧ   |            |            | 10   |
| Trichotrio popillum                             |        |            |     |            |          |        |     |      |       | Ŧ          | ▲ ⊤        | т      |     |           | т<br>,            |       |     |          |            |     |            |            | 10   |
| Trichotria pocilium                             |        |            |     |            |          |        |     | т    |       |            | т          |        |     |           | Ŧ                 |       |     |          | Ŧ          | Ξ.  |            |            | 0    |
|                                                 |        |            |     |            |          |        |     |      |       |            |            |        |     |           |                   |       | т   |          |            | т   | т          |            | 0    |
| CLADOCERA                                       |        |            |     |            |          |        |     |      |       |            |            |        |     |           |                   |       |     |          |            |     |            |            |      |
| Acroperus harpae                                |        |            |     |            |          |        |     | +    |       |            | +          |        |     |           |                   |       |     |          |            |     |            |            | 5    |
| Alona guttata                                   |        |            |     |            |          |        |     |      | -     | +          |            |        | +   |           |                   |       |     |          |            |     |            | +          | 8    |
| Alona rectangula                                |        |            |     | * 🔺        | . +      | +      |     |      | +     |            | +          |        | +   |           | +                 |       |     | +        | + +        |     | +          | +          | 38   |
| Bosmina longirostris                            | *      | + *        | *   | * *        | *        | +      | *   |      | +     | ▲ +        | ▲ *        |        | *   | *         | * +               |       | *   |          | + +        | + + | + *        |            | 74   |
| Ceriodaphnia pulchella                          |        | ▲ +        |     | + +        |          |        |     |      |       |            | +          | +      |     |           |                   |       | +   | +        |            |     |            |            | 23   |
| Chvdorus sphaericus                             | *      |            |     |            |          | +      | +   | +    | +     | •          | * +        |        |     |           | + +               |       | +   | +        | + +        | + + | * *        | *          | 51   |
| Daphnia cucullata                               |        | +          | +   | · +        | +        |        |     |      | + +   | + -        | +          |        |     | +         |                   |       |     |          | +          |     | +          | -          | 26   |
| Daphnia longispina                              |        |            |     |            |          |        |     |      |       |            |            |        | +   |           |                   |       |     |          |            |     |            |            | 3    |
| Diaphanasoma brachvurum                         |        | + 🔺        |     | + +        |          |        |     |      |       |            | +          |        | . + |           | •                 |       |     |          | +          |     |            |            | 23   |
| Disparalona rostrata                            |        |            | +   |            |          |        |     |      |       |            |            |        | *   |           |                   |       |     |          |            |     |            |            | 5    |
| Graptoleberis testudinaria                      | +      |            |     |            |          |        |     |      |       |            |            |        |     |           |                   |       |     |          | +          |     |            |            | 5    |
| Pleuroxus aduncus                               |        |            |     |            |          | +      |     | +    | + +   | + -        | +          |        |     |           |                   |       |     | +        | + +        | +   | + +        | . + +      | - 36 |
| Simocephalus vetulus                            |        |            |     |            |          | +      |     |      |       |            |            |        |     |           |                   |       |     |          |            |     |            |            | 3    |
|                                                 |        |            |     |            |          |        |     |      |       |            |            |        |     |           |                   |       |     |          |            |     |            |            |      |
| Eucyclons macruroides                           |        |            |     |            |          | +      |     |      |       |            | +          |        |     |           |                   |       |     |          |            |     |            | L          | 8    |
| Cyclops abyssorum                               |        |            |     |            |          | Ē      |     |      |       |            | 1          |        |     |           |                   |       |     |          |            |     | + -        | - 7        | 8    |
|                                                 | т      |            |     | -          | •        | +      |     |      |       |            |            |        |     |           |                   |       |     |          |            |     | T T        |            | 10   |
| Cyclops vicinus                                 | +<br>+ |            |     | -          | -        | +<br>+ | +   |      |       |            |            |        | *   |           |                   |       |     |          | +          |     |            |            | 15   |
| Fucyclons serrulatus                            | т      |            |     |            | -        | '      | 1.  |      |       |            |            |        |     |           |                   |       |     |          | '          |     |            |            | 3    |
| Eucyclops son ulaus                             | L      | +          |     |            |          |        |     |      |       |            |            |        |     |           |                   |       |     |          | .т.        |     |            |            | 5    |
| Eucyclops speralus                              | Ŧ      |            |     |            |          |        |     |      |       |            |            |        |     |           |                   |       |     |          | т          |     |            |            | 2    |
|                                                 |        | +          |     |            |          | т      |     |      |       |            |            |        |     |           |                   |       |     |          |            |     |            |            | 2    |
| Canthocamptus stanhulinus                       | т      |            | .1  |            |          | т      | +   | +    |       |            | +          |        |     | +         |                   |       |     |          | г          |     |            |            | 21   |
|                                                 | -      | -          | +   | 40         | ^        | 47     | T   | T'   |       |            | ۰<br>•     | •      | 7   |           |                   | 40    | -   |          | +          | 40  | ~~         |            | 21   |
| TOTAL SPECIES IN MONTHS                         | 15     | 1          | 5   | 15         | 9        | 17     | 6   | - 13 | - 11  | Z1         | 1          | Ő      | 1   | - 17      | 1/                | 10    | 1   | 1        | 19         | 12  | 20         | - 14       | 1    |

Table 1. Zooplankton species list of Lake Işıklı (2003-2005) (+: Few; ▲: Abundant; \*: Most Abundant)

Yağcı et al., Ege Journal of Fisheries and Aquatic Sciences, 41(1), 1-7 (2024)



Figure 2. Distribution of zooplanktonic groups in Lake Işıklı

K. cochlearis (62%), A. priodonta (54%), C. sphaericus (51%), K. quadrata (49%), P. dolichoptera (46%), P. aduncus (36%) and S. pectinata (33%) are other zooplanktonic organisms that are frequently seen (Table 1). The most representative Rotifera were Brachionidae (8 species) and Lecanidae (8 species). Brachionus quadridentatus from Rotifera was only seen at Station 1 in September 2004, Lecane sp. at station 2 in October 2004, and Lepadella sp. at station 1 in March 2004.

The rotiferans recorded only during the autumn and winter were B. quadridentatus, Lecane sp., Notholca acuminata, N. squamula and Lecane ohiensis. The Cyclopoidae (8 species) and Harpacticoidae (1 species) were observed between the Copepoda. Copepoda species were most abundant, mainly in the autumn and winter seasons. Eucyclos macrurus from Copepoda was only seen at station 2 in September 2003, and Megacyclops gigas was only at station 1 in January 2004. Among the Cladocera, Chydoridae (7 species) and Daphniidae (4 species) were the richest families. In addition, Daphnia longispina from Cladocera was found only at station 1 in July 2004, and Simocephalus vetulus was found only at station 1 in January 2004 (Table 1). When some physicochemical measurements between July 2004 and March 2005 were evaluated, it was determined that the conductivity was maximum in December 2004, the water temperature was maximum (24.6 °C) in August 2004, and the dissolved oxygen was low (5.8 mg/L). Monthly average values of the stations in water quality measurements are given in Table 2.

 Table 2.
 Some physicochemical parameters of lşıklı Lake (average values of the first and second stations)

| Months         | Temperature<br>(°C) | Dissolved<br>oxygen (mg/L) | Conductivity<br>(µS/cm) | pН  |
|----------------|---------------------|----------------------------|-------------------------|-----|
| July-2004      | 22.5                | 7.6                        | 341                     | 8.7 |
| August-2004    | 24.6                | 5.8                        | 356                     | 8.5 |
| September-2004 | 19.3                | 9.3                        | 356                     | 8.7 |
| October-2004   | 15.8                | 9.0                        | 348                     | 8.8 |
| November-2004  | 5.0                 | 11.1                       | 357                     | 8.6 |
| December-2004  | 3.9                 | 9.0                        | 434                     | 8.3 |
| January-2005   | 5.7                 | 12.2                       | 414                     | 8.3 |
| February-2005  | 8.4                 | 9.6                        | 413                     | 8.1 |
| March-2005     | 10.5                | 10.4                       | 389                     | 8.2 |

### DISCUSSION

In the previous study in Isıklı Lake, some Cladocera species (4 species) (Gündüz, 1997) were reported. In addition. there are studies published on Cladocera and Copepoda fauna (28 species) in 2005 (Avgen and Balik, 2005), and on some zooplankton groups (25 species) in 2014 (Barinova et al., 2014). 49 species were identified in this study, the Rotifera group being the dominant group of 55%. Compared to the study of Barinova et al. (2014), 10 Rotifera species were similar to the research results, while 5 Rotifera species were not found in this study. However, 17 Rotifera species were identified for the first time in this study. While 7 species from Cladocera were similar to those of Barinova et al. (2014), and 6 Cladocera species were identified for the first time in this study. C. guadrangula and D. lacustris species were reported only in Gündüz (1997). While M. gigas from Copepoda was detected only in this study, M. albidus, M. viridis, and A. robustus species were found only in Gündüz (1997) (Table 3).

Sládecek, (1983) Rotifera index (QB/T) was studied in different lakes. For example, Çaygören Reservoir (Balıkesir/ Türkiye) QB/T=1.5 (Çelik et al., 2019); Kemer Dam Lake (Aydın- Türkiye QB/T=1 (Tuna and Ustaoğlu, 2016); River Haraz (Northeast Iran) QB/T=1.5 (Jafari et al., 2011); Paraná River (Brazil) QB/T=1.3 (Golec-Fialek et al., 2021); Egirdir Lake (Isparta, Türkiye) QB/T=1.3 (Apaydın Yağcı et al., 2014) studies showed mesotrophic status in terms of zooplankton. This research showed a uniform situation with the examples given above QB/T=2.

Some zooplankton species identified in this study (*A. priodonta, K. quadrata, K. cochlearis, D. cucullata, C. abyssorum*) were determined in the study conducted in Kemer Dam Lake (Tuna and Ustaoğlu, 2016) with pH values of 7.97-8.83, dissolved oxygen values varied between 7.5-10.5 mg/L, water temperature values varied between 9.8-27.7 °C, and conductivity values varied between 206-601 µS<sub>25°C</sub>. In addition, in the study conducted in Çaygören reservoir (Çelik et al., 2019), *A. priodonta, K. cochlearis, B. longirostris, E. speratus, C. vicinus, C. pulchella, D. longispina* species; It has been determined that they live in the pH range of 8.2-11.1 and

temperature range of 4-26.6°C. In this study, the mentioned species had pH 8.1-8.8, dissolved oxygen values 5.8-12.2 mg/L, temperature 3.9-24.6 °C, and electrical conductivity values between 341-434 µS/cm. As seen in the Işıklı Dam lake, most lakes and dam lake ecosystems are dominated by Rotifera, followed by the Cladocera and Copepoda groups (Tuna and Ustaoğlu, 2016; Tugyan and Bozkurt, 2019; Golec-Fialek et al., 2021; Bulut et al., 2021). Calanoid and cyclopoid copepod species are important criteria in defining water

resources' quality and trophic status (Muñoz-Colmenares et al., 2021). It has been reported that Cyclopoid copepod predation may be effective in hypertrophic waterbodies (Sarma et al., 2019). Among determined species *P. dolichoptera, K. cochlearis, B. quadridentatus, B. angularis, B. calyciflorus, B. longirostris, C. sphaericus, G. testudinaria* are the most well-known indicators of mesotrophic-eutrophic waters (Frutos et al., 2009; Apaydın Yağcı et al., 2014; Tuna and Ustaoğlu, 2016; Macêdo et al., 2019).

| Table 3. | Chronological | change of | zooplankton | in Işıklı Lake | ( .: present in the related | d study |
|----------|---------------|-----------|-------------|----------------|-----------------------------|---------|
|----------|---------------|-----------|-------------|----------------|-----------------------------|---------|

| Species                                                                      | Gündüz (1997) | Aygen and Balık (2005) | Barinova et al. (2014) | This study |
|------------------------------------------------------------------------------|---------------|------------------------|------------------------|------------|
| ROTIFERA                                                                     |               |                        |                        |            |
| Asplanchna priodonta Gosse, 1850                                             |               |                        |                        | •          |
| Brachionus alvciflorus Pallas, 1776                                          |               |                        |                        | •          |
| Brachionus quadridentatus Hermann, 1783                                      |               |                        | •                      | •          |
| Colurella adriatica Ehrenberg, 1831                                          |               |                        | •                      | •          |
| Euchlanis dilatata Ehrenberg 1832                                            |               |                        | •                      | •          |
| Hexarthra mira Hudson, 1871                                                  |               |                        | •                      |            |
| Keratella cochiearis Gosse, 1851<br>Keratella tecta Gosse, 1851              |               |                        | •                      | :          |
| Keratella quadrata (Müller, 1786)                                            |               |                        |                        | •          |
| Lecane bulla Gosse, 1886                                                     |               |                        | •                      | •          |
| Lecane ludwigi (Eckstein, 1883)                                              |               |                        |                        | •          |
| Lecane luna (Müller, 1776)                                                   |               |                        |                        | •          |
| Lecane Junaris (Enrenberg, 1832)                                             |               |                        |                        | :          |
| Lecane quadridentata (Ehrenberg, 1830)                                       |               |                        |                        | •          |
| Lecane sp.                                                                   |               |                        |                        | •          |
| Mytilina mucronata (Müller, 1773)                                            |               |                        |                        | •          |
| Notholca acuminata (Ehrenberg, 1832)                                         |               |                        |                        | •          |
| Notholca squamula (Müller, 1786)<br>Polyarthra dolichontara Idelson, 1925    |               |                        |                        | •          |
| Polyarthra vulgaris Carlin, 1943                                             |               |                        | •                      | •          |
| Synchaeta oblonga Ehrenberg, 1831                                            |               |                        | •                      |            |
| Testudinella patina Herman 1783                                              |               |                        | •                      |            |
| Trichocerca longiseta Schrank, 1802                                          |               |                        | •                      |            |
| Trichocerca similis Wierzejski, 1893                                         |               |                        | •                      | •          |
| Trichotria pocillum Müller, 1773                                             |               |                        | •                      | •          |
| Trichotria tetractis (Ehrenberg, 1830)                                       |               |                        |                        | •          |
| CLADOCERA                                                                    |               |                        |                        |            |
| Acroperus harpae (Baird, 1834)                                               |               |                        |                        | •          |
| Coronatella rectangula Sars, 1862                                            |               | •                      | •                      | •          |
| Alona (Biapertura) affinis (Leydig, 1860)                                    |               | •                      | •                      |            |
| Bosmina iongirostris (O.F. Muller, 1785)<br>Ceriodaphnia pulchella Sars 1862 | •             | •                      | •                      |            |
| Ceriodaphnia quadrangula (O.F. Müller, 1785)                                 | •             |                        |                        |            |
| Chydorus sphaericus (O.F. Müller, 1785)                                      |               | •                      | •                      | •          |
| Daphnia cuculiata (GO Sals, 1002)<br>Daphnia longispina O F Müller 1785      | •             | •                      | •                      | •          |
| Diaphanosoma brachyurum (Lievin, 1848)                                       |               | •                      | •                      | •          |
| Diaphanasoma lacustris (Korinek, 1981)                                       | •             | •                      |                        |            |
| Disparalona rostrata (Koch. 1841)                                            |               | •                      |                        | •          |
| Groptoleberis testudinaria(Fischer, 1851)                                    |               | •                      |                        | •          |
| Leydigia leydigi (Schoedler, 1863)<br>Macrothrix laticornis (Jurine, 1820)   |               | •                      |                        |            |
| Moina micrura Kurz, 1874                                                     |               | •                      |                        |            |
| Pleuroxus aduncus Baird, 1850                                                |               | •                      |                        | •          |
|                                                                              |               | •                      |                        | •          |
| Macrocyclops albidus (Jurine 1820)                                           |               | •                      |                        |            |
| Eucyclops serrulatus (Fischer, 1851)                                         |               | •                      |                        | •          |
| Eucyclops speratus (Lilljeborg, 1901)                                        |               | •                      |                        | •          |
| Eucyclops macrurus (GO Sars, 1863)                                           |               | -                      |                        | •          |
| Metacyclops gracilis (Lillieborg, 1853)                                      |               | •                      | •                      | •          |
| Mesocyclops leuckarti (Claus, 1857)                                          |               | •                      | •                      |            |
| Cyclops vicinus Uljanin, 1875                                                |               | •                      |                        | •          |
| Cyclops abyssorum Sars, 1863                                                 |               | •                      |                        | •          |
| Megacyclops gigas (Claus, 1857)                                              |               | •                      |                        | •          |
| Megacyclops viridis Jurine, 1820                                             |               | •                      |                        |            |
| Acanthocyclops robustus (Sars, 1863)                                         |               | •                      |                        |            |
| Canthocamptus staphylinus (Jurine, 1820)                                     |               | •                      |                        | •          |

### CONCLUSION

According to the results of this study, lşıklı Lake showed mesotrophic characteristics in terms of zooplankton. Compared to the previous studies in the lake, the zooplankton fauna was comprehensively studied in this study and contributed to the biodiversity fauna of Türkiye. The fact that the number of species of the Rotifera group was dominant compared to Cladocera and Copepoda and, when evaluated in terms of species, showed that the trophic structure of the lake was mesotrophic. The dominance of the *Cyclops* group, which is one of the eutrophic species, shows that the lake may progress from the mesotrophic feature to the eutrophic state.

### ACKNOWLEDGMENTS AND FUNDING

We would like to express our deepest gratitude to the Fisheries Research Institute of Eğirdir-Isparta, Türkiye, for their

### REFERENCES

- Altındağ, A. (2000). A taxonomical study on the Rotifera fauna of Abant Lake (Bolu). Turkish Journal of Zoology, 23, 211-214.
- Anonymous (1992). Final Report of Limnological Research Project of Lake Çivril (lşıklı) (in Turkish). Tarım ve Köyişleri Bakanlığı, Eğirdir Su Ürünleri Araştırma Enstitüsü Müdürlüğü, Eğirdir, 192s.
- Anonymous (2022). Çivril Işıklı Gölü-Denizli https://www.kulturportali.gov.tr/tu rkiye/denizli/gezilecekyer/civril-isikli-golu-su-kuslari-koruma-alani
- Apaydın Yağcı, M., Yağcı, A., & Bilgin, F. (2014). Study on composition and abundance of zooplankton assemblages in Eğirdir Lake (Isparta, Turkey). *Iranian Journal of Fisheries Sciences*, 13(4), 834-855.
- Ateş, B., & Kırkağaç, M. (2020). Zooplankton of Sakaryabaşı-west pond central Anatolia. Communications Faculty Sciences University Ankara Series C Biology, 29(2), 365-378.
- Aygen, C., & Balık, S. (2005). Crustacea fauna of Işıklı Lake and Springs (Çivril, Denizli). Ege Journal of Fisheries and Aquatic Sciences, 22(3-4): 371-375.
- Barinova, S., Solak, C.N., Erdoğan, O., & Romanov, R. (2014). Algae and zooplankton in ecological assessment of the lşikli Lake, Turkey. Aquatic Biology Research, 2(2), 23-35. https://doi.org/10.12966/abr.05.02.2014
- Bozkurt, A., & Genç, M.A. (2018). Zooplankton fauna of some temporary volcanic lakes in Gaziantep. *Journal of Limnology and Freshwater Fisheries Research*, 4(2), 118-121. https://doi.org/10.17216/LimnoFish.3 54205
- Bulut, H., Sesli, A., & Tepe, R. (2021). The assessment of current zooplankton in Uzunçayır Dam Lake with some water quality parameters. *International Journal of Pure and Applied Sciences*, 7(3), 429-441. https://doi.org/10.29132/ijpas.938647
- Chalkia, E., & Kehayias, G. (2013). Zooplankton community and environmental factors in Lake Ozeros (Greece). *Mediterranean Marine Science*, 14(3), 32-41. https://doi.org/10.12681/mms.534
- Çelik, K., Bozkurt, A., & Ongun Sevindik, T. (2019). Seasonal dynamics of the zooplankton community in the temperate eutrophic Çaygören Reservoir (Balıkesir), Turkey related to certain physicochemical parameters of water. *Turkish Journal of Fisheries and Aquatic Sciences*, 19(6), 503-512. https://doi.org/10.4194/1303-2712-v19\_6\_06
- Çolak, Ç., & Alper, A. (2020). Cladocera and Copepoda (Crustacea) fauna of Balya district (Balikesir/Turkey). Adiyaman University Journal of Science, 10(1), 1-9. https://doi.org/10.37094/adyujsci.681018
- Dussart, B. (1967). Les Copépodes des eaux continentales d'Europe occidentale. Tome I. Calanoides et Harpacticoides. Paris, France: N. Boubee et cie.
- Dussart, B. (1969). Les Copépodes des eaux continentales d'Europe occidentale. Tome II. Cyclopoides et Biologie. Paris, France: N Boubee et cie.

support during the field sampling. There is no specific funding for this research.

### AUTHORSHIP CONTRIBUTIONS

All authors contributed equally to the planning, execution, and field and laboratory work of this study.

### CONFLICT OF INTEREST STATEMENT

The authors declare they have no conflicts of interest.

### **ETHICS APPROVAL**

Ethics Committee approval certificate is not required for invertebrates. For this reason, Ethics Committee Certificate was not obtained in this study.

### DATA AVAILABILITY

All relevant data is in the article.

- Frutos, S.M., Neiff, P.D., & Neiff, J.J. (2009). Zooplankton abundance and species diversity in two lakes with different trophic state (Corrientes, Argentina). Acta Limnologica Brasiliensia, 21(3), 367-375.
- Golec-Fialek, C., Lansac-Tôha, F.M., Bonecker, C.C. (2021). Response of the zooplankton community to extreme hydrological variations in a temporary lake in a neotropical floodplain system. *Limnologica*, 86, 125834. https://doi.org/10.1016/j.limno.2020.125834
- Gündüz, E. (1997). A checklist of Cladoceran species (crustacea) living in Turkish inland waters. *Turkish Journal of Zoology*, 21, 37-45.
- Gürleyen, N., & Ustaoğlu, M.R. (2017). Zooplankton Fauna and Seasonal Changes of Constructed Ponds and Reservoirs of Gönen Stream (Balikesir-Turkey). *Limnofish - Journal of Limnology and Freshwater Fisheries Research*, 3(2), 79-89. https://doi.org/10.17216/LimnoFish.292 663
- Jafari, N., Nabavi, S.M., & Akhavan, M. (2011). Ecological investigation of zooplankton abundance in the River Haraz, Northeast Iran: Impact of environmental variables. *Archives of Biological Sciences Belgrade*, 63(3), 785-798. https://doi.org/10.2298/ABS1103785J
- Jeppesen, E., Nöges, P., Davidson, T.A., Haberman, J., Nöges, T., Blank, K., Lauridsen, T.L., Søndergaard, M., CarlSayer, C., Laugaste, R., Johansson, L.S., Bjerring, R., & Amsinck, S.L. (2011). Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). *Hydrobiologia*, 676(1), 279-297. https://doi.org/10.1007/s10750-011-0831-0
- Karpowicz, M., & Ejsmont-Karabin, J. (2021). Diversity and structure of pelagic zooplankton (Crustacea, Rotifera) in NE Poland. Water, 13(4), 456 https://doi.org/10.3390/w13040456
- Kiefer, F. (1952). Freilebende ruderfusskrebse (Crustacea, Copepoda) aus Türkischen binnengewassern. I Calanoida. İstanbul Üniversitesi Fen Fakültesi Hidrobiyology Araştırma Enstitüsü Yayınları, (B) 1(2), 103–132.
- Kiefer; F. (1955) Freilebende ruderfusskrebse (Crustacea-Copepoda) aus Turkischen binnengewassern II Cyclopoida und Harpacticoida. İstanbul Üniversitesi Fen Fakültesi Hidrobiyology Araştırma Enstitüsü Yayınları, (B) 2(4), 108-132.
- Koste, W. (1978). Rotatoria, die r\u00e4dertiere Mitteleuropas ein Bestimmungswerk, begr\u00fcndet von Max Voigt \u00fcberordnung Monogononta. I Textband and II Textband. Berlin, Stuttgart: Gebr\u00fcder Borntraeger.
- Macêdo, R.L., Lopes, V.G., Kozlowsky-Suzuki, B., & Branco, C.W.C. (2019). Zooplankton community attributes in an oligo-mesotrophic reservoir: A comparative study of two sampling strategies. *Anais da Academia Brasileira de Ciências*, 91(1), e20170807. https://doi.org/10.1590/0001-3765201820170807

- Muñoz-Colmenares, M.E., Sendra, M.D., Sòria-Perpinyà, X., & Soria, J.M. (2021). The use of zooplankton metrics to determine the trophic status and ecological potential: An approach in a large Mediterranean Watershed. Water, 13, 2382. https://doi.org/10.3390/w13172382
- Nandini, S., Merino-Ibarra, M., & Sarma, S.S.S. (2008). Seasonal changes in the zooplankton abundances of the reservoir Valle de Bravo (State of Mexico, Mexico). *Lake and Reservoir Management*, 24, 321-330. https://doi.org/10.1080/07438140809354842
- Negrea, S. (1983). Fauna republici socialiste Romania. Crustacea, Cladocera. Bucharest, Romania: Acedemia Rep. Soc. Romania.
- Nogrady, T., & Segers, H. (2002). Asplanchnidae, Gastropodidae, Lindiidae, Microcodidae, Synchaetidae, Trochosphaeridae and Filinia. In: Dumont HJ, editor. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 6. Leiden, the Netherlands: Backhuys Publishers BV.
- Özdemir, D.C., Saygı, Y., Gündüz, E., Demirkalp, F.Y., & Karacaoğlu, Ç. (2021). Assessment of the zooplankton community structure of the coastal Uzungöl Lagoon (Kızılırmak Delta, Turkey) based on community indices and physicochemical parameters. *Turkish Journal of Zoology*, 45, 33-45. https://doi.org/10.3906/zoo-2006-9
- Saler, S., & Selamoğlu, Z. (2020). Zooplankton diversity of three dam lakes in Turkey. Iranian Journal of Fisheries Sciences, 19(5), 2720-2729. https://doi.org/10.22092/ijfs.2019.118064
- Sarma, S.S.S., Miracle, M.R., Nandini, S., & Vicente, E. (2019). Predation by Acanthocyclops americanus (Copepoda: Cyclopoida) in the hypertrophic shallow waterbody, Lake Albufera (Spain): field and laboratory observations. Hydrobiologia, 829, 5-17. https://doi.org/10.1007/s10750-018-3546-7
- Sládeček, V. (1983). Rotifers as indicators of water quality. *Hydrobiology, 100*: 169–201. https://doi.org/10.1007/BF00027429

- Smirnov, N.N. (1996). Guides to the identification of the microinvertabrates of the continental waters of the word. Cladocera: The Chydorinae and Sayciinae (Chydoridae) of the World. No. 11, Coordinating editor: H. J. F. Dumont. Gent Univ., Belgium, SPB Academic., The Netherlands, 197p.
- Soyer, J. (1970). Bionomie benthique du plateau continental de la côte catalane française. III. Les peuplements de Copépodes Harpacticoides. Vie et Milieu, 21, 337–511.
- Tugyan, C., & Bozkurt, A. (2019). A Study on Zooplankton Fauna and Some Water Quality Parameters of Kozan Dam Lake (Adana, Turkey). *Limnofish-Journal of Limnology and Freshwater Fisheries Research*, 5(3), 147-158. https://doi.org/10.17216/limnofish.538344
- Tuna, A., & Ustaoğlu, M.R. (2016). The zooplankton fauna of Kemer Dam Lake (Aydın-Turkey). Limnofish-Journal of Limnology and Freshwater Fisheries Research, 2(2), 95-106. https://doi.org/10.17216/LimnoFish-5000183782
- Umi, W.A.D., Yusoff, F.M., Aris, A.Z., & Sharip, Z. (2017). Rotifer community structure in tropical lakes with different environmental characteristics related to ecosystem health. *Journal of Environmental Biology*, 39, 795-807. https://doi.org/10.22438/jeb/39/5(SI)/30
- Ustaoğlu, M.R. (2004). A checklist for zooplankton of Turkish inland waters. Ege Journal of Fisheries and Aquatic Sciences, 21, 191–199.
- Ustaoğlu, M.R., Altındağ, A., Kaya, M., Akbulut, N., Bozkurt, A., Özdemir Mis, D., Atasagun, S., Erdoğan, S., Bekleyen, A., Saler, S., & Okerman, H.C. (2012). A checklist of Turkish rotifers. *Turkish Journal of Zoology*, 36, 607–622. https://doi.org/10.3906/zoo-1110-1
- Uysal, R., Alp, A., Küçükkara, R., Yeğen, V., Apaydın Yağcı, M., Bilçen, E., & Yağcı, A. (2006). Fishable stock determination of pike (*Esox lucius* L., 1758) in Çivril (lşıklı) Dam Lake. Project final report. (TAGEM/HAYSÜD/2002/09/02/02). Su Ürünleri Araştırma Enstitüsü Müdürlüğü, Eğirdir, Isparta, Türkiye (in Turkish).

### **RESEARCH ARTICLE**

# Comparative otolith morphology in two species of Salmo genus from Türkiye

Türkiye'den Salmo cinsine ait iki türün karşılaştırmalı otolit morfolojisi

### Melek Özpiçak<sup>™</sup> ● Semra Saygın<sup>®</sup> ● Savaş Yılmaz<sup>®</sup>

Department of Biology, Faculty of Science, Ondokuz Mayıs University, Samsun, Türkiye

\*Corresponding author: melek.zengin@omu.edu.tr

Received date: 26.10.2023 Accepted date: 25.12.2023

### How to cite this paper:

Özpiçak, M., Saygin, S., & Savaş, Y. (2024). Comparative otolith morphology in two species of Salmo genus from Türkiye. Ege Journal of Fisheries and Aquatic Sciences, 41(1), 8-15. https://doi.org/10.12714/egejfas.41.1.02

Abstract: In this study, the morphology of the sagittal otolith of Salmo coruhensis Turan, Kottelat & Engin, 2010 and Salmo fahrettini Turan, Kalayci, Bektaş, Kaya & Bayçelebi, 2020 from Çam Stream (Artvin) and Terme Stream (Samsun) was described by images of scanning electron microscopy. Its shape and contour were also analyzed with shape indices, elliptic Fourier coefficients and wavelet transforms. As the study material, a total of 30 S. coruhensis sample and 20 S. fahrettini sample were obtained. Interspecies differences in toblith shape and morphometry were evaluated by principal components analysis, canonical discrimination analysis, and permutational multivariate analysis of variance. The two salmonid species studied were distinguished by both morphometric and shape analysis methods. However, wavelet transform was found to be more effective than shape indices and elliptic Fourier coefficients in species discrimination, with an overall classification success rate of 80%. Our results showed that saccular otolith morphology could be an additional diagnostic character for trout species differentiation.

Keywords: Otolith, shape indices, elliptic Fourier coefficients, wavelet transform, Salmonid

Öz: Bu çalışmada, Terme Çayı (Samsun) ve Çam Deresi (Artvin)'nde yaşayan Salmo coruhensis Turan, Kottelat & Engin, 2010 ve Salmo fahrettini Turan, Kalayci, Bektaş, Kaya & Bayçelebi, 2020 türlerinin sagittal otolit morfolojileri taramalı elektron mikroskobu görüntüleri ile tanımlanmıştır. Otolit şekli ve dış hatları ayrıca, şekil indeksleri, eliptik Fourier katsayıları ve dalgacık dönüşümü ile analiz edilmiştir. Çalışma materyali olarak toplamda 30 S. coruhensis sample ve 20 S. fahrettini örneği elde edilmiştir. Otolit şekli ve morfometrisindeki türler arası farklılıklar, temel bileşenler analizi, kanonik ayrım analizi ve çok değişkenli varyans analizi ile değerlendirilmiştir. Çalışılan iki salmonid türü hem morfometrik hem de şekil analizi yöntemleriyle ayırt edilmiştir. Bununla birlikte, dalgacık dönüşümünün tür ayrımında şekil indeksleri ve Fourier katsayılarından daha etkili olduğu ve genel sınıflandırma başarı oranının %80 olduğu bulunmuştur. Sonuçlarımız sakkular otolit morfolojisinin alabalık türlerinin farklılaşmasında ek bir tanısal karakter olabileceğini göstermiştir.

Anahtar Kelime: Otolit, şekil indeksleri, eliptik Fourier katsayısı, dalgacık dönüşümü, alabalık

### INTRODUCTION

Taxonomy and systematics are the cornerstone of all biological sciences. Many morphological traits, for example hard elements like otoliths, scales, and bones, are used by taxonomic investigations in ichthyology to identify species (Kontaş et al., 2020; Kikuchi et al., 2021; Akbay et al., 2022; Mejri et al., 2022; Jawad et al., 2022). These hard structures are one of the most useful anatomical features for various research of fish, leading to many practical applications (Schulz-Mirbach et al., 2019; D'Iglio et al., 2022). These studies range from ichthyology to paleontology, geology, archeology, zoogeography, and ecological analyses of predator fish.

Globally, the family Salmonidae is divided into three subfamilies: Coregoninae, Thymallinae, and Salmoninae. It is well known that species of salmonids (family Salmonidae), including those from genus Salmo, Parasalmo, Oncorhynchus, and Salvelinus, exhibit a variety of anadromous behaviors and habitat preferences (Savvaitova, 1989; Thorpe, 1994; Pavlov et al., 1999; Pavlov and Savvaitova, 2008). Genus Salmo is found throughout Europe, extending southeast into Africa to Morocco and eastwards into upper Amu Darya drainage of Afghanistan (Kottelat, 1997) and widespread in the almost all cold streams and rivers of (Turan et al., 2021). Trouts are economically

important, therefore overfishing has a severe impact on Salmo populations. There are 16 species of trout described as living in Türkiye in the literature (Turan et al., 2009; Turan et al., 2014 a, b; Turan and Aksu, 2021; Turan et al., 2021). Salmo coruhensis Turan, Kottelat & Engin, 2010 is described from the lower and the middle part of the streams and rivers of south and southeastern Black Sea. Additionally, it is wellknown in the region that is between the Coruh drainage in the east and the Yesilirmak drainage in the west. According to Turan et al. (2009), S. coruhensis is known from streams flowing to the southeastern Black Sea coast in Türkiye. For this reason, the trout species in the relevant area should be S. coruhensis. However, Yılmaz et al. (2021) reported Salmo fahrettini Turan, Kalayci, Bektaş, Kaya & Bayçelebi, 2020, an endemic fish, is distributed in the northern tributaries of the Euphrates River and from Samsun, too. Numerous taxonomic research on Salmo species have been realized because of Anatolia's geographic, geological, and geomorphological significance as a center of speciation.

Otoliths can be utilized to identify the species of trout, according to previous investigations (L'Abée-Lund and Jensen, 1993). However, there are limited studies in Türkiye that reveal the otolith morphology of trout species (Yıldız and Yılmaz, 2021) and examine the effectiveness of this

morphology in species differentiation. Studies on the otolith morphology of trout will contribute to the issue of whether they are an additional taxonomic character in solving the problems related to the taxonomy of existing species. In this study, it was aimed to (i) describe otolith morphology of *S. coruhensis* and *S. fahrettini* (ii) contribute to the realization of species distinctions by determining the difference between the otolith morphologies of two salmonid species using otolith morphometric descriptions, Fourier and wavelet analyzes.

### MATERIAL AND METHODS

### Sampling

S. coruhensis (n= 30, mean TL±SD, 15.47 ± 3.93 cm TL) and S. fahrettini (n = 20, mean TL±SD, 13.67 ± 4.09 cm TL) individuals were collected from Çam Stream (Artvin) and Terme Stream (Samsun) using SAMUS 725 MP electroshocker, respectively. The care and use of experimental animals, sampling and analysis techniques used in this work are approved by Ondokuz Mayıs University Animal Experiments Local Ethics Committee with decree no "2017/38". For each sample, a total length (TL, nearest to 0.1 cm) was recorded. A pair of sagittal otoliths (sagitta) were extracted and cleaned with 70% ethanol to remove any additional membranes or surface residues and stored in labelled eppendorf tubes.

### Otolith preparation and imaging

Because of there were no statistical differences between left and right otolith pairs (*P*>0.05), left sagittal otolith was chosen for analysis. Each left sagitta was positioned with the *sulcus acusticus* facing upward and the rostrum facing right. Twodimensional digital images of the otoliths were captured with Leica DFC295 camera. High-contrast digital photos were produced using reflected light. Otoliths were captured on camera as a white silhouette against a dark background (Çöl and Yılmaz, 2022). Also, sagittal otoliths were photographed from their proximal surfaces under a scanning electron microscope for morphological identification (SEM-JEOL JSM 7001 F) (Figure 1). The morphological terminology used for the sagittal otoliths is based on Tuset et al. (2008), and Lin and Chang (2012). SEM photographs were conducted at KITAM, Ondokuz Mayıs University.

### Morphometric analysis

Leica Application Suit ver. 3.8 Imaging Software was used to calculate the sagittal otolith length (*OL*), otolith height (*OH*), otolith perimeter (*OP*), and otolith area (*OA*) ( $\pm$ 0.001 mm). Due to allometric correlations, the otolith shape indices, which are utilized as dimensionless markers of otolith form, can still be influenced by fish size. To remove the effects of fish size on otolith parameters, the following formula was used to standardize all otolith measurements:

$$Y_i^* = Y_i \times (X_0 / X_i)^b$$

where,  $Y_i^*$  is the standardized parameter;  $Y_i$  is the original parameter;  $X_0$  is the mean total length for all specimen (14.75

cm);  $X_i$  is the total length of each specimen; *b* is the slope of the regression between log  $Y_i$  and log  $X_i$ , respectively (Elliott et al., 1995; Lleonart et al., 2000).



**Figure 1.** The proximal surface of left sagittal otolith of *S. coruhensis* (24.0 cm TL of fish), illustrates various features described in the text. D: Dorsal, V: Ventral, A: Anterior and P: Posterior

These standardized measurements were then used to calculate the following shape index parameters (SIs): aspect ratio (*AR*), form factor (*FF*), circularity (*C*), rectangularity (*REC*), roundness (*RO*) and ellipticity (*E*) according to Tuset et al. (2003) and Ponton (2006).

First of all, normality and homogeneity of variance were determined for each data set using Shapiro-Wilk and Levene's tests. An independent two-sample t-test was used to compare the otolith shape indices of *S. coruhensis* and *S. fahrettini*. Since the multicollinearity problem was detected between SIs, a principal component analysis (PCA) based on the variance-covariance matrix was performed to reduce the dimensionality of data (Sadighzadeh et al., 2014; Çöl and Yılmaz, 2022). Principal component scores (PCs) were used in a canonical discriminant analysis (CDA, Box's M test, P = 0.183) to distinguish species (Song et al., 2018). One-way PERMANOVA (Anderson, 2001) based on Euclidean distance was used for SIs comparisons between *S. coruhensis* and *S. fahrettini*.

### Shape analyses

Both the wavelet transform (WT) and the elliptic Fourier analysis were used to assess the otolith's shape. The software Shape 1.3 (Iwata and Ukai, 2002) was operated to calculate the elliptic Fourier coefficients (EFCs) from twodimensional otolith images. The EFCs were made to be invariant to variations in otolith size, orientation, and starting point by normalizing them in accordance with the first harmonic. The Fourier power spectrum was also employed to assess the number of harmonics necessary to effectively represent the otolith shape (Crampton, 1995). 32 Fourier coefficients were used to represent otolith shape of *S. coruhensis* and *S. fahrettini*, with the first eight harmonics accounting for 99.99% of the cumulative power. However, the first three coefficients were degenerated during the normalization procedure. Thus, the total number of EFCs was determined as 29 (4 × 8 – 3). An analysis of covariance (ANCOVA) was used to determine the effect of fish length on the EFCs. Because two EFCs (b2 and d2) were significantly different between species (ANCOVA, P < 0.05), these coefficients were not used in the further analysis. As two (d1 and c2) of the remaining EFCs exhibited significant linear correlation with fish size, they were standardized according to the following formula (Song et al., 2018):

### $Y_i^* = Y_i + b (X_0 - X_i).$

Also, a PCA analysis was carried out to minimize the dimensionality of the data and identify the effective EFCs because multicollinearity problems were not found among the EFCs (Sadighzadeh et al., 2014; Çöl and Yılmaz, 2022). The CDA (Box's M test, P = 0.063) was performed using raw data to compare otolith shape variations between two salmonid species. Also, the one-way PERMANOVA was used to assess inter-species differences.

Otolith shape analysis depending the WT is based on enlarging the contour into a family of functions derived as the translations and elongations of a specific function called as a mother wavelet (Mallat, 1991). A total of 512 equidistant Cartesian coordinates of the otolith was extracted, being the rostrum the origin of the contour (Parisi-Baradad et al., 2005, 2010). Each contour generated nine wavelets depending on the degree of otolith detail. We selected the wavelet 5 as an intermediate function (Sadighzadeh et al., 2014). Wavelets were produced online using AFORO (Shape Analysis of Fish Otoliths) website (Lombarte et al., 2006). A PCA based was performed to reduce the dimensionality of the 512 data of the wavelet 5 function for each otolith without loss of information. Since it was determined that the linear correlations between the effective PCs and the total length of the fish were not significant, no standardization was applied. The CDA (Box's M test, P = 0.021) was performed with the building new PCA matrix and the accuracy of species identification was determined. Otolith shape variations were compared between species by non-parametric PERMANOVA. The Microsoft Excel package, Minitab 17.0, PAST 3.0 (Hammer et al., 2001), and SPSS 21.0 were used for all statistical analyses.

### RESULTS

### **Otolith morphology**

Morphological characters of sagittal otoliths of *S. coruhensis* and *S. fahrettini* are presented in Table 1. The medial surface of otoliths is fusiform to elongate convex. Antirostrum is not prominent in both species. The *sulcus acusticus* is described as median type and it opens both anteriorly and posteriorly representing a biostial sulcus type. The shape of ostium type is funnel-like and cauda type is tubular. Rostrum is extended, sharply peaked. Dorsal margin is entire for both species and ventral margin is crenate and sinuate for *S. coruhensis* (Figure 2) and *S. fahrettini* (Figure 3), respectively (Table 1).

### Morphometric analysis

Standardized values of the saccular otolith shape indices for two trout species were given in Table 2. All shape indices, except rectangularity (F = 10.79, P = 0.002), were not significantly different between two species (t-test, P > 0.05). In the PCA, only one PC was obtained. This PC discriminate the species based on circularity (R = 0.99). Only one canonical discriminant function was used in the CDA ( $\lambda =$ 0.982, P = 0.346). The function 1 explained 100% of the total variance (Eigenvalue=0.019). A 58% overall categorization success rate was produced by the CDA. The percentages of classified individuals obtained with the CDA were 65% for S. *fahrettini* and 53.3% for S. *coruhensis* (Table 3). The PERMANOVA did not show significant difference between the species studied (F = 0.887; P = 0.346).

| Table 1. Morphological otolith characteristics of S.coru | hensis and S. fahrettini |
|----------------------------------------------------------|--------------------------|
|----------------------------------------------------------|--------------------------|

| Otolith characteristics | S. coruhensis                             | S. fahrettini                   |
|-------------------------|-------------------------------------------|---------------------------------|
| Otolith shape           | Fusiform/Elongate convex                  | Fusiform/Elongate convex        |
| Distal region           | Concave                                   | Concave                         |
| Proximal region         | Convex                                    | Convex                          |
| Anterior region         | Peaked                                    | Peaked                          |
| Posterior region        | Round/oblique                             | Round/oblique                   |
| Dorsal margin           | Entire                                    | Entire                          |
| Ventral margin          | Crenate                                   | Sinuate                         |
| Sulcus acusticus        | Median                                    | Median                          |
| Ostium                  | Funnel-like                               | Funnel-like                     |
| Cauda                   | Tubular                                   | Tubular                         |
| Antirostum              | Absent/Not well expressed or small/narrow | Absent/ Not well expressed      |
| Rostrum                 | Extended, broad, peaked                   | Extended, broad, sharply peaked |
| Crista superior         | Well developed                            | Well developed                  |
| Crista inferior         | Well developed                            | Well developed                  |
| Excisura                | Moderately wide                           | Moderately wide                 |





Figure 2. Original photo and otolith SEM images of S. *coruhensis* (24.0 cm TL of fish). (a) General view (SEM-30X, (b) Colliculum (SEM-100X), (c) Ventral edge (SEM-150X)

Figure 3. Original photo and otolith SEM images *S. fahrettini* (19.2 cm TL of fish). (a) General view (SEM-30X, (b) Colliculum (SEM-100X), (c) Ventral edge (SEM-150X)

| Table 2. Summary of descriptive | statistics of otolith shape indices a | and TL of S. coruhensis and S. fahrettini | from Türkiye |
|---------------------------------|---------------------------------------|-------------------------------------------|--------------|
|---------------------------------|---------------------------------------|-------------------------------------------|--------------|

| Character      | S. coruhe<br>(Çam | ensis (n=30)<br>Stream) | S. fahrettini (n=20)<br>(Terme Stream) |            |  |
|----------------|-------------------|-------------------------|----------------------------------------|------------|--|
|                | Min-Max           | Mean±SD                 | Min-Max                                | Mean±SD    |  |
| TL (cm)        | 9.90-24           | 15.47±3.93              | 9.60-24.10                             | 13.67±4.09 |  |
| Aspect Ratio   | 1.60-1.98         | 1.75±0.09               | 1.61-1.88                              | 1.76±0.07  |  |
| Form Factor    | 0.68-081          | 0.77±0.03               | 0.71-0.79                              | 0.75±0.02  |  |
| Circularity    | 15.46-18.43       | 16.63±0.68              | 15.92-17.41                            | 16.79±0.51 |  |
| Roundness      | 0.41-0.56         | 0.49±0.03               | 0.44-0.53                              | 0.47±0.02  |  |
| Rectangularity | 0.63-0.71         | 0.67±0.02               | 0.64-0.67                              | 0.65±0.01  |  |
| Ellipticity    | 0.23-0.33         | 0.27±0.02               | 0.23-0.30                              | 0.27±0.02  |  |

### **Otolith shape analyses**

In the PCA using EFCs, only one PC was obtained, and it differentiated two species based on the coefficients d1 (R = - 0.19), a2 (R = 0.49), c2 (R = 0.36), a3 (R = 0.49), b3 (R = 0.47), d3 (R = 0.19) and b5 (R = 0.19). Only one canonical discriminant function was used in the CDA ( $\lambda = 0.777$ , P = 0.129). This function explained 100% of the total variance (Eigenvalue = 0.287). Overall classification success for the CDA was 58%. The percentages of classified individuals based on the CDA results were 60% for *S. coruhensis* and 55% for *S. fahrettini*, respectively (Table 3). The PERMANOVA test did not indicate significant difference between two salmonid fish (F = 0.589; P = 0.613).

The PCA using wavelet 5 coefficients was created only one PC, which was employed in the CDA. Only one canonical discriminant function was used in the CDA ( $\lambda = 0.602$ , P = 0.000). The function 1 described 100% of the total variance (Eigenvalue=0.662). The CDA produced an overall classification success rate of 80%. The percentages of classified individuals obtained with the CDA were 90% for *S. fahrettini* and 73.3% for *S. coruhensis* (Table 3).

The PERMANOVA analysis yielded significant difference between two trout species (F = 31.76; P = 0.0001). Average decomposition of otolith contour of two salmonid species using wavelet 5 is shown in Figure 4.

 Table 3. Classification matrix results of the CDA based on otolith morphometrics and different shape analyzing methods of S. coruhensis and S. fahrettini (The correct classification percentages are in bold; the number of individuals is given in parentheses)

|               | Predicted group memberships |                   |                  |  |  |  |  |
|---------------|-----------------------------|-------------------|------------------|--|--|--|--|
| Species       | Shape Indices               | Fourier Transform | Wavelet Analyses |  |  |  |  |
| S. coruhensis | <b>53.3</b> (16)            | <b>60.0</b> (18)  | <b>73.3</b> (22) |  |  |  |  |
| S. fahrettini | <b>65.0</b> (13)            | <b>55.0</b> (11)  | <b>90.0</b> (18) |  |  |  |  |
|               |                             |                   |                  |  |  |  |  |



Figure 4. Decomposition of otolith contour of two salmonid species using WT 5

### DISCUSSION

According to recent research, teleost fish's saccular otoliths exhibit significant inter- and intraspecies shape diversity and can be used to distinguish different fish species as well as between different stocks and populations, sexes, age groups, and reproductive variants (Mille et al., 2015; Mejri et al., 2018; Wiff et al., 2020; Sadeghi et al., 2020; Yedier, 2021; Çöl and Yılmaz, 2022; Mejri et al., 2022). In this study, we used otolith shape analysis and morphometry for the differentiation of S. coruhensis and S. fahrettini. This study offers details on the analysis of the variation in sagittal otolith shape between S. fahrettini and S. coruhensis using a variety of techniques (SIs, EFCs and WT). The attempts for the identification of salmonids have been conducted before based on several meristic, morphometric, and genetic characters (Karakousis et al., 1991; Bardakci et al., 1994; Bernatchez, 2001; Bardakçı et al., 2006; Turan et al., 2009; Berrebi et al., 2019; Delling et al., 2020; Turan et al., 2020; Guinand et al., 2021; Yılmaz et al., 2021). Phenotypic plasticity is a trait shared by individuals of several salmonid species that evolutionary adaptation. facilitates Such phenotypic adaptations, however, are not brought about by variations in the population's gene frequencies (Hutchings, 2004), though some genotypes may better endure environmental changes and leave more progeny. The adaptation based on phenotypic plasticity and genetic modifications under the influence of selection occurs at varying rates. Generic and phenotypic adaptations appear over the course of several generations. When it comes to the first scenario, adaptations should be seen as an individual's tactical response to the effects of the environment, and when it comes to the second scenario, as a population-level (gene pool) strategic response (Pavlov and Savvaitova, 2008). When evaluated in this context, otolith features are an additional very important and cheap taxonomic markers used in intra- and inter-species distinctions.

L'abèe-lund and Jensen (1993) reported otoliths as a natural tag for Salmo species. In addition, they evaluated the precision of intraspecific, interspecific, and intergeneric identification using the morphology of the otoliths in two species of Salmo and two species of Salvelinus. Shape indices, one of the morphometrically and morphologically important otolith characters, were reported in previous studies on Salmo species. Yıldız and Yılmaz (2021) were calculated shape indices (*FF* =  $0.69 \pm 0.05$ ; *AR* =  $1.71 \pm 0.10$ ; *C* = 18.08 $\pm$  1.58; RO = 0.49  $\pm$  0.03; REC = 0.65  $\pm$  0.02; E = 0.26  $\pm$ 0.02) of S. coruhensis from Çam Stream. Also, Basçınar (2020) was reported AR (1.67  $\pm$  0.15), FF (0.62  $\pm$  0.07), and RO (1.53 ± 0.22) for S. trutta. Morat et al. (2008) investigated shape indices of Salmo trutta, too. These findings concur with those of the current investigation. In terms of shape indices. the current study shows that rectangularity is more useful for differentiating between S. coruhensis and S. fahrettini. In addition. CDA results produced 58% total successful classification rate. A series of studies confirmed that otolith shape indices could be used for inter and intraspecific discrimination of species (Tuset et al., 2003; Morat et al., 2008; Ozpiçak et al., 2018; Yedier, 2021; Akbay et al., 2022; Pavlov, 2022).

More comprehensive information on the variability of otolith shape is provided by contour analysis techniques (Tuset et al., 2021). Fourier analysis, which characterizes the general shape of the otolith, and wavelet analysis, which is useful for estimating the otolith edge, were both used in this study (Parisi-Baradad et al., 2005). The results of the elliptic Fourier analysis demonstrates that sagittal otoliths of S. coruhensis and S. fahrettini can be described with limited numbers of harmonics (total of 8 harmonics explain 99.99% of the cumulative Fourier power). Especially in the recent studies, Fourier and wavelet analyzes are mostly preferred to examine the otolith shape in different fish species (Bourehail et al., 2015; Libungan et al., 2015; Pavlov, 2022; Pavlov and Osinov, 2023). Morat et al. (2008) compared the morphological and chemical characteristics of otoliths of S. trutta and Salvelinus fontinalis with elliptic Fourier analysis and shape indices. The discrimination between the two species has a Wilks'  $\lambda$  of 0.18 (P < 0.05) and Cohen-kappa test revealed that 89% of fish were correctly classified.

Friedland and Reddin (1994) used Fourier analysis of otolith morphology in stock discriminations of Salmo salar population and used to calculate a complex Fourier transform and two shape indices, rectangularity and circularity. Many physiological (Mille et al., 2015; Assis et al., 2020), and environmental factors (Mahé et al., 2021; Çöl and Yılmaz, 2022) affect otolith morphology. Therefore, it is an expected result that high or low discrimination rates will occur depending on these factors in intraspecific and interspecies discrimination studies using otolith shape. Although elliptic Fourier analysis is the most popular technique (Campana and Casselman, 1993), it only approximates outline variability globally because each harmonic coefficients have no morphological significance on its own and cannot distinguish between local singularities (Tuset et al., 2021). At this stage, it has been established that wavelet analysis is a highly effective technique for highlighting morphological singularities (Lombarte and Tuset, 2015).

The discrimination between the species is higher based on wavelet transform then Fourier analysis and shape indices. Similarly, wavelet analysis (80%), one of the methods used in this study, gave a higher discrimination rate between species compared to the other two methods. Tuset et al. (2021) pointed that wavelets were a more adequate option and excellent method for the classification of species. The values of Wilks'  $\lambda$  range from zero to one, the closer the Wilks'  $\lambda$  is to zero, the better is the discriminating power of the CDA. In this study, scores of Wilks'  $\lambda$  calculated as 0.982 > 0.777 > 0.602 for SIs, EFCs and WT, respectively. The discrimination between the groups is higher based on wavelet transform than based on Fourier analysis and shape indices for sagittal otoliths. In the literature, there is no study using wavelet analyzes for the differentiation of S. coruhensis and S. fahrettini species. Wavelet analyses in otolith shape were employed by Koeberle et al. (2020) to distinguish Oncorhynchus tshawytscha population. Analysis of otolith

### REFERENCES

- Akbay, R., Yilmaz, S., Ozpicak, M., Saygin, S., & Polat, N. (2022). Lagenar otolith morphometry of gibel carp, *Carassius gibelio* (Cyprinidae): Comparisons among four populations in Samsun Province (Turkey). *Journal of Ichthyology*, 62, 770-776. https://doi.org/10.1134/S003294522 2050022
- Anderson, M.J. (2001). A new method for non-parametric multivariate analysis of variance. *Austral Ecology*, 26, 32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
- Assis, I.O., da Silva, V.E., Souto-Vieira, D., Lozano, A.P., Volpedo, A. V., & Fabré, N.N. (2020). Ecomorphological patterns in otoliths of tropical fishes: assessing trophic groups and depth strata preference by shape. *Environmental Biology of Fishes*, 103(4), 349-361. https://doi.org/10.1007/s10641-020-00961-0
- Bardakci, F., Degerli, N., Ozdemir, O., & Basibuyuk, H.H. (2006). Phylogeography of the Turkish brown trout Salmo trutta L.: mitochondrial DNA PCR-RFLP variation. *Journal of Fish Biology*, 68(A), 36-55. https://doi.org/10.1111/j.0022-1112.2006.00948.x
- Bardakci, F., Tanyolac, J., Akpinar, M.A., & Erdem, U. (1994). Morphological comparison of trout (Salmo trutta L., 1766) populations caught from streams in Sivas. Turkish Journal of Zoology, 18, 1-6.

shape (shape indices, elliptic Fourier and wavelet transform analysis) in the present study showed significant phenotypic heterogeneity between *S. coruhensis* and *S. fahrettini* from Türkiye. And also WT of otolith shape (80%) revealed a much more successful discrimination rate than the other two methods. This study was the first approach to elaborate the otolith shape of *S. coruhensis* and *S. fahrettini* using different morphological analyzing methods.

### ACKNOWLEDGEMENTS

The authors are thankful to Recep YILDIZ for sampling *S. coruhensis* individuals.

### AUTHORSHIP CONTRIBUTIONS

Melek Özpiçak: Conceptualization, investigation, methodology, software, validation, writing – original draft, writing – review and editing. Semra Saygın: Methodology; resources; software; validation; writing – original draft; review and editing. Savaş Yılmaz: Conceptualization; investigation; methodology; validation; writing – original draft.

### CONFLICT OF INTEREST

The authors state that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

### **ETHICS APPROVAL**

The care and use of experimental animals, sampling and analysis techniques used in this work are approved by Ondokuz Mayıs University Animal Experiments Local Ethics Committee with decree no "2017/38".

### DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

- Bernatchez, L. (2001). The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. *Evolution*, 55, 351-379. https://doi.org/10.1111/j.0014-3820.2001.tb01300.x
- Berrebi, P., Barucchi, V.C., Splendiani, A., Muracciole, S., Sabatini, A., Palmas, F., Tougard, C., Arculeo, M., & Marić, S. (2019). Brown trout (Salmo trutta L.) high genetic diversity around the Tyrrhenian Sea as revealed by nuclear and mitochondrial markers. *Hydrobiologia*, 826(1), 209-231. https://doi.org/10.1007/s10750-018-3734-5
- Bourehail, N., Morat, F., Lecomte-Finiger, R., & Kara, M. H. (2015). Using otolith shape analysis to distinguish barracudas *Sphyraena sphyraena* and *Sphyraena viridensis* from the Algerian coast. *Cybium*, 39(4), 271-278.
- Campana, S.E., & Casselman, J.M. (1993). Stock discrimination using otolith shape analysis, *Canadian Journal of Fisheries and Aquatic Science*, 50(5), 1062–1083. https://doi.org/10.1139/f93-123
- Çöl, O., & Yilmaz, S. (2022). The effect of ontogenetic diet shifts on sagittal otolith shape of European perch, *Perca fluviatilis* (Actinopterygii: Percidae) from Lake Ladik, Turkey. *Turkish Journal of Zoology*, 46(4), 385-396. https://doi.org/10.55730/1300-0179.3090

- Crampton, J.S. (1995). Elliptic Fourier shape analysis of fossil bivalves, practical consideration. *Lethaia*, 28, 179-186. https://doi.org/10.1111/j.1502-3931.1995.tb01611.x
- D'Iglio, C., Natale, S., Albano, M., Savoca, S., Famulari, S., Gervasi, C., Lanteri, G., Panarello, G., Spanò, N., & Capillo, G. (2022). Otolith analyses highlight morpho-functional differences of three species of mullet (Mugilidae) from transitional water. *Sustainability*, 14, 398. https://doi.org/10.3390/su140103988
- Delling, B., Sabatini, A., Muracciole, S., Tougard, C., & Berrebi, P. (2020). Morphologic and genetic characterization of Corsican and Sardinian trout with comments on Salmo taxonomy. *Knowledge and Management* of Aquatic Ecosystems, 421(21). https://doi.org/10.1051/kmae/2020013
- Elliott, N.G., Haskard, K., & Koslow, J.A. (1995). Morphometric analysis of orange roughy (*Hoplostethus atlanticus*) off the continental slope of southern Australia. *Journal of Fish Biology*, 46(2), 202–220. https://doi.org/10.1111/j.1095-8649.1995.tb05962.x
- Friedland, K. D., & Reddin, D. G. (1994). Use of otolith morphology in stock discriminations of Atlantic salmon (*Salmo salar*). *Canadian Journal of Fisheries and Aquatic Sciences*, 51(1), 91-98. https://doi.org/10.1139/f94-011
- Guinand, B., Oral, M., & Tougard, C. (2021). Brown trout phylogenetics: A persistent mirage towards (too) many species. *Journal of Fish Biology*, 99(2), 298-307. https://doi.org/10.1111/jfb.14686
- Hammer, Ø., Harper, D.A., & Ryan, P.D. (2001). PAST: paleontological statistics software package for education and data analysis. *Palaeontologia Electronica*, 4, 1-9.
- Hutchings, J.A. (2004). Norm of Reaction and Phenotypic Plasticity in Salmonid Life Histories. In: A. Hendry, S. Stearns (Eds.), *Evolution Illuminated: Salmon and Their Relatives*, Oxford University Press, Oxford, pp 154–174.
- Iwata, H., & Ukai, Y. (2002). SHAPE: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. *Journal of Heredity*, 93, 384-385. https://doi.org/10.1093/jhe red/93.5.384
- Jawad, L. A., Shamsan, E. F., Aguilar, G., & Hoedemakers, K. (2022). Scanning electron microscopy and morphological analysis reveal differences in the otolith morphology of three species of the family Lethrinidae (Teleostei: Perciformes) from Yemen. *The Anatomical Record*. https://doi.org/10.1002/ar.25115
- Karakousis, Y., Triantaphyllidis, C., & Economidis, P. S. (1991). Morphological variability among seven populations of brown trout, Salmo trutta L., in Greece. Journal of Fish Biology, 38(6), 807-817. https://doi.org/10.1111/j.1095-8649.1991.tb03620.x
- Kikuchi, E., Cardoso, L.G., Canel, D., Timi, J.T., & Haimovici, M. (2021). Using growth rates and otolith shape to identify the population structure of *Umbrina canosai* (Sciaenidae) from the Southwestern Atlantic. *Marine Biology Research*, 17(3), 272-285. https://doi.org/10.1080/17451000.202 1.1938131
- Koeberle, A. L., Arismendi, I., Crittenden, W., Di Prinzio, C., Gomez-Uchida, D., Noakes, D. L., & Richardson, S. (2020). Otolith shape as a classification tool for Chinook salmon (*Oncorhynchus tshawytscha*) discrimination in native and introduced systems. *Canadian Journal of Fisheries and Aquatic Sciences*, 77(7), 1172-1188. https://doi.org/10.113 9/cjfas-2019-0280
- Kontaş, S., Yedier, S., & Bostancı, D. (2020). Otolith and scale morphology of endemic fish *Cyprinion macrostomum* in Tigris–Euphrates Basin. *Journal of Ichthyology*, 60(4), 562-569. https://doi.org/10.1134/S0 032945220040086
- Kottelat, M. (1997). European freshwater fishes: a heuristic checklist of the freshwater fishes of Europe (exclusive of former USSR), with an introduction for non-systematists and comments on nomenclature and conservation. *Biologia*, 52, 1-271.
- L'Abée-Lund, J. H., & Jensen, A. J. (1993). Otoliths as natural tags in the systematics of salmonids. *Environmental Biology of Fishes*, 36(4), 389-393. https://doi.org/10.1007/BF00012418

- Libungan, L.A., Óskarsson, G.J., Slotte, A., Jacobsen, J.A., & Pálsson, S. (2015). Otolith shape: A population marker for Atlantic herring *Clupea harengus. Journal of Fish Biology*, 86(4), 1377-1395. https://doi.org/10.1 111/jfb.12647
- Lin, C.H., & Chang, C. W. (2012). Otolith Atlas of Taiwan Fishes. National Museum of Marine Biology & Aquarium.
- Lleonart, J., Salat, J., & Torres, G.J. (2000). Removing allometric effects of body size in morphological analysis. *Journal of Theoretical Biology*, 205, 85–93. https://doi.org/10.1006/jtbi.2000.2043
- Lombarte, A., Chic, O., Parisi-Baradad, V., Olivella, R., Piera, J., & García-Ladona, E. (2006). A web-based environment from shape analysis of fish otoliths. The AFORO database. *Scientia Marina*, 70, 147-152. https://doi.org/10.3989/scimar.2006.70n1147
- Lombarte, A., & Tuset, V. (2015). Morfometria de otólitos. Métodos de estudo com otólitos: princípios e aplicações. Buenos Aires: CAFP-BA-PIESCI, 269-302.
- Mahé, K., MacKenzie, K., Ider, D., Massaro, A., Hamed, O., Jurado-Ruzafa, A., Gonçalves., O., Anastasopoulou, A., Jadaud, A., Mytilineou, C., Randon, M., Elleboode, R., Morell, A., Ramdane, Z., Simith, J., Bekaert, K., Amara, R., de Pantual, H., & Ernande, B. (2021). Directional bilateral asymmetry in fish otolith: A potential tool to evaluate stock boundaries? Symmetry, 13(6), 987. https://doi.org/10.3390/sym13060987
- Mallat, S. (1991). Zero crossings of a wavelet transform. IEEE Transactions on Information Theory, 37, 1019-1033. https://doi.org/10.1109/18.86995
- Mejri, M., Bakkari, W., Tazarki, M., Mili, S., Chalh, A., Shahin, A.A.B., Quignard, J.P., Trabelsi, M., & Ben Faleh, A. R. (2022). Discriminant geographic variation of saccular otolith shape and size in the common pandora, *Pagellus erythrinus* (Sparidae) across the Gulf of Gabes, Tunisia. *Journal of Ichthyology*, 62(6), 1053-1066. https://doi.org/10.113 4/S0032945222060169
- Mejri, M., Trojette, M., Allaya, H., Faleh, A. B., Jmil, I., Chalh, A., & Trabelsi, M. (2018). Use of otolith shape to differentiate two lagoon populations of *Pagellus erythrinus* (Actinopterygii: Perciformes: Sparidae) in Tunisian waters. Acta Ichthyologica et Piscatoria, 48(2), 153-161. https://doi.org/10.3750/AIEP/2376
- Mille, T., Mahe, K., Villanueva, M.C., De Pontual, H., & Ernande, B. (2015). Sagittal otolith morphogenesis asymmetry in marine fishes. *Journal of Fish Biology*, 87(3), 646-663. https://doi.org/10.1111./jfb.12746
- Morat, F., Betoulle, S., Robert, M., Thailly, A. F., Biagianti-Risbourg, S., & Lecomte-Finiger, R. (2008). What can otolith examination tell us about the level of perturbations of Salmonid fish from the Kerguelen Islands? *Ecology of Freshwater Fish*, 17(4), 617-627. https://doi.org/10.1111/j.16 00-0633.2008.00313.x
- Ozpiçak, M., Saygın, S., Aydın, A., Hançer, E., Yılmaz, S., & Polat, N. (2018). Otolith shape analyses of Squalius cephalus (Linnaeus, 1758) (Actinopterygii: Cyprinidae) inhabiting four inland water bodies of the middle Black Sea region, Turkey. *Iranian Journal of Ichthyology*, 5(4), 293-302. https://doi.org/10.22034/iji.v5i4.311
- Parisi-Baradad, V., Lombarte, A., Garcia-Ladona, E., Cabestany, J., Piera, J., & Chic, Ò. (2005). Otolith shape contour analysis using affine transformation invariant wavelet transforms and curvature scale space representation. *Marine and Freshwater Research*, 56, 795–804. https://doi.org/10.1071/MF04162
- Parisi-Baradad, V., Manjabacas, A., Lombarte, A., Olivella, R., Chic, Ó., Piera, J., & Garcia-Ladona E. (2010). Automated Taxon Identification of Teleost fishes using an otolith online database- AFORO. *Fisheries Research*, 105, 13–20. https://doi.org/10.1016/j.fishres.2010.02.005
- Pavlov, D.A. (2022). Otolith morphology in gibel carp Carassius gibelio and crucian carp C. carassius (Cyprinidae). Journal of Ichthyology, 62, 1067–1080. https://doi.org/10.1134/S0032945222060200
- Pavlov, D.A., & Osinov, A.G. (2023). Differentiation of Arctic Charr Salvelinus alpinus complex (Salmonidae) in lakes Lama and Kapchuk (Taimyr) based on genetic analysis, external morphology, and otolith shape. Journal of Ichthyology, 1-19. https://doi.org/10.1134/S0032945223 010101

- Pavlov, D.S., & Savvaitova, K.A. (2008). On the problem of ratio of anadromy and residence in salmonids (Salmonidae). *Journal of Ichthyology*, 48(9), 778-791. https://doi.org/10.1134/S0032945208090099
- Pavlov, D.S., Savvaitova, K.A., & Kuzishchin, K.V. (1999). On the problem of formation of epigenetic variations of the life strategy in the species of the Red Data Book—Kamchatka Mykiss *Parasalmo mykiss*. Dokl. Ross. Akad. Nauk. Obshch. *Biol.* 367 (5), 709–713.
- Ponton, D. (2006). Is geometric morphometrics efficient for comparing otolith shape of different fish species? *Journal of Morphology*, 267(6), 750-757. https://doi.org/10.1002/jmor.10439
- Sadeghi, R., Esmaeili, H. R., Zarei, F., & Reichenbacher, B. (2020). Population structure of the ornate goby, *Istigobius ornatus* (Teleostei: Gobiidae), in the Persian Gulf and Oman Sea as determined by otolith shape variation using ShapeR. *Environmental Biology of Fishes*, 103(10), 1217-1230. https://doi.org/10.1007/s10641-020-01015-1
- Sadighzadeh, Z., Valinassab, T., Vosugi, G., Motallebi, A. A., Fatemi, M. R., Lombarte, A., & Tuset, V. M. (2014). Use of otolith shape for stock identification of John's snapper, *Lutjanus johnii* (Pisces: Lutjanidae), from the Persian Gulf and the Oman Sea. *Fisheries Research*, 155, 59-63. https://doi.org/10.1016/j.fishres.2014.02.024
- Savvaitova, K. A. (1989). Arctic chars (structure of population systems and perspectives of commercial use) (Agropromizdat, Moscow, 1989) [in Russian].
- Schulz-Mirbach, T., Ladich, F., Plath, M., & Heß, M. (2019). Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths. *Biological Reviews*, 94, 457-482. https://doi.org/10.1111/brv.12463
- Song, J., Zhao, B., Liu, J., Cao, L., & Dou, S. (2018). Comparison of otolith shape descriptors and morphometrics for stock discrimination of yellow croaker along the Chinese coast. *Journal of Oceanology and Limnology*, 36(5), 1870-1879. https://doi.org/10.1007/s00343-018-7228-0

Thorpe, J. E. (1994). Reproductive Strategies in Atlantic Salmon Salmo salar. Aquaculture Research, 25, 77–87. https://doi.org/10.1111/j.1365-2109.1994.tb00668.x

- Turan, D., & Aksu, S. (2021). A new trout species from southern Marmara Sea drainages (Teleostei: Salmonidae). Journal of Anatolian Environmental and Animal Sciences, 6(2), 232-239. https://doi.org/10.35229/jaes.903810
- Turan, D., Aksu, İ., Oral, M., Kaya, C., & Bayçelebi, E. (2021). Contribution to the trout of Euphrates River, with description of a new species, and range extension of Salmo munzuricus (Salmoniformes, Salmonidae). Zoosystematics and Evolution, 97, 471. https://doi.org/10.3897/zse.97.7 2181
- Turan, D., Dogan, E., Kaya, C. & Kanyılmaz, M. (2014a). Salmo kottelati, a

new species of trout from Alakır stream, draining to the Mediterranean in Southern Anatolia, Turkey (Teleostei, Salmonidae). *Zookeys*, 462, 135-151. https://doi.org/10.3897/zookeys.462.8177

- Turan, D., Kalaycı, G., Bektaş, Y., Kaya, C., Baycelebi, E. (2020). A new species of trout from the northern drainages of Euphrates River, Turkey (Salmoniformes: Salmonidae). *Journal of Fish Biology*, 96, 1454-1462. https://doi.org/10.1111/jfb.14321
- Turan, D., Kottelat, M., & Engin, S. (2009). Two new species of trouts, resident and migratory, sympatric in streams of northern Anatolia (Salmoniformes: Salmonidae). Ichthyological Exploration of Freshwaters, 20(4), 333-364.
- Turan, D., Kottelat, M. & Engin, S. (2014b). Two new species of trouts from the Euphrates drainage, Turkey (Teleostei: Salmonidae). *Ichthyological Exploration of Freshwaters*, 24(3), 275-287.
- Tuset, V.M., Lombarte, A., & Assis, C.A. (2008). Otolith atlas for the western Mediterranean, north and central eastern Atlantic. *Scientia Marina*, 72, 7–198. https://doi.org/10.3989/scimar.2008.72s17
- Tuset, V.M., Lozano, I.J., González, J.A., Pertusa, J. F., & García-Díaz, M. M. (2003). Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). Journal of Applied Ichthyology, 19(2), 88-93. https://doi.org/10.1046/j.1439-0426.2003.00344.x
- Tuset, V.M., Otero-Ferrer, J. L., Siliprandi, C., Manjabacas, A., Marti-Puig, P., & Lombarte, A. (2021). Paradox of otolith shape indices: routine but overestimated use. *Canadian Journal of Fisheries and Aquatic Sciences*, 78(6), 681-692. https://doi.org/10.1139/cjfas-2020-0369
- Wiff, R., Flores, A., Segura, A. M., Barrientos, M. A., & Ojeda, V. (2020). Otolith shape as a stock discrimination tool for ling (*Genypterus blacodes*) in the fjords of Chilean Patagonia. New Zealand Journal of Marine and Freshwater Research, 54(2), 218-232. https://doi.org/10.1080/00288330.2019.1701047
- Yedier, S. (2021). Otolith shape analysis and relationships between total length and otolith dimensions of European barracuda, Sphyraena sphyraena in the Mediterranean Sea. Iranian Journal of Fisheries Sciences, 20(4), 1080-1096. https://doi.org/10.22092/ijfs.2021.124429
- Yıldız, R., & Yılmaz, S. (2021). Morphometric Analysis of Sagittal Otoliths in Coruh Trout (Salmo coruhensis Turan, Kottelat & Engin, 2010). Journal of Anatolian Environmental and Animal Sciences, 6(2), 270-277. https://doi.org/10.35229/jaes.913183
- Yilmaz, S., Ozpicak, M., Saygin, S. & Polat, N. (2021). Determination of morphometric and genetic structure in *Salmo* Populations inhabiting Samsun province: A new record for Black Sea region. *Journal of Anatolian Environment and Animal Sciences*, 6(4), 765-773. https://doi.org/10.35229/jaes.1008194

### **RESEARCH ARTICLE**

ARAŞTIRMA MAKALESİ

# A preliminary study into the influence of filtration on phytoplankton dynamics in an oligotrophic marine fish farm environment

Filtrasyonun oligotrofik deniz balık çiftliği ortamındaki fitoplankton dinamikleri üzerindeki etkisine dair ön çalışma

## Betül Bardakçı Şener<sup>1\* •</sup> • Eyüp Mümtaz Tıraşın<sup>2</sup> •

<sup>1</sup>Graduate School of Natural and Applied Sciences, Dokuz Eylül University, Tinaztepe Campus, Buca, 35160, İzmir, Türkiye <sup>2</sup>Institute of Marine Sciences and Technology, Dokuz Eylül University, İnciralti-Balçova, 35340, İzmir, Türkiye

| Corresponding author: betul.bardakci@ogr.deu.edu.tr | Received date: 10.10.2023 | Accepted date: 12.01.2024 |
|-----------------------------------------------------|---------------------------|---------------------------|
| How to cite this paper:                             |                           |                           |

Bardakçı Şener, B., & Tıraşın, E.M. (2024). A preliminary study into the influence of filtration on phytoplankton dynamics in an oligotrophic marine fish farm environment. *Ege Journal of Fisheries and Aquatic Sciences, 41*(1), 16-25. https://doi.org/10.12714/egejfas.41.1.03

**Abstract:** Fish farms play a crucial role in meeting the escalating demand for fish in human diets, yet their nutrient releases pose potential environmental risks. This study explores the influence of a fish farm in the eastern Aegean Sea on local phytoplankton dynamics, serving as an indicator of nutrient abundance. Designing a phytoplankton bioassay near the fish farm, natural phytoplankton communities were incubated within dialysis membrane bags, creating a confined environment for accessing farm-released nutrients before dispersing into surrounding seawater. Consequently, higher growth rates within the bags were anticipated compared to the ambient seawater. However, natural interactions within phytoplankton communities involve predator-prey dynamics, influencing the net growth rates of phytoplankton. To investigate different grazing pressures on the incubated phytoplankton, five experimental groups were established. Four of these groups involved filtering seawater through various mesh sizes (40 µm, 56 µm, 100 µm, and 150 µm) and then filtered water. The fifth group contained seawater without any filtration. Despite the oligotrophic nature of the ambient seawater, a remarkable increase in phytoplankton growth was observed inside the bags. Variable growth rates were observed among the groups, with unfiltered and 150 µm mesh-filtered bags exhibiting the highest growth rates, suggesting copepod absence may contribute. Although the species composition within the bags differed from that of the ambient seawater, the overall species diversity remained limited. A total of 33 phytoplankton taxa were identified in the seawater form the study site, comprising 17 diatom and 16 dinoflagellate species. *Pronoctiluca spinifera* (Lohmann) Schiller 1932 was documented for the first time along the Aegean Sea coast of Türkiye. This study enhances our understanding of how fish farming can impact phytoplankton communities and underscores the necessity for further investigations into the complex interactions between aquaculture

Keywords: Aquaculture interactions, bioassay, growth rate variations, species composition shifts, nutrient discharges

**Öz:** Balık çiftlikleri, beslenmede artan balık talebini karşılamada kritik bir rol oynamakta, ancak çiftliklerden salınan nütrientler çevre için potansiyel riskler oluşturmaktadır. Bu çalışma, doğu Ege Deniz'ndeki bir balık çiftliğinin yerel fitoplankton dinamikleri üzerindeki etkisini, fitoplanktonu, nütrient varlığının bir göstergesi olarak kullanarak incelemektedir. Doğal fitoplankton toplulukları, balık çiftliğine yakın bir konumda yerleştirilen bir fitoplankton biyoanalizi tasarlanarak diyaliz membran torbalarında inkübe edilmiştir. Bu sayede fitoplanktonun salınan besinlere denizel ortamda dağılmadan önce erişebileçeği çerisinde bulundukları sınırlı bir ortam oluşturulmuştur. Bu nedenle, torbaların içindeki büyüme oranlarının dışarıdaki deniz suyuna kıyasla daha yüksek olması beklenmektedir. Ancak, fitoplankton kommüniteleri av-accı dinamiklerini içerir ve bu da fitoplanktonun net büyüme oranlarını etkilemektedir. İnkübe edilen fitoplankton üzerinde farklı otlama (grazing) baskılarını incelemek için beş deneme grubu oluşturulmuştur. Bu grupların dördü, deniz suyunu çeşitli göz açıklığına sahip ağlardan (40 μm, 56 μm, 100 μm ve 150 μm) geçirerek, diyaliz membran torbalarının bu süzülmüş deniz suyu oligotrofik doğasına rağmen, çiftliğe yakın konumlandırılan diyaliz membran torbalarınını geçirilmeden kullanılarak hazırlanmıştır. Ortam deniz suyunu oligotrofik doğasına rağmen, çiftliğe yakın konumlandırılan diyaliz membran torbalarının büyüme oranlarında belirgin bir artış gözlemlenmiştir. Özellikle gösterirken, genel tür çeşitliğiği sınırlı olarak kalmıştır. Çalışma bölgesinden alınan deniz suyu ile hazırlanan torbalarını bulunmaması olabileceği düşünülmektedir. Torba içerisindeki tür kompozisyonu ortam deniz suyundan farklılıklar gösterirken, genel tür çeşitliğiği sınırlı olarak kalmıştır. Çalışma bölgesinden alınan deniz suyu örneklerinde, 17'si diatom ve 16'sı dinöflagellat türü olmak üzere toplam 33 fitoplankton taksonu belirlenmiştir. *Pronoctiluca spiinfera* (Lohmann) Schiller 1932 türü, Türkiye'nin

Anahtar Kelime: Akuakültür etkileşimleri, biyodeney, büyüme hızı değişimleri, tür kompozisyonu değişiklikleri, nutrient salınımları

### INTRODUCTION

Aquaculture plays a critical role in filling the demand gap for seafood and will continue to do so in the future (Gephart et al., 2021). However, the activities of fish farms inevitably result in various inputs into the marine environment (Navarro et al., 2008). It is well-documented that fish farms enrich the water column with organic and inorganic substances by releasing fish feces, excretion, unconsumed feed, scale and skin shedding, mucus, vitamins, and therapeutic agents (Arzul et al., 1996). Two main methods have traditionally been used to assess the effects of nutrient input from fish farms into the marine environment. The first method involves regular sampling of the water column, with subsequent measurement of nutrient values. This method has two disadvantages. Firstly, the release of nutrients varies daily depending on the feeding regime at the farms, necessitating hourly sampling to measure the nutrient discharge accurately. The second issue with this approach lies in the limited sensitivity of nutrient analyses to detect significant differences. Farms are often situated in regions with high water exchange to maximize the influx of fresh seawater into the cages and minimize their environmental impact. Significant increases in nutrient concentrations due to nutrient release are only achievable in cases where the current velocity is low (Dalsgaard and Krause-Jensen, 2006). Another proposed method for measuring nutrient input into the water column is the use of phytoplankton as an indicator. The literature suggests that the initial impact on aquatic communities due to increased eutrophication begins with changes in the abundance and species composition of phytoplankton (Sidik et al., 2008).

The impact on primary production in fish farms as a result of nutrient enrichment varies widely, ranging from significant alterations to negligible changes. Price et al. (2015) conducted a comprehensive review, revealing that numerous studies suggest a significant increase in primary production in fish farms. However, within the same work, it is also noted that certain studies found no substantial effects on primary production in fish farms. The inability to detect the impact of increased nutrient levels in the water column on phytoplankton has been attributed to factors such as rapid dilution in the water column due to strong currents and water exchange (Dalsgaard and Krause-Jensen, 2006; Pitta et al., 2009), as well as predation pressure (grazing) by organisms that feed on phytoplankton (Pitta et al., 2009).

One of the most reliable methods used to estimate the *in situ* growth rates of marine phytoplankton is incubation inside dialysis bags. The effectiveness of dialysis bag experiments is based on their ability to maintain physicochemical contact between the enclosed phytoplankton population and the surrounding environment (Furnas, 1990).

The Mediterranean Sea is typically characterized as oligotrophic, as its waters naturally contain very low nutrient concentrations (Krom et al., 1991; Mura et al., 1996). Notably, the oligotrophic nature of the marine environment where this study took place, which hosts a fish farm, theoretically provides an advantageous position for observing the effects of nutrient input. The activities of fish farms result in nutrient input into the water column, making these areas unique research sites for investigators.

In addressing the challenge of detecting the impact of increased nutrient levels from fish farming in oligotrophic environments, a bioassay was conducted at a fish farm located in Çandarlı, Denizköy (İzmir, Türkiye), where natural phytoplankton assemblages responded to nutrient releases resulting from fish farming. Utilizing dialysis bags in the bioassay provided a confined environment for phytoplankton, minimizing potential losses due to factors such as daily migrations, grazing, or drifting caused by open sea currents. As a result, higher growth rates within the bags compared to ambient seawater were anticipated, excluding factors causing

losses in open water and aiming to reveal the effect of the fish farm on the water column. Inevitably, since natural phytoplankton assemblages were used as inoculum, interspecies competition and predator-prey interactions persisted within the dialysis bags. By applying various filtration treatments to the inoculum, the goal was to measure the highest growth rates inside the bags. The technique of using dialysis membrane bags for the *in situ* incubation of natural phytoplankton is applied for the first time in Türkiye in this study.

### MATERIAL AND METHODS

### Study area

The study site was a fish farm located in Çandarlı, Denizköy, situated in the northeastern Aegean Sea of Türkiye (38°58'33"N, 26°47'22"E; Figure 1). The farm is situated at a distance of approximately 1 km from the shore, and the water depth in the farm area ranges from 50 to 70 meters. The fish farm was established and began production 4 years before the experiment commenced. The annual production capacity of the farm is approximately 1000 tonnes of sea bream and sea bass. Fish were automatically fed once daily. The highest recorded current speed in the area was 20 cm/s. The experiment was conducted from the 20th to the 23rd of July 2020 and was based on a protocol established in a previous study by Mura et al. (1996).



Figure 1. Location of the study area in Çandarlı (the eastern Aegean Sea)

### **Experimental design**

The experiment was designed for the *in situ* incubation of natural phytoplankton communities within dialysis membrane bags for a duration of three days. Dialysis membrane bags facilitate the exchange of molecules smaller than proteins with the surrounding environment. The bags utilized in the experiment were constructed from Spectra/Por® 1 dialysis membrane tubing. Each bag was sealed at both ends using 110 mm Spectra/Por® closures (nylon). Each bag had a total volume of 600 mL. Seawater containing natural phytoplankton communities was collected from the 50 cm surface layer within the fish farm using a Nansen bottle. Five experimental groups were established to examine varying grazing pressures on the incubated phytoplankton. Four experimental groups were generated by filtering the seawater through meshes with different mesh sizes (40 µm, 56 µm, 100 µm, 150 µm) and subsequently filling the filtered water into the bags. The fifth group was formed using seawater that underwent no filtration. The experimental group prepared with unfiltered seawater comprised 3 bags with identical characteristics, while the remaining groups were tested using 2 bags each, resulting in a total of 11 dialysis membrane bags.

A circular PVC tubing frame with a 2-meter diameter was securely affixed to the ropes that anchored the automatic fish feeding system to the seabed of the fish farm. Using cable ties, the 11 dialysis bags were attached to a horizontal rope running along the PVC frame. Lead weights (2 kg) were strategically positioned at both ends of the rope to submerge it at a depth approximately 50 cm below the surface (Figure 2).

At the commencement and conclusion of the experiment, 1 L samples were collected from unfiltered seawater and seawater filtered through different mesh sizes (as mentioned above) to study the nutrient contents of the ambient seawater, environmental variables, and phytoplankton community in the study area.



Figure 2. Photograph of the deployed experimental arrangement, 50 cm below the sea surface

# Taxonomic identification and enumeration of phytoplankton species

At the end of the incubation period, water samples of approximately 200-300 mL were obtained from the bag contents. These samples, along with the seawater samples collected at the study site both at the onset and conclusion of the experiment, were used for the examination of phytoplankton. All samples underwent fixation with a 0.4%

acidic Lugol's solution for this purpose. Subsequently, following sedimentation, taxonomic identification and enumeration of phytoplankton were carried out in the laboratory using an Olympus BX50 fluorescence microscope at a magnification of 100x. In order to determine the taxonomic composition of phytoplankton species, the following resources were consulted: Tomas (1997) and Gomez et al. (2010).

### Nutrients and environmental variables

Samples designated for dissolved inorganic nutrients and chl a were prescreened through 210 µm nylon mesh to remove larger particles. After prescreening, these samples were further filtered through Whatman GF/F glass microfiber filters. The resulting filtrates were then stored at -20°C and analyzed subsequently for nitrite (NO<sub>2</sub>), nitrate (NO<sub>3</sub>), orthophosphate (PO<sub>4</sub>), and reactive silica (SiO<sub>2</sub>) using a SKALAR autoanalyzer (Skalar, De Breda, Netherlands) employing colorimetric methods adapted from the standard seawater analyses as outlined by Grasshoff et al. (1999). For analysis of chl a, the filters were folded and placed inside glass tubes, immediately frozen for subsequent laboratory analysis. Extraction of chl a was carried out using 90% acetone for a duration of 24 hours, followed by guantification using the fluorometric method described by Strickland and Parsons (1972). Seawater temperature and salinity measurements were conducted using the portable Sea-Bird 37 SM instrument (Sea-Bird Electronics Inc., Bellevue, WA, USA). Dissolved oxygen was measured using the Winkler method (Grasshoff et al., 1999). Secchi disk depth and pH were measured in situ.

### Statistical analyses

The average concentrations of each nutrient, measured in both the ambient water and the water enclosed within the dialysis bags, were compared using independent *t*-tests (Snedecor and Cochran, 1989). The population growth rates of phytoplankton within the dialysis bags and those present in the ambient water were estimated using chl *a* concentrations and cell numbers. Calculations were based on the exponential growth model (Snedecor and Cochran, 1989; Reynolds, 2006):

$$Y_t = Y_0 e^{rt}$$

Here,  $Y_t$  is the dependent variable that describes the cell numbers or chl *a* concentrations at time *t* (day). Y<sub>0</sub> is the initial number of cells or amount of chl *a* concentration at time *t*=0 (i.e., at the start of the experiment), and *r* is the specific growth rate of the phytoplankton community, either in terms of cell counts or chl *a* concentration. The growth model was linearized with logarithmic transformation, and the specific growth rate *r* was then estimated as the slope of the linear regression of the natural logarithm of Y versus *t* (Snedecor and Cochran, 1989; Reynolds, 2006). Moreover, an analysis of covariance (ANCOVA) was carried out to examine potential variations in the estimated *r* values among the five experimental groups, namely, the dialysis bags containing seawater subjected to four different filtration treatments and one unfiltered seawater. Changes in concentrations (chl *a* or cell numbers) within the dialysis bags after incubation were utilized to represent the gross rates ( $r_{gross}$ ). Net growth rates ( $r_{net}$ ) were calculated based on changes in concentrations in the ambient seawater between the start and end of the experiment and served as the control (Mura et al., 1996). The disparity between the gross and net rates was designated as the loss rates ( $r_{loss}$ ).

Various indices were employed to evaluate species diversity and evenness within the phytoplankton communities. Diversity was quantified using both the Shannon-Weiner index (H') and Simpson's index (D) (Magurran, 1988; Krebs, 1999). The ratio of observed diversity (H') to maximum diversity ( $H_{max}$ ), which represents the diversity achievable under conditions where all species are equally abundant, served as a measure of evenness (E) (Magurran, 1988).

$$H' = -\sum_{i=1}^{S} (p_i) \times \log_2(p_i)$$
$$D = 1 - \sum_{i=1}^{S} p_i^2$$
$$E = \frac{H'}{H_{max}} = \frac{H'}{\log_2(S)}$$

In the above formulations, the quantity  $p_i$  represents the proportion of the *i*th species in terms of cell numbers, and S represents the total number of phytoplankton species or species richness within each community. For a more explicit interpretation of diversity, the Shannon-Wiener index can be expressed in an alternative form using exponentiation with 2 as the base and H' as the exponent, commonly referred to as Hill's number N1 (Krebs, 1999). Additionally, an alternative form of Simpson's index, known as Simpson's reciprocal index (D-1), is used to express diversity estimates in terms of the number of species. Simpson's reciprocal index corresponds to Hill's number N<sub>2</sub> (Krebs, 1999). All the indices were calculated for each dialysis bag and the ambient seawater for both the start and end of the experiment. Prior to the tests, the necessary assumptions of normality and homoscedasticity were assessed using an F-test, the Shapiro-Wilk normality test, and normal quantile-quantile plots (Snedecor and Cochran, 1989). All statistical tests were

conducted using R software version 4.1.3 (R Core Team, 2022), with a significance level set at 5%.

### RESULTS

The physical properties remained unaltered throughout the duration of the experiment (Table 1). According to observations and records from the fish farm personnel, the average wave heights during the experiment were consistently low (<1 m). The nutrient concentrations, measured both in the ambient seawater and within the dialysis membrane bags, are shown in Table 2. The concentrations of nitrite + nitrate, orthophosphate, and reactive silica determined in the ambient seawater ranged from 0.08 to 0.23, 0.03 to 0.07, and 0.21 to 0.45, respectively. The nutrient concentrations measured in the bags were slightly higher than those from the ambient seawater (Table 2).

The concentrations of chl *a* and phytoplankton cell numbers, determined from both unfiltered and filtered ambient seawater, as well as from unfiltered and filtered dialysis bags, at the beginning and end of the experiment, are all presented in Table 3. Gross ( $r_{gross}$ ), net ( $r_{net}$ ), and loss ( $r_{oss}$ ) growth rates, derived from the chl *a* values and phytoplankton cell numbers in both the ambient seawater and dialysis bags (Table 3), are displayed in Table 4. As evident from Table 3, the chl *a* concentrations and phytoplankton cell numbers in the samples collected from the ambient seawater, regardless of the filtering treatment, were very similar at the start and end of the experiment. Consequently, no significant phytoplankton growth was observed (*t*-test), and the net growth rate was zero (Table 4).

However, after three days of incubation, a substantial increase in cell numbers and chl *a* concentrations within the dialysis bags became evident (Table 3). At the conclusion of the experiment, there was an over 18-fold increase in chl *a* values observed in the bags incubated with unfiltered seawater in comparison to the ambient seawater. Likewise, for the dialysis bags incubated with filtered seawater, the observed increases were approximately 11-fold at 40  $\mu$ m, 12-fold at 56  $\mu$ m, 11-fold at 100  $\mu$ m, and 17-fold at 150  $\mu$ m filtration (Table 3). Similarly, the increases in phytoplankton cell numbers in the bags subjected to filtration were more than 9-fold at 40  $\mu$ m, nearly 12-fold at 56  $\mu$ m, 10-fold at 100  $\mu$ m, and 16-fold at 150  $\mu$ m filtration, with close to 17-fold increase in the bags incubated with unfiltered seawater (Table 3).

**Table 1.** Physical properties of the ambient seawater

|      | Physical Properties |                |                           |     |                  |  |  |  |  |
|------|---------------------|----------------|---------------------------|-----|------------------|--|--|--|--|
| Days | Temperature (ºC)    | Salinity (ppt) | Dissolved Oxygen (mg L-1) | рН  | Secchi Depth (m) |  |  |  |  |
| 0    | 23.4                | 39.4           | 7.9                       | 8.1 | 24.3             |  |  |  |  |
| 3    | 23.3                | 39.5           | 7.8                       | 8.1 | 24.6             |  |  |  |  |

| Table 2. | The nutrient values measured in both the ambient seawater and dialysis membrane bags at the beginning and end of the experime | nt. |
|----------|-------------------------------------------------------------------------------------------------------------------------------|-----|
|          | Note that nutrient values inside the dialysis membrane bags represent averages. UF: unfiltered treatment                      |     |

|                           |                       | Days |      |       |       |      |      |      |       |       |      |  |
|---------------------------|-----------------------|------|------|-------|-------|------|------|------|-------|-------|------|--|
| Medium                    | Nutrients             | 0    |      |       |       |      | 3    |      |       |       |      |  |
|                           |                       | 40µm | 56µm | 100µm | 150µm | UF   | 40µm | 56µm | 100µm | 150µm | UF   |  |
|                           | Nitrite+ Nitrate (µM) | 0.18 | 0.14 | 0.09  | 0.06  | 0.11 | 0.18 | 0.23 | 0.19  | 0.22  | 0.18 |  |
| Ambient Seawater          | Orthophosphate (µM)   | 0.09 | 0.03 | 0.08  | 0.08  | 0.08 | 0.07 | 0.08 | 0.08  | 0.08  | 0.08 |  |
|                           | Silicate (µM)         | 0.26 | 0.21 | 0.32  | 0.26  | 0.39 | 0.35 | 0.45 | 0.37  | 0.33  | 0.34 |  |
|                           | Nitrite+ Nitrate (µM) | -    | -    | -     | -     | -    | 0.22 | 0.4  | 0.43  | 0.21  | 0.28 |  |
| Dialysis Membrane<br>Bags | Orthophosphate (µM)   | -    | -    | -     | -     | -    | 0.03 | 0.05 | 0.07  | 0.07  | 0.05 |  |
|                           | Silicate (µM)         | -    | -    | -     | -     | -    | 0.52 | 0.58 | 0.35  | 0.42  | 0.46 |  |

Table 3. Estimates of chl *a* concentrations and phytoplankton cell numbers from the unfiltered and filtered ambient seawater samples, as well as from the incubated bags. Reported results for the bags represent the average values of the sampled bags for each treatment, UF representing the unfiltered treatment

|                   | Growth               | rowth Days |       |       |       |       |        |        |        |         |         |  |  |
|-------------------|----------------------|------------|-------|-------|-------|-------|--------|--------|--------|---------|---------|--|--|
| Medium            | Variable             |            | 0     |       |       |       |        | 3      |        |         |         |  |  |
|                   | variable             | 40µm       | 56µm  | 100µm | 150µm | UF    | 40µm   | 56µm   | 100µm  | 150µm   | UF      |  |  |
| Ambient Cooweter  | chl a µg L-1         | 0.06       | 0.06  | 0.06  | 0.06  | 0.06  | 0.06   | 0.06   | 0.06   | 0.06    | 0.06    |  |  |
| Amplent Seawater  | Cell L-1             | 72860      | 72356 | 71346 | 79823 | 76439 | 76435  | 78923  | 73265  | 74391   | 75693   |  |  |
| Dialysis Membrane | chl a µg L-1         | -          | -     | -     | -     | -     | 0.65   | 0.7    | 0.68   | 1.01    | 1.09    |  |  |
| Bags              | Cell L <sup>-1</sup> | -          | -     | -     | -     | -     | 689797 | 883409 | 703460 | 1221128 | 1292972 |  |  |

The ANCOVA results revealed that the bags could be categorized into two distinct groups in terms of growth rates estimated from chl *a* concentrations. The first group consisted of unfiltered bags and those filtered through a 150  $\mu$ m mesh size, and they exhibited significantly higher growth rates than the second group, which comprised bags prepared by filtering through 40  $\mu$ m, 56  $\mu$ m, and 100  $\mu$ m mesh sizes (Table 4). When growth rates were estimated from cell counts, The ANCOVA results indicated three separate groups of bags. The bags in the first group, with higher growth rates, were the same as those identified in the analysis using chl *a* contents,

namely the bags filtered with a 150  $\mu$ m mesh size and unfiltered bags. The second group included only the bags filtered through a 56  $\mu$ m mesh size. The gross growth rate of this group was lower than that of the first group but higher than that of the third one, which consisted of the bags filtered with 40  $\mu$ m and 100  $\mu$ m mesh sizes (Table 4). In each of the five experimental groups, the two growth rates estimated from two different dependent variables, i.e., chl *a* concentrations and cell numbers, were comparable. The Pearson's product-moment correlation coefficient between these two measurements was 0.99.

 Table 4. Gross growth rates, net growth rates, and loss growth rates estimated from chl a values and phytoplankton cell numbers observed both in the ambient seawater and inside the dialysis membrane bags (UF representing the unfiltered treatment)

| Source                                   | Treatment | r <sub>gross</sub> (d⁻¹) | <i>r</i> <sub>net</sub> (d <sup>-1</sup> ) | <i>r</i> <sub>loss</sub> (d <sup>-1</sup> ) |
|------------------------------------------|-----------|--------------------------|--------------------------------------------|---------------------------------------------|
|                                          | 40µm      | 0.80                     | 0.00                                       | 0.80                                        |
|                                          | 56µm      | 0.82                     | 0.00                                       | 0.82                                        |
| Estimated from chl a values              | 100µm     | 0.81                     | 0.00                                       | 0.81                                        |
|                                          | 150µm     | 0.95                     | 0.00                                       | 0.95                                        |
|                                          | UF        | 0.97                     | 0.00                                       | 0.97                                        |
|                                          | 40µm      | 0.75                     | 0.02                                       | 0.73                                        |
|                                          | 56µm      | 0.83                     | 0.03                                       | 0.81                                        |
| Estimated from phytoplakton cell numbers | 100µm     | 0.76                     | 0.01                                       | 0.75                                        |
|                                          | 150µm     | 0.91                     | -0.02                                      | 0.93                                        |
|                                          | UF        | 0.94                     | 0.00                                       | 0.95                                        |

A total of 33 phytoplankton taxa were identified in the seawater samples taken from the study site during the experiment. Of these, 17 were diatom species, while the remaining 16 belonged to dinoflagellate species (Table 5). In the unfiltered seawater sample collected on the initial day of

the experiment, *Pronoctiluca spinifera* (Lohmann) Schiller, 1932 (Family: Protodiniferaceae, Class: Dinophyceae) was found (Figure 3), (Table 5). This species had previously been reported only in the Black Sea waters of Türkiye by Öztürk (1998), and this study provides the first record of its presence

on the Aegean Sea coast of Türkiye. Upon examination of the phytoplankton community composition, it became evident that diatoms dominated, especially within two prominent families: Leptocylindraceae and Bacillariaceae. In contrast, when assessing dinoflagellate abundance, the Ceratiaceae family stood out as having the highest number of individuals.

The filtration stage prevented the entry of certain taxa, notably chain-forming diatoms such as *Chaetoceros* spp., which have relatively larger cell sizes, into the dialysis bags (Table 5, Table 6). Unfiltered samples exhibited the highest species count. This pattern was similarly reflected in the species diversity indices and evenness values. Table 7 shows the number of species, diversity indices, and evenness values for both filtered and unfiltered ambient seawater samples collected on the first and last days of the experiment, as well as similar estimates for all dialysis bags collected on the final day of the experiment. In general, it was observed that with an increase in the mesh size of filtration, there was a corresponding rise in the number of species, aligning with expectations.



Figure 3. Pronoctiluca spinifera

| <b>I able J.</b> List of phytopiankton species observed in the ambient seawater sample | Table 5. List o | of phytoplanktor | species observed in the a | imbient seawater samples |
|----------------------------------------------------------------------------------------|-----------------|------------------|---------------------------|--------------------------|
|----------------------------------------------------------------------------------------|-----------------|------------------|---------------------------|--------------------------|

|                   |                      |                                                                          |        |           |        |        | Da     | ys |    |        |          |        |
|-------------------|----------------------|--------------------------------------------------------------------------|--------|-----------|--------|--------|--------|----|----|--------|----------|--------|
| Classis           | Family               | Таха                                                                     |        |           | 0      |        |        |    |    | 3      |          |        |
| 0100010           | i anny               | 1070                                                                     | 40     | 56        | 100    | 150    | UF     | 40 | 56 | 100    | 150      | UF     |
|                   | Desillarianaa        | Culindrathaga glastarium (Ebranbarg) Daimann 8 Lawin 1061                | μιιι   | <u>µm</u> | μm     | μm     |        | μm | μm | μιιι   | μm       |        |
|                   | Bacillanaceae        | Cymurouneca ciostenum (Enfenderg) Reimann & Lewin, 1964                  | +      | +         | +      | +      | +      | +  | +  | +      | +        | +      |
|                   |                      | Pseudo-nitzschia sp                                                      | -<br>- | -<br>-    | -<br>- | -<br>- | -<br>- | т  | Ŧ  | -<br>- | -<br>-   | -<br>- |
|                   | Chaetocerotaceae     | Chaptocoros affinis Lauder 1864                                          | -      | +         | +      | +      | +      | +  | +  | +      | +        | +      |
|                   | Chaelocerolaceae     | Chaetoceros decinians Cleve, 1873                                        |        | т         | т      | т      | т      | т  | +  | +      | +        | +      |
|                   | Grammatonhoraceae    | Grammatophora marina (Lynghye) Kützing, 1844                             |        |           |        | +      | +      |    | •  |        | •        | •      |
|                   | Hemiaulaceae         | Hemiaulus hauckii Grunow ex Van Heurck 1882                              | +      | +         | +      | +      | +      | +  | +  | +      | +        | +      |
|                   | l entocylindraceae   | Lentocylindrus danicus Cleve 1889                                        | +      | +         | +      | +      | +      | +  | +  | +      | +        | +      |
| Bacillarianhycoao | Licmonhoraceae       | Licmonhora sp                                                            |        | +         | +      | +      | +      |    |    | +      | +        | +      |
| Басшапорпусеае    | Naviculaceae         | Navicula sp.                                                             | +      | +         | +      | +      | +      | +  |    | +      | +        | +      |
|                   | Rhizosoleniaceae     | Dactvliosolen fragilissimus (Bergon) Hasle, 1996                         | +      | +         | +      | +      | +      |    | +  | +      | +        | +      |
|                   |                      | Guinardia flaccida (Castracane) H.Peragallo, 1892                        |        |           |        |        | +      |    | +  | +      | +        | +      |
|                   |                      | Guinardia striata (Stolterfoth) Hasle. 1996                              | +      | +         | +      | +      | +      |    | +  | +      | +        | +      |
|                   |                      | Pseudosolenia calcar-avis (Schultze) B.G.Sundström, 1986                 |        |           |        | +      | +      |    |    |        |          |        |
|                   |                      | Rhizosolenia sp.                                                         |        |           |        | +      | +      |    |    |        |          |        |
|                   | Pleurosigmataceae    | Pleurosigma sp.                                                          |        |           | +      | +      | +      | +  | +  | +      | +        | +      |
|                   | Thalassionemataceae  | Thalassionema nitzschioides (Grunow) Mereschkowsky, 1902                 |        |           |        |        | +      |    |    |        |          |        |
|                   | Ceratiaceae          | Tripos fusus (Ehrenberg) F.Gómez, 2013                                   |        | +         | +      | +      | +      | +  | +  | +      | +        | +      |
|                   |                      | Tripos furca (Ehrenberg) F.Gómez, 2013                                   |        |           |        |        |        | +  | +  | +      | +        | +      |
|                   |                      | Tripos lineatus (Ehrenberg) F.Gómez, 2021                                |        |           |        |        | +      |    |    |        |          |        |
|                   |                      | Tripos macroceros (Ehrenberg) Hallegraeff & Huisman, 2020                |        | +         | +      | +      | +      |    |    |        |          |        |
|                   |                      | Tripos trichoceros (Ehrenberg) Gómez, 2013                               |        |           |        | +      | +      |    |    |        |          |        |
|                   | Dinophysaceae        | Dinophysis acuminata Claparède & Lachmann, 1859                          |        | +         | +      | +      | +      | +  |    | +      | +        | +      |
|                   | Oxyphysaceae         | Oxyphysis oxytoxoides (Kofoid) F.Gomez, P.Lopez-Garcia & D.Moreira, 2011 |        | +         | +      | +      | +      |    |    | +      | +        | +      |
|                   | Oxytoxaceae          | Corythodinium tesselatum (F.Stein) Loeblich Jr. & Loeblich III, 1966     |        |           |        |        | +      |    |    |        |          |        |
| Dinophyceae       | ,                    | Oxvtoxum scolopax F. Stein, 1883                                         |        | +         | +      | +      | +      | +  | +  | +      | +        | +      |
|                   | Podolampadaceae      | Podolampas elegans F.Schütt. 1895                                        |        |           |        | +      | +      |    |    |        |          |        |
|                   | - ouolainpuudoodo    | Podolampas palmines E Stein 1883                                         |        |           |        |        |        | +  | +  | +      | +        | +      |
|                   | Prorocentraceae      | Prorocentrum gracile E Schütt 1895                                       |        |           | +      | +      | +      |    |    |        |          | +      |
|                   | Torocontraceae       | Prorocentrum micans Ehrenhern 1834                                       | +      | +         | +      | +      | +      | +  | +  | +      | +        | +      |
|                   | Protodiniferaçõa     | Pronoctiluca spinifera (Lohmann) Schiller, 1932                          | ·      |           | ·      |        | +      | ·  | ·  | ·      | ·        | ·      |
|                   | Protoneridiniaceae   | Protonaridinium denressum (Bailey) Balech 1974                           |        |           |        | +      | +      |    |    |        |          |        |
|                   | i iolopenuli llacede | Protoporidinium steinii (Tamensen) Balech 1974                           |        |           |        | Ŧ      | т      |    |    | -      | <b>_</b> | т      |
|                   |                      | r rolopenullinum stellill (Jørgensen) Daleon, 1974                       |        |           |        |        |        |    |    | Ŧ      | Ŧ        | Ŧ      |

| Classis           | Family                                | Таха                                                                     | 40 | 56 | 100 | 150 | UF |
|-------------------|---------------------------------------|--------------------------------------------------------------------------|----|----|-----|-----|----|
|                   |                                       |                                                                          | μm | μm | μm  | μm  |    |
|                   | Bacillariaceae                        | Cylindrotheca closterium (Ehrenberg) Reimann & Lewin, 1964               |    |    | +   | +   | +  |
|                   |                                       | Nitzschia longissima (Brébisson) Ralfs, 1861                             |    | +  | +   | +   | +  |
|                   |                                       | Pseudo-nitzschia sp.                                                     |    |    | +   | +   | +  |
|                   | Chaetocerotaceae                      | Chaetoceros affinis Lauder, 1864                                         |    | +  | +   | +   | +  |
|                   |                                       | Chaetoceros decipiens Cleve, 1873                                        |    |    |     |     |    |
|                   | Grammatophoraceae                     | Grammatophora marina (Lyngbye) Kützing, 1844                             |    |    | +   | +   | +  |
|                   | Hemiaulaceae                          | Hemiaulus hauckii Grunow ex Van Heurck, 1882                             | +  | +  | +   | +   | +  |
|                   | Leptocylindraceae                     | Leptocylindrus danicus Cleve, 1889                                       | +  | +  | +   | +   | +  |
| Bacillariophyceae | Licmophoraceae                        | Licmophora sp.                                                           |    |    |     |     | +  |
| Baomanophyoodo    | Naviculaceae                          | Navicula sp.                                                             |    |    |     |     |    |
|                   | Rhizosoleniaceae                      | Dactyliosolen fragilissimus (Bergon) Hasle, 1996                         |    |    |     |     | +  |
|                   |                                       | Guinardia flaccida (Castracane) H.Peragallo, 1892                        |    |    |     |     |    |
|                   |                                       | Guinardia striata (Stolterfoth) Hasle, 1996                              |    |    |     |     |    |
|                   |                                       | Pseudosolenia calcar-avis (Schultze) B.G.Sundström, 1986                 |    |    |     |     |    |
|                   |                                       | Rhizosolenia sp.                                                         |    |    |     | +   | +  |
|                   | Pleurosigmataceae                     | Pleurosigma sp.                                                          |    |    |     |     |    |
|                   | Thalassionemataceae                   | Thalassionema nitzschioides (Grunow) Mereschkowsky, 1902                 |    |    | +   | +   | +  |
|                   | Ceratiaceae                           | Tripos fusus (Ehrenberg) F.Gómez, 2013                                   |    |    |     | +   | +  |
|                   |                                       | Tripos furca (Ehrenberg) F.Gómez, 2013                                   |    | +  | +   | +   | +  |
|                   |                                       | Tripos lineatus (Ehrenberg) F.Gómez, 2021                                | +  | +  | +   | +   | +  |
|                   |                                       | Tripos macroceros (Ehrenberg) Hallegraeff & Huisman, 2020                |    |    |     |     | +  |
|                   |                                       | Tripos trichoceros (Ehrenberg) Gómez, 2013                               |    |    |     |     |    |
|                   | Dinophysaceae                         | Dinophysis acuminata Claparède & Lachmann, 1859                          |    |    |     |     |    |
|                   | Oxyphysaceae                          | Oxyphysis oxytoxoides (Kofoid) F.Gomez, P.Lopez-Garcia & D.Moreira, 2011 |    |    |     | +   | +  |
|                   | Oxytoxaceae                           | Corythodinium tesselatum (F.Stein) Loeblich Jr. & Loeblich III, 1966     |    |    |     |     |    |
| Dinophyceae       | <b>,</b>                              | Oxytoxum scolopax F. Stein, 1883                                         |    |    |     | +   | +  |
|                   | Podolampadaceae                       | Podolampas elegans F.Schütt. 1895                                        |    |    |     |     |    |
|                   | · · · · · · · · · · · · · · · · · · · | Podolampas palmipes F. Stein, 1883                                       |    |    |     |     |    |
|                   | Prorocentraceae                       | Prorocentrum gracile E.Schütt. 1895                                      |    |    | +   | +   | +  |
|                   |                                       | Prorocentrum micans Ehrenberg 1834                                       | +  | +  | +   | +   | +  |
|                   | Protodiniferaceae                     | Pronoctiluca spinifera (Lohmann) Schiller 1932                           |    |    |     |     |    |
|                   | Protoneridiniaceae                    | Protoperidinium depressum (Bailey) Balech 1974                           |    |    |     |     |    |
|                   |                                       | Protoperidinium steinii (Jørgensen) Balech, 1974                         |    |    |     |     |    |

| Table 6. List of | phyto | plankton | species | observed | inside | the dial | ysis mei | mbrane | bags |
|------------------|-------|----------|---------|----------|--------|----------|----------|--------|------|
|------------------|-------|----------|---------|----------|--------|----------|----------|--------|------|

Table 7. Phytoplankton species richness and species diversity observed in the unfiltered (UF) and filtered (40 μm, 56 μm, 100 μm, and 150 μm) ambient seawater as well as in the unfiltered and filtered dialysis membrane bags

|          |                                   | Days |      |       |       |       |      |      |       |       |       |  |
|----------|-----------------------------------|------|------|-------|-------|-------|------|------|-------|-------|-------|--|
| Medium   | Indices                           | 0    |      |       |       |       | 3    |      |       |       |       |  |
|          |                                   | 40µm | 56µm | 100µm | 150µm | UF    | 40µm | 56µm | 100µm | 150µm | UF    |  |
|          | Species richness (S)              | 9    | 16   | 18    | 24    | 29    | 13   | 15   | 21    | 21    | 25    |  |
|          | Shannon Index (H')                | 2.64 | 3.07 | 3.30  | 3.65  | 3.90  | 2.92 | 3.10 | 3.48  | 3.51  | 3.63  |  |
| Ambient  | Simpson's Index (D)               | 0.78 | 0.79 | 0.82  | 0.85  | 0.86  | 0.78 | 0.82 | 0.83  | 0.84  | 0.83  |  |
| Seawater | $N_1(2^{H'})$                     | 6.24 | 8.39 | 9.88  | 12.59 | 14.92 | 7.58 | 8.57 | 11.16 | 11.36 | 12.39 |  |
|          | N <sub>2</sub> (D <sup>-1</sup> ) | 4.61 | 4.82 | 5.59  | 6.73  | 6.91  | 4.63 | 5.53 | 5.73  | 6.14  | 6.18  |  |
|          | Evenness (E)                      | 0.83 | 0.77 | 0.79  | 0.80  | 0.80  | 0.79 | 0.79 | 0.79  | 0.80  | 0.78  |  |
|          | Species richness (S)              | -    | -    | -     | -     | -     | 5    | 7    | 12    | 16    | 19    |  |
| Dielysia | Shannon Index (H')                | -    | -    | -     | -     | -     | 0.30 | 0.34 | 0.67  | 0.61  | 0.66  |  |
| Mombrano | Simpson's Index (D)               | -    | -    | -     | -     | -     | 0.08 | 0.08 | 0.16  | 0.13  | 0.14  |  |
| Rans     | $N_1(2^{H'})$                     | -    | -    | -     | -     | -     | 1.23 | 1.27 | 1.59  | 1.52  | 1.58  |  |
| Dugo     | N <sub>2</sub> (D <sup>-1</sup> ) | -    | -    | -     | -     | -     | 1.08 | 1.09 | 1.19  | 1.15  | 1.16  |  |
|          | Evenness (E)                      | -    | -    | -     | -     | -     | 0.13 | 0.12 | 0.19  | 0.15  | 0.16  |  |

The trend of rising species richness with increasing mesh size of filtration was also observed in the dialysis bags at the end of the experiment. While many species found in the ambient seawater were not encountered inside the bags, certain species were observed in much higher numbers than those recorded in the ambient seawater. In particular, the diatom species *Leptocylindrus danicus* Cleve, 1889 was present in exceptionally high quantities in all bags (Figure 4), contributing to the lower evenness values in Table 7 compared to the ambient seawater. Additionally, this species was seen to form chains consisting of 8-10 cells inside the bags. Overall, species diversity was notably low in all incubated bags, as evidenced by the  $N_1$  and  $N_2$  values presented in Table 7. The contents of all bags at the end of the incubation period comprised a total of 11 diatom species and 8 dinoflagellate species (Table 6).

Samples collected from the ambient seawater also contained microzooplankton, including ciliate protozoans and copepod nauplii, although their concentrations were very low. No adult copepod was found inside any bag, but ciliates were present in all bags (Some of the identified genera include *Favella* sp., *Eutintinnus* sp., *Strobilidium* sp., and *Mesodinium* sp.).



Figure 4. Leptocylindrus danicus bloom

### DISCUSSION

An increase in primary production due to additional nutrient input is readily detectable in waters with oligotrophic characteristics (Pitta et al., 1999). Fish farms established in oligotrophic marine environments, such as the Aegean Sea, should serve as examples of places where such a nutrient increase can be observed. Nevertheless, in the present study, both in the ambient seawater and inside the bags, nitrite+nitrate and orthophosphate concentrations measured at the beginning and end of the experiment (Table 2) fall within the range of values defined by Ignatiades et al. (1992) as characteristic of the oligotrophic Aegean Sea. Furthermore, chl a concentrations of the study area were notably low, measuring approximately 0.06 µg L-1 (Table 3) and was consistent with the range reported for other oligotrophic regions in the eastern Mediterranean (e.g., Pitta et al., 1999). The current findings concerning the physical, chemical, and biological attributes of the water column align with a previous study investigating three fish farms in the western Aegean Sea (Pitta et al., 1999). La Rosa et al. (2002), in their study on the impact of fish farm activities on the water column in the Tyrrhenian Sea in the northwestern Mediterranean, similarly reported no significant increase in

nutrient or chl *a* contents in the water column adjacent to the cages throughout the year. According to Gowen and Bradburry (1987), the dispersion of wastes released from fish farms is influenced by factors such as the farm's surface area, the settling velocity of uneaten feed, and the depth of the water beneath the cages. Moreover, strong currents can disperse phytoplankton far from the farm area (Navarro et al., 2008). Another critical factor contributing to the difficulty in detecting phytoplankton response to nutrient enrichment may be the grazing effect, as highlighted by Pitta et al. (2009).

The present study, conducted during the summer season between 20 to 23 July 2020, holds particular significance due to its timing. This period aligns with the natural seasonal patterns of the Mediterranean Sea, characterized by low production rates during the summer months (López-Sandoval et al., 2011). What makes the findings particularly noteworthy is the significant contrast observed within this oligotrophic environment. Despite the prevailing oligotrophic conditions in the study area and the absence of a discernible net phytoplankton growth rate in the ambient seawater (Table 3), the gross growth rates based on both chl a values and cell counts exhibited a significant increase inside the dialysis membrane bags at the end of the 3-day incubation period. This unexpected and substantial growth was a consistent observation across all treatments. Similar observations of phytoplankton blooms under low nutrient conditions were made in an in situ diffusion culture system by Furnas (1982).

The findings confirmed that the filtration successfully eliminated all predator species larger than 150 µm. However, the filtration treatment could not completely prevent the entry of all ciliates into the bags. The inability to completely eliminate grazers from the bags may account for the unexpected result of significantly lower growth rates observed in the bags subjected to filtration using mesh sizes between 40 and 100  $\mu$ m, as compared to those estimated for the remaining bags containing seawater filtered with a 150 µm mesh size and unfiltered seawater. Some portion of phytoplankton production in the bags filtered with 100 µm mesh size and below was likely consumed by the ciliates in the medium. Pitta et al. (1999) conducted a similar experiment at a fish farm in Sitia, Crete, employing a method where half of the dialysis membrane bags were filled with seawater filtered through a 25 µm mesh size while the other half contained unfiltered seawater. After a ten-day incubation period, during which the chl a content of the bags was measured, they observed the highest concentrations in the filtered bags. The explanation provided for this phenomenon was the complete exclusion of ciliates from the bags. Ciliates, with sizes exceeding 20 µm, are the primary grazers of nanosized fractions of phytoplankton (Zöllner et al., 2009).

Another possible explanation for significantly higher growth rates observed inside the unfiltered bags and those filtered with a 150  $\mu$ m mesh size may be as follows: Considering that a significant portion of the phytoplankton observed in the study were of a size smaller than 150  $\mu$ m, it

is likely that using a 150 µm mesh size for filtration, aside from some chain-forming diatoms, did not result in a substantial difference in phytoplankton composition compared to the unfiltered bags. When designing the experiment, it was hypothesized that the presence of adult copepods in the unfiltered bags could potentially differentiate them from those subjected to the 150 µm filtration. However, no adult copepods were found inside either type of bag. This absence may account for the high phytoplankton growth rate inside the bags compared to that in the ambient seawater. Pitta et al. (1999) also suggested, that due to the limited volume of the bags, copepods were unlikely to graze on the microphytoplankton inside them. An experiment with bigger bags comprising larger volumes of seawater may be more suitable for detecting copepod grazing. Additionally, a Nansen bottle may not be the optimal tool for sampling adult copepods, and a more appropriate sampling device should be considered.

The number of phytoplankton species at the study site increased with the enlarging filtration mesh size, while unfiltered samples contained the highest species counts as expected (Table 7). A similar trend was reflected in the species diversity indices and evenness values. Likewise, species richness inside the incubated dialysis bags increased with larger filtering mesh sizes. However, species diversity inside all bags remained notably lower than those estimated for differently treated ambient water samples (Table 7). Many phytoplankton species present in the ambient water were conspicuously absent inside the bags (Table 5, Table 6). In contrast, certain species were observed in significantly higher densities than those in the ambient seawater. This resulted in generally very low  $N_1$ ,  $N_2$ , and evenness values (Table 7). A similar substantial increase in cell densities for some phytoplankton species inside dialysis bags during an experiment was also documented by Mura et al. (1996). This observed phenomenon suggests that only a few taxa can tolerate experimental manipulations, and an incubation period of just three days, as in the present study, is sufficient to observe these changes.

### CONCLUSIONS

Overall, the findings of this study have demonstrated that the nutrient discharge from a fish farm established in an oligotrophic marine area did not alter the prevailing oligotrophic conditions in the environment. The unexpectedly high growth rates observed inside the bags can be attributed to the confinement of phytoplankton within the bags, preventing them from drifting away with currents or being subject to daily migration or grazing, factors that would typically limit their growth in the open sea. Additionally, the phytoplankton enclosed within the dialysis membrane bags positioned close proximity to the fish farms benefit from the unique advantage of accessing and utilizing the nutrients released from the farm before these nutrients disperse and dilute within the surrounding seawater. These combined factors likely contributed to the substantial increase in phytoplankton growth observed in the study. The present work represents the first bioassay and *in situ* phytoplankton incubation experiment using dialysis membrane bags in the Eastern Aegean Sea and all other Turkish seas. The results from this research may serve as a foundation for estimating the growth rates of natural phytoplankton communities in future investigations in Turkish waters.

### ACKNOWLEDGEMENTS AND FUNDING

We extend our sincere gratitude to Akvatek Aquaculture Inc. for generously permitting us to conduct the in situ microcosm experiment within their fish farm facilities. Our special thanks go to Dr. Güngör Muhtaroğlu for his unwavering support and for granting us access to the farm's resources throughout the study. We are indebted to Tahsin Han and Cumhur Sahin from Akvatek for their invaluable assistance in experiment design and their unwavering support during all fieldwork phases. Additionally, we appreciate the insightful discussions with Dr. Filiz Küçüksezgin and Dr. Güzel Yücel Gier. It is worth noting that the first author is submitting this paper as part of the requirements for a Ph.D. degree at Dokuz Eylül University. We are grateful for the financial support provided by Dokuz Eylül University's Department of Scientific Research Projects (Project number: 2019KBFEN017), which also included an 18-month fellowship for Author B. B. Şener.

### **AUTHORSHIP CONTRIBUTIONS**

Betül Bardakçı Şener: Conceptualization, data curation, formal analysis, investigation, methodology, validation, visualization, writing -original draft, writing - review & editing. Eyüp Mümtaz Tıraşın: Conceptualization, formal analysis, funding acquisition, investigation, project administration, resources, supervision, writing - review & editing.

### CONFLICT OF INTEREST STATEMENT

The authors affirm that they do not have any known financial interests or personal associations that might have given the impression of exerting influence over the study described in this manuscript.

### ETHICS APPROVAL

This manuscript does not involve any animal studies conducted by the authors. The experimental research was carried out using natural phytoplankton communities.

### DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author upon reasonable request.

### REFERENCES

- Arzul, G., Clément, A., & Pinier, A. (1996). Effects on phytoplankton growth of dissolved substances produced by fish farming. *Aquatic Living Resources*, 9, 95–102. https://doi.org/10.1051/alr:1996012
- Dalsgaard, T., & Krause-Jensen, D. (2006). Monitoring nutrient release from fish farms with macroalgal and phytoplankton bioassays. *Aquaculture*, 256, 302–310. https://doi.org/10.1016/j.aquaculture.2006.02.047
- Furnas, M.J. (1982). Growth rates of summer nanoplankton (<10 µm) populations in lower Narragansett Bay, Rhode Island, USA. *Marine Biology*, 70, 105–115. https://doi.org/10.1007/BF00397301
- Furnas, M.J. (1990). In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. Journal of Plankton Research, 12, 1117-1151. https://doi.org/10.1093/pl ankt/12.6.1117
- Gephart, J.A., Golden, C.D., Asche, F., Belton, B., Brugere, C., Froehlich, H. E., Jillian P., Fry, J.P., Halpern, B.S., Hicks, C.C., Jones, R. C., Klinger, D.H., Little, D.C., McCauley, D.J., Thilsted, S.H., Troell, M., & Allison, E.H. (2020). Scenarios for global aquaculture and its role in human nutrition. *Reviews in Fisheries Science & Aquaculture*, 29, 122-138. https://doi.org/10.1080/23308249.2020.1782342
- Gómez, F., Moreira D., & López-García P. (2010). Neoceratium gen. nov., a new genus for all marine species currently assigned to Ceratium (Dinophyceae). *Protist*, 161, 35-54. https://doi.org/10.1016/j.protis.2009. 06.004
- Gowen R.J., & Bradbury N.B. (1987). The ecological impact of salmon farming in coastal waters: A review. Oceanography and Marine Biology, 25, 508–519. https://doi.org/10.1016/0198-0254(88)92716-1
- Grasshoff K., Kremling K., & Ehrhardt M. (1999). Methods of seawater analysis. 3rd edn. Weinheim, Wiley. https://doi.org/10.1002/9783527613 984
- Ignatiades, L., Karydis, M., & Vounatsou, P. (1992). A possible method for evaluating oligotrophy and eutrophication based on nutrient concentration scales. *Marine pollution bulletin*, 24, 238-243. https://doi.org/10.1016/0025-326X(92)90561-J
- Krebs C.J. (1999). *Ecological methodology*. 3rd edn. Addison Wesley, Longman, California
- Krom, M.D., Kress, N., Brenner, S., & Gordon, L.I. (1991). Phosphorus limitation of primary productivity in the eastern Mediterranean Sea. *Limnology and Oceanography*, 36, 424-432. https://doi.org/10.4319/lo.1 991.36.3.0424
- La Rosa, T., Mirto S., Favaloro E., Savona B., Sarà, G., Danovaro, R., & Mazzola, A. (2002). Impact on the water column biogeochemistry of a Mediterranean mussel and fish farm. *Water Research*, 36, 713–721. https://doi.org/10.1016/S0043-1354(01)00274-3
- López-Sandoval, D.C., Fernández, A., & Marañón, E. (2011). Dissolved and particulate primary production along a longitudinal gradient in the Mediterranean Sea. *Biogeosciences*, 8, 815-825. https://doi.org/10.5194 /bg-8-815-2011

- Magurran, A.E. (1988). Ecological diversity and its measurement. New Jersey, Princeton University Press. https://doi.org/10.1007/978-94-015-7358-0
- Mura, M.P., Agustí, S., Del Giorgio, P.A., Gasol, J.M., Vaqué, D., & Duarte, C.M. (1996). Loss-controlled phytoplankton production in nutrient-poor littoral waters of the NW Mediterranean: *in situ* experimental evidence. *Marine Ecology Progress Series, 130*, 213-219. https://doi.org/10.3354/ meps130213
- Navarro, N., Leakey, R.J., & Black, K.D. (2008). Effect of salmon cage aquaculture on the pelagic environment of temperate coastal waters: seasonal changes in nutrients and microbial community. *Marine Ecology Progress Series*, 361, 47–58. https://doi.org/10.3354/meps07357
- Öztürk, B. (1998). Black Sea Biological Diversity. Turkey, Black Sea. New York, Environmental series, United Nations Publications, 9, 1-144.
- Pitta, P., Karakassis, I., Tsapakis, M., & Zivanovic, S. (1999). Natural vs. mariculture induced variability in nutrients and plankton in the eastern Mediterranean. *Hydrobiologia*, 391, 179-192. https://doi.org/10.1023/A:1 003501832069
- Pitta, P., Tsapakis, M., Apostolaki, E.T., Tsagaraki, T., Holmer, M., & Karakassis, I. (2009). 'Ghost nutrients' from fish farms are transferred up the food web by phytoplankton grazers. *Marine Ecology Progress Series*, 374, 1–6.<u>https://doi.org/10.3354/meps07763</u>
- Price, C., Black, K.D., Hargrave, B.T., & Morris Jr, J.A. (2015). Marine cage culture and the environment: effects on water quality and primary production. Aquaculture environment interactions, 6, 151–174. https://doi.org/10.3354/aei00122
- R Core Team (2022). R: A language and environment for statistical computing, R foundation for statistical computing, Version 4.1.3. Available from http://www.R-project.org
- Reynolds, C.S. (2006). The ecology of phytoplankton. New York. Cambridge University Press, https://doi.org/10.1017/CBO9780511542145
- Sidik, M.J., Rashed-Un-Nabi, M., & Hoque, M.A. (2008). Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia. *Estuarine, Coastal and Shelf Science*, 80, 251-260. https://doi.org/10.1016/j.ecss.2 008.08.004
- Snedecor, G.W., & Cochran, W.G. (1989). Statistical methods. 8th edn. Ames, Iowa, Iowa State University Press.
- Strickland, J.D.H., & Parsons, T.R. (1972). A practical handbook of seawater analysis. 2nd edn. Canada, Fisheries Research Board of Canada 167, 1–310. https://doi.org/10.25607/OBP-1791
- Tomas, C.R. Ed, (1997). Identifying marine phytoplankton. San Diego, California, Academic Press.
- Zöllner, E., Hoppe, H.G., Sommer, U., & Jürgens, K. (2009). Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). *Limnology and Oceanography*, 54, 262–275. https://doi.org/10.4319/lo.2009.54.1.0262

# Karyological analysis of endemic *Pseudophoxinus anatolicus* (Hankó 1925) in Türkiye

# Türkiye'ye endemik *Pseudophoxinus anatolicus* (Hankó 1925)'un karyolojik analizi

### Ahmed Sadeq Jaber Doori<sup>10</sup> Atilla Arslan<sup>2\*0</sup>

<sup>1</sup>Graduate School of Natural Applied Sciences, Selçuk University, 42030, Konya, Türkiye <sup>2</sup>Department of Biology, Faculty of Science, Selçuk University, 42030, Konya, Türkiye

\*Corresponding author: aarslan@selcuk.edu.tr

Received date: 30.10.2023

Accepted date: 16.01.2024

### How to cite this paper:

Doori, A.S.J., & Arslan, A. (2024). Karyological analysis of endemic *Pseudophoxinus anatolicus* (Hankó 1925) in Türkiye. *Ege Journal of Fisheries and Aquatic Sciences*, *41*(1), 26-29. https://doi.org/10.12714/egejfas.41.1.04

Abstract: The karyological characteristics of nearly half of the *Pseudophoxinus* species in Türkiye were determined. In this study, it is planned to determine the karyological characteristics of *P. anatolicus*, which is common in Beyşehir Lake, specimens were caught from the coast at Çiftlik village. The captured specimen were karyological analysed and Giemsa staining, C-banding and Ag-NOR staining were applied to the slides that obtained. The chromosome set of this species consists of 12 pairs of metacentric, eight pairs of submetacentric, two pairs of subtelocentric and three pairs of acrocentric chromosomes. Dark and slightly C-bands were observed in the centromeric regions of some chromosomes. Active Ag-NORs were detected in the telomeric region of the short arm of two pairs of chromosomes. Our results are similar to those of other *Pseudophoxinus* species except for some differences and it was determined that Anatolian minnow has a conserved karyotype like other *Pseudophoxinus* species.

Keywords: Anatolian minnow, chromosome, karyotype, C-banding, Ag-NOR

Öz: Türkiye'deki *Pseudophoxinus* türlerin yarısının karyolojik özellikleri belirtilmiştir. Beyşehir gölünde yaygın olan *P. anatolicus*'un karyolojik özelliklerini belirtemek için planlanan bu çalışmada örnekler Çiftlik köyü kıyısından yakalandı. Yakalanan bireylerin karyolojik analizleri yapıldı ve elde edilen slaytlara sırayla giemsa boyama, C-bantlama ve Ag-NOR boyama uygulandı. Bu türün kromozom seti 2 çift metasentrik, sekiz çift submetasentrik, iki çift subtelosentrik ve üç çift akrosentrik kromozomdan oluşmaktadır. Koyu ve açık C-bantlar bazı kromozomların sentromerik bölgelerinde gözlemlendi. Aktif Ag-NOR'lar iki çift kromozomun kısa kolunun telomerik bölgesinde tespit edildi. Sonuçlarımızın diğer *Pseudophoxinus* türlerinkine bazı farklılıklar hariç benzer tarafları vardır ve Anadolu yağ balığının da diğer *Pseudophoxinus* türlerindeki gibi korunmuş karyotipe sahip olduğu belirlendi.

Anahtar kelimeler: Anadolu yağ balığı, kromozom, karyotip, C-bandlama, Ag-NOR

### INTRODUCTION

There are 30 known species of Pseudophoxinus, a genus of the Leuciscidae family, and they are generally distributed in isolated spring pools and rivers in Central Anatolia and the Levant (Küçük et al., 2012). Türkiye, which is rich in freshwater fishes, has 24 fatfish species (Cicek et al., 2020). They are mainly distributed in lake basins and rivers in Central and Southwestern Anatolia (Kücük et al., 2016). Although sufficient studies have been carried out on the systematics of fishes, karyological studies are still not advanced. The studies on Pseudophoxinus species in Türkiye are not sufficient. So far, the karyological characteristics of 13 species of this genus in Türkiye have been investigated by different researchers (Ergene et al., 2010; Karasu et al., 2011; Ünal et al., 2014; Karasu Ayata et al., 2016; Ünal and Gaffaroğlu, 2016; Gaffaroğlu et al., 2022). In addition to the standard karyological characteristics of Pseudophoxinus species found in different rivers and lakes of Anatolia, C-banding and NOR characteristics were also investigated by these researchers. So far, there is no karyological study on P. anatolicus. Therefore, the aim of this study was to determine the banded karyological characteristics of P. anatolicus and to establish the similarities and differences with other species.

### MATERIALS AND METHODS

Four P. anatolicus specimens were collected from the shore of Ciftlik village in the east of Beysehir Lake with the help of an electro-shocker. The captured fish specimens were transported to the laboratory alive under suitable conditions and kept in a well-aerated aquarium until analysis. After this adaptation period, each specimen was performed karvological analysis according to the method of Bertollo et al. (2015). 0.1% colchicine was injected (1ml/100g) into each specimen for which chromosome preparations were to be prepared and kept in the aquarium for 50 minutes. After anaesthetization, the cell suspension from head kidney with 0.075 M KCl was kept in hypotonic solution. Then, fixation steps (methanol: acetic acid, 3:1) were repeated at least three times and at least 10 metaphase slides were prepared from each individual. Some slides were stained with 10% Giemsa for standard karyotype and preserved. The other slides were subjected to C-banding (CBG-banding) (Sumner, 1972) and Ag-NOR staining (Howell and Black, 1980). Well-spread metaphases of each staining were photographed under a microscope. Metaphase chromosomes were identified and karyotyped according to Levan et al. (1964). The fundamental number of autosomal

arms (NF) was calculated considering the number of bidentate and acrocentric chromosomes.

### RESULTS

The diploid chromosome number (2n) of four specimens (2 males, 2 females) was 50. According to karyotype analysis, the chromosome set consisted of 12 pairs of metacentric (no. 1-12), eight pairs of submetacentric (no. 13-20), two pairs of subtelocentric (no. 21-22) and three pairs of acrocentric (no. 23-25) chromosomes. The fundamental number of autosomal arms (NF) was 94 (Figure 1). Heteromorphic sex chromosomes were not detected in males and females. The karyotype of the specimens obtained by CBG banding is shown in Figure 2. Constitutive heterochromatin regions (C-bands) observed in centromeric regions of chromosomes were dark in some chromosomes and slightly in others. Active Ag-NORs were detected on two pairs of chromosomes. These were found in the telomeric region of the short arm of the largest metacentric chromosome (no. 1) and the medium-sized submetacentric (no. 16) chromosome in all specimens analyzed. One of these NORs on the largest metacentric chromosome is heterozygous and the other homozygous and neither is associated with the heterochromatin region (Figure. 3).



Figure 1. Standard Giemsa staining karyotype of *Pseudophoxinus* anatolicus (Scale bar = 10 µm)

| 务风               | 35 R<br>2       | 3× 3×<br>3 | ¥8               | 5     | <b>KR</b><br>6   |
|------------------|-----------------|------------|------------------|-------|------------------|
| 14, 68<br>7      | 88 188<br>8     | ₩.₩<br>9   | 10 No.           | 21 AL | <b>A A</b><br>12 |
| <b>Å A</b><br>13 | <b>68</b><br>14 | 15         | <b>A</b> ä<br>16 | 17 N  | <b>26</b><br>18  |
| <b>1</b> 9       | 20              |            |                  |       |                  |
| 21<br>21         | 22<br>22        |            |                  |       |                  |
| <b>4 A</b><br>23 | <b>24</b>       | 25         |                  |       |                  |

Figure 2. C-banded (CBG) karyotype of *Pseudophoxinus anatolicus* (Scale bar = 10 μm)



Figure 3. Silver-stained karyotype of *Pseudophoxinus anatolicus* (Scale bar = 10 μm)

### DISCUSSION

The karyotype features of P. anatolicus were revealed for the first time in this study. The karyotype formula of this species shows a numerical dominance of meta/submetacentric chromosomes as in the basic karyotype model of leuciscines. When the total number of meta/submetacentric chromosomes of P. anatolicus is taken into account, it was seen that this species is similar to the majority of some other Pseudophoxinus species studied in Türkiye, but different from some others (Table 1). This difference may be as a result of the way the researchers determined the chromosome morphology (numerical variation of meta/submetacentric chromosomes). The fundamental number of autosomal arms (NF) value is not finalised because St and A chromosomes were not evaluated separately. Therefore, the NF value of species may be varied. When these are taken into consideration, the preserved karvotypic evolution in Pseudophoxinus species supports the hypothesis. In fact, in a study investigating the phylogenetic and zoogeographic characteristics of Pseudophoxinus, which supports this hypothesis, it was found that Pseudophoxinus was divided into two clades consisting of species of Anatolian (central and western) and Eastern Mediterranean (Levant) origin (Perea et al., 2010), and Kücük et al. (2012) showed that Pseudophoxinus has two main speciation zones, Anatolian and Eastern Mediterranean. Thus, both P. anatolicus and other Pseudophoxinus species in Anatolia have similar standard karyological characteristics and phylogenetic studies support the hypothesis of conserved karyotypic conservation in the Anatolian line.

In this study, dark and slightly constitutive heterochromatin C-bands were detected in centromeric regions some of chromosomes in *P. anatolicus*. Our C-band results are similar to those of *P. antalyae*, *P. battalgilae*, *P. burduricus* and *P. evliyae* (Ergene et al., 2010; Karasu Ayata et al., 2016). However, our results are partially similar to those of *P. egridiri*, *P. fahrettini*, *P. maeandri* (Karasu Ayata et al, 2016) and *P. zekayi* (Ünal and Gaffaroğlu, 2016), while it is different from the results of *P. firati*, *P. crassus*, *P. hittitorum*, *P. zekayi*, *P. alii* and *P. elizavetae* which have only pericentromeric C-bands (Karasu et al., 2011; Ünal and Gaffaroğlu, 2016; Gaffaroğlu et

Table 1. Chromosomal records of Anatolian Pseudophoxinus species

al., 2022). The interstitial C-band detected in some cyprinids (Arslan and Gündoğdu, 2016) was not detected in both species and in other *Pseudophoxinus* species.

| Species        | Locality | 2n | Karyotype              | Reference                  |
|----------------|----------|----|------------------------|----------------------------|
| P. antalyae    | Mersin   | 50 | 16M + 14Sm + 12St + 8A | Ergene et al. (2010)       |
| P. firati      | Malatya  | 50 | 38M/Sm + 12St          | Karasu et al. (2011)       |
| P. crassus     | Konya    | 50 | 12M + 30Sm + 8St/A     | Ünal et al. (2014)         |
| P. hittitorum  | Konya    | 50 | 14M + 26Sm + 10St/A    | Ünal et al. (2014)         |
| P. battalgilae | Konya    | 50 | 6M + 28Sm + 6St/A      | Karasu Ayata et al. (2016) |
| P. burduricus  | Burdur   | 50 | 18M + 26Sm + 6St/A     | Karasu Ayata et al. (2016) |
| P. egridiri    | Isparta  | 50 | 14M + 28Sm + 8St/A     | Karasu Ayata et al. (2016) |
| P. evliyae     | Antalya  | 50 | 14M + 30 Sm + 6St/A    | Karasu Ayata et al. (2016) |
| P. fahrettini  | Isparta  | 50 | 6M + 26Sm + 8St/A      | Karasu Ayata et al. (2016) |
| P. maeandri    | Denizli  | 50 | 10M + 32Sm + 8St/A     | Karasu Ayata et al. (2016) |
| P. zekayi      | Adana    | 50 | 16M + 26Sm + 8St/A     | Ünal and Gaffaroğlu (2016) |
| P. alii        | Antalya  | 50 | 18M + 24Sm + 8St/A     | Gaffaroğlu et al. (2022)   |
| P. elizavetae  | Kayseri  | 50 | 8M + 34Sm + 8St/A      | Gaffaroğlu et al. (2022)   |
| P. anatolicus  | Konya    | 50 | 24M + 16Sm + 4St + 6A  | This study                 |

All individuals of P. anatolicus analysed here carried Ag-NOR on metacentric chromosome 1. In addition, except for some metaphases, the submetacentric chromosome 16 was also found to have Aq-NOR. There are similarities and differences between our Ag-NOR results and previously studied Pseudophoxinus species, both numerically and in terms of the morphology of the chromosome in which the NOR is localised. Numerically, P. firati, P. zekayi, P. evliyae, P. fahrettini, P. maeandri and P. alii and P. elizavetae have active NOR on two pairs of chromosomes (M+Sm, Sm+Sm or Sm+St), while the other species have active NOR on one pair of chromosomes (Sm) (Ergene et al., 2010; Karasu et al., 2011; Ünal et al., 2014; Karasu Ayata et al., 2016; Ünal and Gaffaroğlu, 2016). Gaffaroğlu et al. (2022) also argued that they detected a higher number of Ag-NORs in some metaphases of P. alii and P. elizavetae. When evaluated in terms of active NOR-bearing chromosome morphology, P. anatolicus is close to P. zekayi. The variation in active NORs detected by silver staining in Pseudophoxinus species in Türkiye needs to be confirmed using molecular cytogenetic techniques. Active NORs detected by silver staining contain 18s rDNA (Diniz et al., 2009). Recently, the presence of active NORs detected by silver staining has been confirmed using 18s rDNA probes. Even inactive NORs are detected with 5s rDNA probes and the results are used to assess the relatedness between species (Bueno et al., 2014).

### CONCLUSION

As a result, it was observed that the standard karyological features of this species were similar to those of some of the other *Pseudophoxinus* species studied in Türkiye, but the variations in both standard and C-banding results revealing

these differences varied according to the researcher. Therefore, we believe that molecular cytogenetic methods, which are the major deficiency in the researches in Türkiye, can be used to reach more permanent results in the differentiation of species or determination of kinship relationships.

### ACKNOWLEDGEMENTS AND FUNDING

This article is based on Ahmed Sadeq Jaber DOORI's PhD summarized from a part of his thesis. This study was financed with a grant from the Scientific Research Projects Coordination Board of Selçuk University (Project number: 21211009).

### AUTHORSHIP CONTRIBUTIONS

The contribution of the authors is equal.

### ETHICS APPROVAL

The samples in this study were collected with the permission of the TR Ministry of Forestry and Water Affairs (Permit No: E-21264211-288.04-3435924). This permission replaces the local ethics committee permission per 8/L of the regulation "On Working Procedures and Principles of Animal Experiments Ethics Committees" prepared by the Ministry of Forestry and Water Affairs and published in the Official Gazette on February 15, 2014.

### CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this article.

### DATA AVAILABILITY

All relevant data is inside the article.

### REFERENCES

- Arslan, A., & Gündoğdu H. (2016). Cytogenetic studies on the endemic Beyşehir nase, *Chondrostoma beysehirense* (Bogutskaya, 1997) in Türkiye. *Caryologia*, 69(2), 116-120. https://doi.org/10.1080/00087114.2 015.1109958
- Bertollo, L., Cioffi, M., & Moreira-Filho, O. (2015). Direct chromosome preparation from freshwater teleost fishes. In C. Ozouf-Costaz, E. Pisano, F. Foresti, & L. Almeida Toledo (Eds.), Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) (pp. 21-26). United States: CRC Press.
- Bueno, V., Venere, P.C., Thums Konerat, J., Zawadzki, C.H., Vicari, M.R., & Margarido, V.P. (2014). Physical mapping of the 5S and 18S rDNA in ten species of *Hypostomus* Lacépède 1803 (Siluriformes: Loricariidae): Evolutionary tendencies in the genus. *Scientific World Journal*, 943825, https://doi.org/10.1155/2014/943825
- Çiçek, E., Sungur, S., & Fricke, R. (2020). Freshwater lampreys and fishes of Türkiye; a revised and updated annotated checklist 2020. Zootaxa, 4809(2), 241-270. https://doi.org/10.11646/zootaxa.4809.2.2
- Diniz, D., Laudicina, A., & Bertollo, L.A. (2009). Chromosomal location of 18S and 5S rDNA sites in *Triportheus* fish species (Characiformes, Characidae). *Genetics and Molecular Biology*, 32, 37-41. https://doi.org/10.1590/S1415-47572009005000017
- Ergene, S., Karahan, A., & Kuru, M. (2010). Cytogenetic analysis of *Pseudophoxinus antalyae*, Bogustkaya, 1992 (Pisces: Cyprinidae) from the Eastern Mediterranean River Basin. Türkiye. *Turkish Journal of Zoology*, 34(1), 111-117. https://doi.org/10.3906/zoo-0807-33
- Gaffaroğlu, M., Karasu Ayata, M., & Ünal Karakuş, S. (2022). Cytogenetic characteristics of two species of the genus *Pseudophoxinus* Bleeker, 1860 (Cypriniformes: Leuciscidae) from Anatolia, Turkey. Acta Zoologica Bulgarica, 74(3), 335-342.
- Howell, W.M., & Black, D.A. (1980). Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. *Experientia*, 36, 1014-1015. https://doi.org/10.1007/BF01953855
- Karasu, M., Yüksel, E., & Gaffaroğlu, M. (2011). Karyotype, NORs, and Cbanding analysis of *Pseudophoxinus firati* Bogutskaya, Küçük, & Atalay,

2007 (Actinopterygii, Cyprinidae) in the Euphrates River. Türkiye. Turkish Journal of Zoology, 35(6), 865-868. https://doi.org/10.3906/zoo-0912-129

- Karasu Ayata, M., Yüksel, E., & Gaffaroğlu, M. (2016). Cytogenetic studies on six species of the leuciscine genus *Pseudophoxinus* Bleeker, 1860 (Teleostei, Cyprinidae). *Caryologia*, 69(3), 215-222. https://doi.org/10.10 80/00087114.2016.1169089
- Küçük, F., Atalay, M.A., Güçlü, S.S., & Gülle, İ. (2012). The Morphological Characteristics of Pseudophoxinus (Teleostei:Cyprinidae) Species of Turkey and their Zoogeographic Distribution. Süleyman Demirel Üniversitesi Eğirdir Su Ürünleri Fakültesi Dergisi, 8(2), 1-9. (in Turkish with English abstract)
- Küçük, F., Gülle, I.,& Güçlü, S.S. (2016). Pseudophoxinus iconii, a new species of spring minnow from Central Anatolia (Teleostei: Cyprinidae). Ichthyological Exploration of Freshwaters, 27(3), 283-288.
- Levan, A., Fredga, K., & Sandberg, A.A. (1964). Nomenclature for centromeric position on chromosomes. *Hereditas*, 52, 201-220. https://doi.org/10.111 1/j.1601-5223.1964.tb01953.x
- Perea, S., Bohme, M., Zupancic, P., Freyhof, J., Sanda, R., Özulug, M., Abdoli, A., & Doadrio, I. (2010). Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data. BMC Evolutionary Biology 10, 265. https://doi.org/10.1186/1471-2148-10-265
- Sumner, A. (1972). A simple technique for demonstrating centromeric heterochromatin. *Experimental Cell Research*, 75, 304-306. https://doi.or g/10.1016/0014-4827(72)90558-7
- Ünal, S., & Gaffaroğlu, M. (2016). Karyology of six cyprinid fishes from Seyhan and Ceyhan rivers in Anatolia. *Caryologia*, 69(4), 362-369. https://doi.org/10.1080/00087114.2016.1247328
- Ünal, S, Gaffaroğlu, M., Karasu Ayata, M., & Yüksel, E. (2014). Karyotype, Cbanding and AgNORs of two endemic leuciscine fish, *Pseudophoxinus crassus* (Ladiges, 1960) and *P. hittitorum* Freyhof & Özulug, 2010 (Teleostei, Cyprinidae). Comparative Cytogenetics, 8(4), 249-257. https://doi.org/10.3897/CompCytogen.v8i4.7623
**RESEARCH ARTICLE** 

# Some biological aspects of White seabream, *Diplodus sargus* (Linnaeus, 1758) from the northeastern Aegean Sea, Türkiye

Kuzeydoğu Ege Denizi'nde (Türkiye) *Diplodus sargus* (Linnaeus, 1758)'un bazı biyolojik özellikleri

## İsmail Burak Daban 🔍 🔸 Ali İşmen 🔍 🔹 Mukadder Arslan İhsanoğlu\* 🔍

Department of Fisheries and Fish Processing Technology, Faculty of Marine Sciences and Fisheries, Çanakkale Onsekiz Mart University, 17100, Çanakkale, Türkiye

| Corresponding author: mukadderarslan@gmail.com | Received date: 18.10.2023 | Accepted date: 18.01.2024 |
|------------------------------------------------|---------------------------|---------------------------|
|------------------------------------------------|---------------------------|---------------------------|

How to cite this paper:

Daban, I.B., İşmen, A., Arslan İhsanoğlu, M. (2024). Some biological aspects of White seabream, *Diplodus sargus* (Linnaeus, 1758) from the northeastern Aegean Sea, Türkiye. *Ege Journal of Fisheries and Aquatic Sciences*, 41(1), 30-36. https://doi.org/10.12714/egejfas.41.1.05

**Abstract:** In the study, the age, growth, mortality parameters and length-weight relationship parameters of *Diplodus sargus* (white seabream) collected by a small-scale fisherman between August 2020 and July 2021 along the northeastern coast of Aegean Sea (Türkiye coast), were investigated. *D. sargus* had a range of total length and weight from 14.3 cm to 36.7 cm and from 50.5 g to 836.5 g, respectively. The length-weight relationships (LWRs) were calculated as  $W=0.02368*L^{2.881}$  for females,  $W = 0.01847*L^{2.959}$  for males and  $W = 0.01989*TL^{2.936}$  for both sexes. Using data from fish scales, the maximum age was determined to be 11 years. von Bertalanffy growth parameters have been calculated as follows L $\infty$ =39.01 cm TL, K=0.13 year<sup>-1</sup>, and t<sub>0</sub>= -2.58 year for both sexes combined. Total (T), natural (N) and fishing (F) mortalities were defined as Z: 0.83 year<sup>-1</sup>, M: 0.33 year<sup>-1</sup> and F: 0.50 year<sup>-1</sup> for both sexes combined. The exploitation rate (E) was calculated as 0.70, 0.44 and 0.60 for females, males and combined, respectively.

Keywords: Age, growth, mortality, length-weight relationship, white seabream, Aegean Sea

Öz: Bu çalışmada, Ağustos 2020 ve Temmuz 2021 tarihleri arasında Ege Denizi'nin kuzeydoğu kıyılarında (Türkiye kıyıları) küçük ölçekli bir balıkçı tarafından toplanan *Diplodus sargus*'un (Sargos) yaş, büyüme, ölüm parametreleri ve boy-ağırlık ilişkisi parametreleri incelenmiştir. *D.sargus*'un toplam uzunluğu 14,3 cm ila 36,7 cm ve ağırlığı 50,5 g ila 836,5 g arasında değişmektedir. Boy ağırlık ilişkisi dişiler için W = 0.02368\*L<sup>2.881</sup>, erkekler için W = 0.01847\*L<sup>2.959</sup> ve her iki cinsiyet için W = 0.01989\*TL<sup>2.936</sup> olarak tahmin edilmiştir. Balık pullarından hesaplanan yaş verileri maksimum yaşın 11 olduğunu göstermiştir. Belirlenen büyüme parametresi değerleri tüm bireyler için L<sub>∞</sub>=39.01 cm, K=0.13 yıl-1, t₀= -2.58 yıl olarak belirlenmiştir. Toplam ölüm (Z), doğal ölüm (M) ve balıkçılık ölümü (F) tüm bireyler için Z: 0.83 yıl-1 ve F: 0.50 yıl-1 olarak belirlenmiştir. Sömürülme oranı (E) dişiler, erkekler ve tüm bireyler için sırasıyla 0.70, 0.44 ve 0.60 olarak hesaplanmıştır.

Anahtar kelimeler: Yaş, büyüme, mortalite, boy ağırlık ilişkisi, Sargos, Ege Denizi

#### INTRODUCTION

The white seabream, *Diplodus sargus* (Linnaeus, 1758), is an important representative of the family Sparidae with a geographical distribution ranging from the Bay of Biscay to Angola in the eastern Atlantic and from Gibraltar to the Black Sea (Bauchot, 1987; Bilecenoğlu et al., 2014). It has a shallower distribution (<70 m) and is mostly found in the same habitats. These habitats consist of rocky areas and *Posidonia oceonica* beds (Bauchot and Hureau, 1990; Lenfant and Planes, 1996). The white seabream feeds on algae, worms, gastropods, amphipods, bivalves, echinoderms, fishes and fish eggs (Maigret and Ly, 1986; Bianchi et al., 1999; Figueiredo et al., 2005).

It is known to be a common species in the northern Aegean Sea and is mainly caught in the shelf and coastal areas. The northeastern Aegean Sea is known as one of the areas where the most intensive small-scale fishing is carried out. The most preferred fishing gears are gillnets, trammel nets, longlines and hand lines. Hand lines and longlines are mainly used to catch white seabream. White seabream is more economically important than most other species in the region's fisheries. White seabream caught are exported and the approximate yield is 10 dollars per kilogram in 2021. Due to the problem of unrecorded fishing in the small-scale fisheries inTürkiye, the recorded catch rates are lower than the realised catch rates. The landed catch of white seabream is estimated at 26 tonnes according to the Turkish Statistical Institute Fisheries Report in 2022 (TUIK, 2023). The scientific knowledge on the biology of white seabream in Turkish seas is limited, although it is known as a common species of Sparidae.

Ayyıldız and Altın (2020) studied the daily growth of juvenile white seabream, Balık and Emre (2016) determined the age and growth of specimens with a total length of 13-16 cm from Beymelek Lagoon, southwest of Turkey. Some valuable literature on age, growth and feeding of white seabream has been published from Algeria, Portugal, Western and Eastern Mediterranean (Lloret and Planes, 2003; Benchalel and Kara, 2013; Al-Beak et al., 2015; Paiva et al., 2018; Boufekane et al., 2021). While the population characteristics of fish are significant factors in managing and controlling fisheries resources (Froese et al., 2008) and the

mortality rates, the age distribution offers crucial insights into the size and structure of the stock. The literature currently lacks information on the age, growth, and mortality parameters of *D. sargus*, posing potential hurdles for the management of the stock due to the paucity of data on the population biology in the Eastern Mediterranean, Aegean, Marmara, and Black Seas. The objective of this study is to offer initial insight into the growth parameters of white seabream in the northeast Aegean Sea. This research holds significance as it reveals the first findings of the population parameters of *D. sargus* in the Northeast Aegean Sea.

#### MATERIALS AND METHODS

Specimens were collected from fish captured by a fisherman with a handline and longline in the northeastern coast of Türkiye between August 2020 and July 2021. During the research, 30 samples were taken every month. A total of 322 fish were examined. TL (total length) and FL (fork length) were measured to the nearest millimetre. Total weight (TW) and gonad weight (GW) were also weighed to the nearest 0.01 grams. Subsequently, the exponential regression W = a\*TLb was used to estimate the length-weight relationship (Le Cren, 1951), where W represents the total weight (grams) and TL denotes the total length (centimetres). Linear least squares regression after logarithmic transformation was used to estimate the constants a and b. Growth type was determined via t-test on the value of 'b', which reflects the allometry of growth (Sokal and Rohlf, 1987). At first, age determination was assessed for both otoliths and scales, and it was concluded that the fish scales was the most appropriate method for white seabream. The age of 322 white seabream specimens was ascertained from intact scales underneath the pectoral fin's left section. The translucent zones were identified as annuli and counted. Both sets of scale ring measurements were conducted by three independent observers using a binocular microscope. For the entire dataset, we estimated growth parameters using

| Table 1. The range of total length (TL), and weight (g) of D | ). sargus |
|--------------------------------------------------------------|-----------|
|--------------------------------------------------------------|-----------|

|        |     | Total Len    | gth(cn | Weight (g) |               |       |        |  |
|--------|-----|--------------|--------|------------|---------------|-------|--------|--|
|        | Ν   | Mean ± Sx    | Min    | Max        | Mean          | Min   | Max    |  |
| Male   | 176 | 23.47 ± 0.22 | 14.3   | 31.6       | 220.74 ± 6.53 | 50.46 | 542.12 |  |
| Female | 143 | 24.19 ± 0.28 | 15.9   | 36.7       | 243.67 ± 9.66 | 71.32 | 836.51 |  |
| Total  | 322 | 23.83 ± 0.18 | 14.3   | 36.7       | 232.36 ± 5.67 | 50.46 | 836.51 |  |

the von Bertalanffy growth equation:  $L(t) = L_{\infty} [1 - \exp(-k(t - t_0))]$ where L(t) represents total length at time t, L $\infty$  denotes asymptotic length (cm), K indicates the growth coefficient (y-1) and  $t_0$  is the age of the fish when its size is zero (von Bertalanffy, 1938). The von Bertalanffy growth parameters were estimated using FISAT II programme. Instantaneous total mortality (Z) was determined using the age-converted catch curve method of Pauly (1984). Natural mortality (M) was calculated using Pauly's (1980) empirical formula, which includes von Bertalanffy growth parameters and mean annual seawater temperature (15.7°C; Türkoğlu, 2010). The fishing mortality rate was computed via the formula F = Z - M (Bingel, 2002). To compute the exploitation rate (E), Gulland's formula (1979) was utilised: E = F/Z. Calculating the growth performance index,  $\phi$ , involved using this formula:  $\phi = \log K + \log K$ 2 X log L∞.

#### RESULTS

The lengths of 322 white seabreams ranged from 14.3 cm to 36.7 cm TL. The mean TL was calculated to be  $23.8 \pm 0.18$ cm (Table 1). Individual weights ranged from 50.5 g to 836.5 g with a mean of 232.4  $\pm$  5.7 g. It was observed that the most common length group was 24 cm TL with 17.4% of the total individuals, and almost half of the total individuals were between 22 cm and 24 cm TL (Figure 1). Looking at the monthly variation in mean TL, the highest mean length was observed in May and the lowest in August. The length-weight relationship was calculated as W =  $0.02368*TL^{2.881}$  (r<sup>2</sup> = 0.93) for females, W =  $0.01847*L^{2.959}$  (r<sup>2</sup> = 0.93) for males and W =  $0.01989^{*}TL^{2.936}$  (r<sup>2</sup> = 0.93) for both sexes (Table 2). The regressions showed negative allometric growth for males, females and both sexes. According to the fish scale readings, white seabream was distributed between 1 and 11 years of age (Table 3, Figure 2). The most common age groups were 5, 4 and 6 years with 27.6%, 21.1% and 16.1% of the total individuals.

| Table 2. Length-weight relationships (LWRs) param | neters of D. sargus |
|---------------------------------------------------|---------------------|
|---------------------------------------------------|---------------------|

| Sex         | Ν       | а        | %95 CI a      | b    | %95 Cl b    | r <sup>2</sup> | Growth type |
|-------------|---------|----------|---------------|------|-------------|----------------|-------------|
| Female      | 143     | 0.0236   | 0.0155-0.0360 | 2.88 | 2.749-3.013 | 0.93           | A(-)        |
| Male        | 176     | 0.0184   | 0.0125-0.0272 | 2.96 | 2.835-3.082 | 0.93           | A(-)        |
| Total       | 322     | 0.0199   | 0.0149-0.0263 | 2.94 | 2.847-3.025 | 0.93           | A(-)        |
| A(-) : nega | ative a | llometry |               |      |             | -              | -           |



Some biological aspects of White seabream, Diplodus sargus (Linnaeus, 1758) from the northeastern Aegean Sea, Türkiye



Figure 2. Annual growth rings (pink lines) on the scales in different ages of D. sargus

Table 3. Key to the age-total length of D. sargus

| Total longth (om) - | Age  |      |      |      |      |      |      |      |      |      |      |  |
|---------------------|------|------|------|------|------|------|------|------|------|------|------|--|
| rotariengtir (cm)   | 1    | 2    | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   |  |
| 14                  | 1    |      |      |      |      |      |      |      |      |      |      |  |
| 15                  |      | 3    |      |      |      |      |      |      |      |      |      |  |
| 16                  |      | 2    |      |      |      |      |      |      |      |      |      |  |
| 17                  |      | 3    |      |      |      |      |      |      |      |      |      |  |
| 18                  |      | 2    | 2    |      |      |      |      |      |      |      |      |  |
| 19                  |      |      | 11   | 1    |      |      |      |      |      |      |      |  |
| 20                  |      | 4    | 19   | 3    | 1    |      |      |      |      |      |      |  |
| 21                  |      |      | 7    | 14   | 1    |      |      |      |      |      |      |  |
| 22                  |      |      | 2    | 34   | 14   |      |      |      |      |      |      |  |
| 23                  |      |      | 1    | 13   | 33   | 1    |      |      |      |      |      |  |
| 24                  |      |      |      | 3    | 29   | 22   | 2    |      |      |      |      |  |
| 25                  |      |      |      |      | 7    | 14   | 5    |      |      |      |      |  |
| 26                  |      |      |      |      | 3    | 7    | 7    | 3    |      |      |      |  |
| 27                  |      |      |      |      | 1    | 5    | 9    | 6    |      |      |      |  |
| 28                  |      |      |      |      |      | 1    | 2    | 3    |      |      |      |  |
| 29                  |      |      |      |      |      | 2    | 1    | 2    |      |      |      |  |
| 30                  |      |      |      |      |      |      |      | 8    | 1    |      |      |  |
| 31                  |      |      |      |      |      |      |      |      | 3    |      |      |  |
| 32                  |      |      |      |      |      |      |      |      | 1    |      |      |  |
| 33                  |      |      |      |      |      |      |      |      |      | 1    |      |  |
| 34                  |      |      |      |      |      |      |      |      |      |      |      |  |
| 35                  |      |      |      |      |      |      |      |      |      | 1    |      |  |
| 36                  |      |      |      |      |      |      |      |      |      |      | 1    |  |
| Ν                   | 1    | 14   | 42   | 68   | 89   | 52   | 26   | 22   | 5    | 2    | 1    |  |
| Mean length (cm)    | 14.3 | 17.9 | 20.4 | 22.4 | 23.8 | 25.5 | 26.7 | 28.6 | 31.4 | 34.5 | 36.7 |  |

We employed the FISAT II programme to study the length and age data as well as the growth parameters of 322 individuals. The values of the growth parameters for the entire population were calculated as L<sub>∞</sub>=39.01 cm TL, K=0.13 year<sup>-1</sup>, and t<sub>0</sub>=-2.58 years. Growth parameters for female individuals were determined as L<sub>∞</sub>=37.96 cm TL, K=0.14 year<sup>-1</sup>, t<sub>0</sub>=-2.0 years. For male individuals, the growth parameters were L<sub>∞</sub>=32.86 cm TL, K=0.19 year<sup>-1</sup>, t<sub>0</sub>=-2.0 years.

Graphs depicting von Berlanffy growth curves for females, males, and all individuals of *D.sargus* are illustrated in Figure 3. Total mortality (Z), natural mortality (M) and fishing mortality (F) were determined as Z: 0.83 t<sup>-1</sup>, M: 0.33 t<sup>-1</sup> and F: 0.50 t<sup>-1</sup> for the combined sexes. Z, M and F were determined to be 0.64 t<sup>-1</sup>, 0.35 t<sup>-1</sup> and 0.29 t<sup>-1</sup> for females and 0.81 t<sup>-1</sup>, 0.45 t<sup>-1</sup> and 0.36 t<sup>-1</sup> for males. The exploitation rate (E) was calculated as 0.70, 0.44 and 0.60 for females, males and both sexes, respectively.



Figure 3. The growth curve of female (A), male (B) and (C) total individuals of *D. sargus*, as modelled by the von Bertalanffy equation

Mortality parameters were calculated for all individuals, yielding the following values: Z = 0.83 year<sup>-1</sup>, M = 0.33 year<sup>-1</sup> and F = 0.50 year<sup>-1</sup> (Figure 4). Exploitation rate was ascertained at (E): 0.60. For male subjects, mortality parameters were Z: 0.81 year<sup>-1</sup>, M: 0.45 year<sup>-1</sup>, F: 0.36 year<sup>-1</sup>, and E: 0.45. For females, the mortality parameters were calculated as Z: 0.64 year<sup>-1</sup>, M: 0.35 year<sup>-1</sup>, F: 0.29 year<sup>-1</sup>, and E: 0.45.



Figure 4. Total mortality-age curve of sexes combined of D. sargus

#### DISCUSSION

The b-value of the length-weight relationship for this species has been reported by various authors in different regions. Man Wai and Quignard (1982) reported a b-value of 3.123 in the Gulf of Lion, Mouine et al. (2007) found a value of 3.05 in the Central Mediterranean (Tunis), Lahlah (2004) reported a value of 2.859 in Egyptian Mediterranean waters, Mahmoud et al. (2010) found a value of 2.942 in the Abu Qir Bay of Egypt, El-Maghraby and Botros (1981) reported a value of 3.144 in the Mediterranean waters of Egypt, and Morato et al. (2003) found b value of 3.18 in the North Eastern Atlantic, Balık and Emre (2016) found that the b value is 3.1028 in the Mediterranean Sea. This study recorded b value of 2.88 in females, 2.96 in males in the Northeastern Aegean Sea (Table 4). This could be due to differences in environmental conditions, sampling methods and size range coverage. The samples primarily comprised of small individuals which could have influenced the b value of the length-weight relationship. However, our results contrast with those previously reported, which may be due to differences in the size distributions of samples taken from different habitats.

Benchalel and Kara (2013) found that the age distribution of *D.* sargus species on the east coast of Algeria ranged from 0-10 years in the length group between 12.2 cm and 34.6 cm TL, El-Maghraby and Botros (1981) found that individuals on the Egyptian coast ranged from 1-8 years of age in the length range of 6-39 cm. In this study, the TL range was 14.3-36.7 cm and the age distribution was between 1-11 years. Age distributions were similar between the studies, but it was understood that there was a smaller age distribution. It is thought that this may be due to the difference in the method used during age reading or the faster growth on the Egyptian coast. In the study carried out in our country, Balık and Emre (2016) reported that the age distribution in the length range of 13-16 cm TL in Beymelek Lagoon was 0-3 years old. In this study, it was determined that the length of the youngest individual aged 3 years was 18.5 cm TL (Table 5). In both studies, it was observed that the majority of individuals in this length range were 2 years old. The variations of the results can be attributed to the differences in study regions, environmental variables, and the number of individuals involved. The researchers also determined the growth parameter values of the species. The discrepancy in age distribution and growth parameter values found in this study compared to other studies is attributed to the different methods employed. While many researchers used otoliths, the age determinations in this study were made from fish scales similar to Abecasis et al. (2008). The age determination from the fish scales specific to the species was easier to determine.

Table 4. The b values of length-weight relation of D. sargus reported for some populations living in different locations

| Author                        | Sex                     | N                  | b                       | Area                                                  | Growth type          |
|-------------------------------|-------------------------|--------------------|-------------------------|-------------------------------------------------------|----------------------|
| El-Maghraby and Botros (1981) |                         |                    | 3.144                   | Egypt Mediterranean waters                            |                      |
| Man Wai and Quignard (1982)   |                         |                    | 3.123                   | Gulf of Lion                                          |                      |
| Morato et al. (2003)          | Male<br>Female<br>Total | 231<br>446<br>1178 | 3.032<br>3.054<br>3.181 | North Eastern Atlantic                                | <br> <br>            |
| Lahlah (2004)                 |                         |                    | 2.859                   | Egyptian Mediterranean waters                         |                      |
| Mouine et al. (2007)          | Male<br>Female<br>Total | 37<br>108<br>247   | 3.129<br>2.994<br>3.051 | Central Mediterranean (Gulf of Tunis)                 | <br> <br>A(+)        |
| Mahmoud et al. (2010)         | Total                   |                    | 2.942                   | Abu Qir Bay of Egypt                                  | A(-)                 |
| Balık and Emre (2016)         | Total                   | 355                | 3.1028                  | Beymelek Lagoon S.W. coast of Türkiye at the Med. Sea |                      |
| This study                    | Female<br>Male<br>Total | 143<br>176<br>322  | 2.88<br>2.96<br>2.94    | NE Aegean Sea of Türkiye                              | A(-)<br>A(-)<br>A(-) |

I: izometry, A(+): positive allometry, A(-): negative allometry

Table 5. The von Bertalanffy growth parameters of D. sargus reported for some populations living in different locations

| Author                                      | Area              | Age range | Method  | L∞    | К    | t <sub>o</sub> |
|---------------------------------------------|-------------------|-----------|---------|-------|------|----------------|
| El-Maghraby et al. (1981)                   | Egypt             | 1-8       | Otolith |       |      |                |
| Man Wai and Quignard (1982)                 | N/W Mediterranean | -         | Otolith | 46.70 | 0.12 | -0.63          |
| Man Wai and Quignard (1982)                 | Gulf of Lion      | -         | Otolith | 45.86 | 0.17 | -1.18          |
| Martinez-Pastor and Villegas-Cuadros (1996) | Cantabrian Sea    | 1-11      | Otolith | 48.48 | 0.18 | -0.06          |
| Gordoa and Moli (1997)                      | N/W Mediterranean | -         | Otolith | 41.70 | 0.25 | -0.08          |
| Mann and Buxton (1997)                      | South Africa      | -         | Otolith | 30.94 | 0.25 | -1.05          |
| Abassais at al. (2008)                      | South Portugal    | 0-18      | Otolith | 40.93 | 0.18 | -0.86          |
| Abecasis et al. (2000)                      |                   | 0-16      | Scale   | 39.55 | 0.15 | -1.89          |
| Lahlah (2004)                               | Egypt             | -         | Otolith | 32.72 | 0.13 | -1.84          |
| Mahmoud et al. (2010)                       | Abu Qir Bay       | 0-6       | Otolith | 31.38 | 0.26 | -0.73          |
| Benchalel and Kara (2013)                   | Algeria           | 1-10      | Otolith | 36.39 | 0.15 | -0.49          |
| Balık and Emre (2016)                       | Mediterranean     | 1-3       | Otolith |       |      |                |
| This study                                  | NE Aegean Sea     | 1-11      | Scale   | 39.01 |      |                |

The mortality parameters, exploitation ratio and reproductive characteristics of fishes are key elements in the consideration and control of fisheries resources. There is no data of mortality parameters and exploitation ratio of *D. sargus* in our seas. One study is represented the first sexual maturity length of the species that is 22.69 cm in females and 25.2 cm in males, respectively (Daban et al., 2023). In the communiqué issued by the Ministry of Agriculture and Forestry, which regulates commercial fishing, the minimum length of *D. sargus* 

species is set at 21 cm TL, that result is smaller than the first maturity length. And, in this study the mortality parameters were calculated and the exploitation rate was found as E:0.60. According to all these results it is possible to say that the species is under fishing pressure.

#### CONCLUSION

Understanding the biological characteristics of populations is crucial for maintaining species continuity. This research

focuses on *D. sargus*, an economically important species, and investigates its age distribution, growth parameters, and mortality parameters. According to the results obtained, it is seems that the first capture length should be increased in order to ensure the continuity of the stocks. In order to reduce the fishing pressure on the species, increasing the mesh size of the gillnets, which is one of the fishing gears where selectivity can be adjusted most easily, can be effective in reducing the fishing power.

#### ACKNOWLEDGEMENTS AND FUNDING

This study was supported by Çanakkale Onsekiz Mart University

#### REFERENCES

- Abecasis, D., Bentes, L., Coelho, R., Correia, C., Lino, P.G., Monteiro P., Gonçalves J.M.S., Ribeiro J., & Erzini, K. (2008). Ageing Seabream: A comparative study between scales and otoliths. *Fisheries Research*, 89(1), 37-48. https://doi.org/10.1016/j.fishres.2007.08.013
- Al-Beak, A., Ghoneim, El-Dakar, A., & Salem, M. (2015). Population dynamic and stock assessment of white seabream *Diplodus sargus* (Linnaeus, 1758) in the coast of North Sinai. *Fisheries and Aquaculture Journal*, 6(4), 152. https://doi.org/10.4172/2150-3508.1000152
- Ayyıldız, H., & Altin, A. (2020). Hatching time and early growth of *Diplodus* sargus sargus inhabiting a coastal area of Gökçeada Island, Turkey. *Thalassas: An International Journal of Marine Sciences*, 36, 1-8. https://doi.org/10.1007/s41208-019-00185-9
- Balik, I., & Emre, Y. (2016). Population structure, length-weight relationship and growth of white seabream, *Diplodus sargus sargus* (Linneaus, 1758), in Beymelek lagoon, Turkey. *Journal of Applied Ichthyology*, 32(3), 602– 605. https://doi.org/10.1111/jai.13075
- Bauchot, M.-L. (1987). Poissons osseux. p. 891-1421. In W. Fischer, M.L. Bauchot and M. Schneider (eds.) Fiches FAO d'identification pour les besoins de la pêche. (rev. 1). Méditerranée et mer Noire. Zone de pêche 37. Vol. II. Commission des Communautés Européennes and FAO, Rome.
- Bauchot, M.L. & Hureau, J.C. (1990). Sparidae. p. 790-812. In J.C. Quero, J.C. Hureau, C. Karrer, A. Post, & L. Saldanha (Ed.) *Check-list of the fishes of the eastern tropical Atlantic (CLOFETA)*. JNICT, Lisbon; SEI, Paris; and UNESCO, Paris.
- Benchalel, W., & Kara, M.H. (2013). Age and growth and reproduction of the white seabream *Diplodus sargus sargus* (Linneaus, 1758) off the eastern coast of Algeria. *Journal of Applied Ichthyology*, 29, 64-70. https://doi.org/10.1111/j.1439-0426.2012.02057.x
- Bianchi, G., Carpenter, K.E., Roux, J.P., Molloy, F.J., Boyer, D., & Boyer, H.J. (1999). FAO species identification guide for fishery purposes. Field guide to the living marine resources of Namibia. FAO, Rome.
- Bilecenoğlu, M., Kaya, M., Cihangir, B., & Çiçek, E. (2014). An updated checklist of the marine fishes of Turkey. *Turkish Journal of Zoology*, 38, 901-929. https://doi.org/10.3906/zoo-1405-60

Bingel, F. (2002). Identification of Fish Populations. Icel: Baki Press.

- Boufekane, B., Chakroun-Marzouk, N., Kelai, E., Alioua, Z., Amira, S., & Harchouche, K. (2021). Reproductive Traits and Somatic Growth of Diplodus sargus sargus (Linnaeus, 1758) in the Central Algerian Coast (Southern Mediterranean Sea). Turkish Journal of Fisheries and Aquatic Sciences, 21(8), 381-399. https://doi.org/10.4194/1303-2712-v21\_8\_03
- Daban, İ.B., İşmen, A., & Arslan İhsanoğlu, M. (2023). Reproductive biology of white seabream, *Diplodus sargus* from northeastern Aegean Sea, Türkiye. VII. International Congress On Domestic Animal Breeding, Genetics And Husbandry, (pp.115-117). Krakow, Polonya, Proceedings Book.
- El-Maghraby, A. M., Botros, G. A., Hashem, M. T., & Wassef, E.A. (1981). Maturation, spawning and fecundity of two sparid fish, *D. sargus and D.*

Scientific Research Projects Commission with the project number FBA-2020-3295.

AUTHORSHIP CONTRIBUTIONS: All authors contributed to the idea and design of the study.

**CONFLICT OF INTEREST STATEMENT:** The authors declare that there are no conflicts of interest or competing interests.

ETHICS APPROVAL: No specific ethical approval was necessary for this study.

**DATA AVAILABILITY:** For questions regarding datasets, the corresponding author should be contacted.

vulgaris Geoff. in the Egyptian Mediterranean waters. Bulletin of the National Institute of Oceanography and Fisheries, 8, 51–67.

- Figueiredo, M., Morato, T., Barreiros, J. P., Afonso, P., & Santos, R. S. (2005). Feeding ecology of the white seabream, *Diplodus sargus*, and the ballan wrasse, *Labrus bergylta*, in the Azores. *Fisheries Research*, 75(1-3), 107-119.
- Froese, R., Stem-Pirlot, A., Winker, H., & Gascuel, D. (2008) Size matters: how single-species management can contribute to ecosystem-based fisheries management, *Fisheries Research*, 92(2–3), 231–241. https://doi.org/10.1016/j.fishres.2008.01.005
- Gordoa, A., & Moli, B. (1997). Age and growth of the sparids *D. vulgaris*, *D. sargus* and *D. annularis* in adult populations and the differences in their juvenile growth patterns in the North Western Mediterranean Sea. *Fisheries Research*, 33(1-3), 123-129. https://doi.org/10.1016/S0165-7836(97)00074-X
- Gulland, J.A. (1979). Report of the FAO/IOP workshop on the fishery resources of the Western Indian Ocean south of the equator. Rome.
- Lahlah, M. (2004). Ecological studies on two fish species inhabiting coastal seaweed meadows in Alexandria waters. Doctoral dissertation. Alexandria University, Egypt.
- Le Cren, E.D. (1951). The length–weight relationship and seasonal cycle in gonad weight and condition in perch (*Perca fluviatilis*). *Journal of Animal Ecology*, 20(2), 201–219. https://doi.org/10.2307/1540
- Lenfant, P., & Planes, S. (1996). Genetic differentiation of white sea bream within the Lion's Gulf and the Ligurian Sea (Mediterranean Sea). *Journal* of Fish Biology, 49(4), 613-621. https://doi.org/10.1111/j.1095-8649.199 6.tb00058.x
- Lloret, J., & Planes, S. (2003). Condition, feeding and reproductive potential of white seabream *Diplodus sargus* as indicators of habitat quality and the effect of reserve protection in the northwestern Mediterranean. *Marine Ecology Progress Series*, 248, 197-208. https://doi.org/10.3354/meps24 8197
- Mahmoud, H., Osman, A., Ezzat, A., & Saleh, A. (2010). Fisheries biology and management of *Diplodus sargus sargus* (Linnaeus, 1758) in Abu Qir Bay, Egypt. *Egyptian Journal of Aquatic Research*. 36(1), 123–131.
- Maigret, J., & Ly, B. (1986). Les poissons de mer de Mauritanie. Centre National de Recherches Océanographiques et des Pêches, Nouadhibou (R.I.M.)
- Martinez-Pastor, C., & Villegas-Cuadros, M. L. (1996). Edad, crecimiento y reproduccion de *Diplodus sargus* Linnaeus, 1758 (Sparidae) en aguas asturianas (norte de Espana). *Boletín del Instituto Español de Oceanografia*, 12(1), 65–76.
- Mann, B.Q., & Buxton, C.D. (1997). Age and growth of *Diplodus sargus capensis* and *D. cervinus hottentotus* (Sparidae) on the Tsitsikamma coast, S. Africa. *Cybium*, 21, 135-147.
- Man Wai, R., & Quignard, J.P. (1982). The seabream *Diplodus sargus* (Linné 1758) in Gulf of Lion: growth of the seabream and characteristics of landings from the commercial fishing grounds of Sete and Grau-du-Roi. *Revue des travaux de l'Institut des pêches maritimes*, 46(3), 173–194.

- Martinez-Pastor, C. & Villegas-Cuadros, M.L. (1996). Age, growth and reproduction of *Diplodus sargus* Linnaeus, 1758 (Sparidae) North of Spain. *Bol. Inst. Esp. Oceanogr.*, 12(1), 65-76.
- Morato, T., Afonso, P., Lourinho, P., Nash, R. D. M., & Santos, R.S. (2003). Reproductive biology and recruitment of the white seabream in the Azores. *Journal of Fisheries Biology*, 63(1), 59–72. https://doi.org/10.1046/j.1095-8649.2003.00129.x
- Mouine, N., Francour, P., Ktari, M.H., & Chakroun-Marzouki, N. (2007). The reproductive biology of *Diplodus sargus sargus* in the Gulf of Tunis (central Mediterranean). *Scientia Marina*, 71(3), 461–469. https://doi.org/10.3989/scimar.2007.71n3461
- Paiva, B.R., Neves, A., Sequeira, V., Vieira, A., Costa, M., & Gordo, L. (2018). Age, growth and reproduction of the protandrous hermaphrodite fish, *Sarpa salpa*, from the Portuguese continental coast. *Journal of the Marine Biological Association of the United Kingdom*, 98(2), 269-281. https://doi.org/10.1017/S0025315416001405

Pauly, D. (1980). On the interrelationships between natural mortality, growth

parameters, and environmental temperature in 175 fish stocks. *Journal du Conseil / Conseil Permanent International pour l'Exploration de la Mer,* 39(2), 175-192. https://doi.org/10.1093/icesjms/39.2.175

- Pauly, D. (1984). Fish population dynamics in tropical waters: a manual for use with programmable calculators. ICLARM Studies and Reviews 8. International Center for Living Aquatic Resources Management, Manilla, Philippines.
- Sokal, R.R., & Rohlf, F.J. (1987) Introduction to Biostatistics. Freeman & Company, New York
- TUIK, (2023, September 21). Fisheries statistics. Turkish statistical institute. https://biruni.tuik.gov.tr/medas/?locale=tr
- Türkoğlu, M. (2010). Temporal variations of surface phytoplankton, nutrients and chlorophyll a in the Dardanelles (Turkish straits system): a coastal station sample in weekly time intervals. *Turkish Journal of Biology*, 34(3), 319-333. https://doi.org/10.3906/biy-0810-17
- Von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth laws II). Human Biolology, 10, 181–213.

# The list of deep-sea decapod crustaceans and new records from Sığacık Bay (Aegean Sea, Türkiye)

Sığacık Körfezi (Ege Denizi, Türkiye)'nin derin deniz dekapod tür listesi ve körfezden yeni kayıtlar

## Cengiz Koçak <sup>©</sup>

Department of Marine and Inland Waters Sciences and Technology, Faculty of Fisheries, Ege University, Bornova, İzmir, Türkiye

| Corresponding author: kocakcengiz@gmail.com Received date:18.10.2023 Accepted date: 15.02 | 2.2024 |
|-------------------------------------------------------------------------------------------|--------|
|-------------------------------------------------------------------------------------------|--------|

How to cite this paper:

Koçak, C. (2024). The list of deep-sea decapod crustaceans and new records from Siğacık Bay (Aegean Sea, Türkiye). Ege Journal of Fisheries and Aquatic Sciences, 41(1), 37-45. https://doi.org/10.12714/egejfas.41.1.06

Abstract: Decapod crustaceans were sampled monthly from May 2008 to April 2009 using a commercial trawl vessel at depths between 292 and 550 m from Sığacık Bay. 16 species were identified, of which 3 are Brachyura, 5 Caridea, 3 Dendrobranchiata, 1 Polychelida, 1 Astacidea, 3 Anomura. Of these, 4 species (*Bathynectes maravigna, Munida intermedia, Pontophilus spinosus*, and *Processa canaliculata*) are new records for Sığacık Bay. Furthermore, all of the previous studies were reviewed on the deep-sea decapod crustaceans of Sığacık Bay, depth range of each species is given.

Keywords: Decapoda, deep-sea, Bathynectes maravigna, Munida intermedia, Pontophilus spinosus, Processa canaliculata

Öz: Sığacık Körfezi'nden dekapod krustase örnekleri Mayıs 2008'den Nisan 2009'a kadar ticari trol teknesi kullanılarak 292 ve 550 m derinlikler arasından aylık olarak toplanmıştır. 3 Brachyura, 5 Caridea, 3 Dendrobranchiata, 1 Polychelida, 1 Astacidea, 3 Anomura olmak üzere 16 tür tespit edilmiştir. Tespit edilen türlerden 4'ü (*Bathynectes maravigna, Munida intermedia, Pontophilus spinosus* ve *Processa canaliculata*) Sığacık Körfezi'nden ilk kez rapor edilmektedir. Ayrıca, Sığacık Körfezi'nin derin deniz dekapod krustasea faunası üzerine daha önce yapılmış çalışmaların tümü gözden geçirilmiş, her bir türün derinlik aralığı verilmiştir.

Anahtar kelimeler: Dekapoda, derin deniz, Bathynectes maravigna, Munida intermedia, Pontophilus spinosus, Processa canaliculata

#### INTRODUCTION

Decapod crustaceans form an important part of the marine ecosystem because of their importance on the benthic biomass and activities in the food chain. They are one of the most dominant megafauna communities in the deep sea basin (Sarda et al., 1994).

In the most recent checklist compiled for the Turkish Seas (Bakır et al., 2014), the number of decapod crustacean species is given as 216 for the Aegean Sea coast of Türkiye and 259 in total for the Turkish Seas (given in the study *Monodaeus guinotae* Forest, 1976 is accepted as *M. couchii* (Couch, 1851) (WoRMS, 2023). The authors stated in their study that, 9 of these species (*Dorhynchus thomsoni* Thomson, 1873, *Geryon longipes* A. Milne-Edwards, 1882, *Monodaeus couchii* (Couch, 1851) (given as *Monodaeus guinotae* Forest, 1976 in the study), *Plesionika acanthonotus* (Smith, 1882), *P. martia* (A. Milne-Edwards, 1883), *Amalopenaeus elegans* Smith, 1882 (given under the name *Gennadas elegans* (Smith, 1882) in the study), *Munida tenuimana* Sars, 1872, *Richardina fredericii* Lo Bianco, 1903), also given from the Turkish Aegean Sea, were found at depths of more than 600 m.

In the Aegean coasts of Türkiye, the first study on the deepsea decapod crustacean species (Katağan et al., 1988) recorded 13 species. In a later study by Kocataş and Katağan (2003), 7 decapod crustacean species were reported from the deep waters of Turkish Aegean Sea. Then Koçak and Katağan (2008) recorded 5 deep-sea decapod crustacean species. Besides these studies, Özcan et al. (2009a) and Gönülal et al. (2014) reported 1 and 3 species, respectively, from the region. Subsequently, an anomuran species, *Galathea bolivari* Zariquiey Álvarez, 1950, was reported from the deep waters of the Turkish Aegean by Gönülal and Dalyan (2017), although this species has been described in various studies as a species distributed in shallow waters (i.e. Geldiay and Kocataş, 1970; Noël, 1992; Falciai and Minervini, 1996; Koçak and Katağan, 2008).

Sığacık Bay located in the Central Aegean Sea is one of the most efficient trawling grounds in the Aegean Sea. The bay is an important commercial fishing area for deep-sea decapod crustaceans. The national waters of Sığacık Bay, lying between 100 and 550 m deep, are extensively fished by trawling. Shrimps are the most important bathyal resource here.

Several studies were present on the deep-sea decapod crustaceans of Sığacık Bay (Koçak et al., 2008, Özcan and Katağan 2009, Koçak, 2010, Özcan and Katağan 2011, Aydın and Aydın, 2011, Koçak et al., 2012, Oraner et al., 2018, Dereli

et al., 2021). In the research area, Koçak et al. (2008) reported 1 anomuran species. In a later study by Özcan and Katağan (2009), which is the only comprehensive study to date on deepsea decapod crustaceans of Sığacık Bay, recorded 21 species, of which 10 are Brachyura, 5 Caridea, 2 Dendrobranchiata, 1 Astacidea, 1 Polychelida, 2 Anomura. Since then, 1 Brachyura by Koçak (2010), 1 Caridea by Koçak et al. (2012), and 1 Dendrobranchiata by Dereli et al. (2021) were recorded from the same area. The goal of the present study was a faunistic study of the deep-sea decapod crustaceans of Sığacık Bay.

#### MATERIALS AND METHODS

Sampling surveys are performed monthly from May 2008 to April 2009 using a commercial bottom trawl (44-mm nominal mesh size, PE netting at the codend) in Sığacık Bay, Aegean Sea (from 38°05'13"N, 26°35'08"E to 37°59'27"N, 26°54'47"E) (Figure 1, Table 1). A total of 24 hauls are taken at depths between 292 and 550 m. The trawling speed fluctuated from 2.3 to 2.6 knots, depending on the nature of the substrate. Each haul usually lasted 1 hour, but several hauls lasted between half an hour to 1.5 hours (Table 1). All hauls are performed in daylight. The specimens were fixed in 5% formaldehyde. Carapace length (CL) and total length (TL) were measured with digital calipers to the nearest 0.01 mm.

Table 1. Information on bottom trawl surveys carried out in Siğacık Bay

All decapod crustaceans are determined to species level using the studies by Zariquiey Álvarez (1968), Noël 1992, Ingle (1993), and Falciai and Minervini (1996). In addition, WoRMS (2024) is considered for synonyms of the species and also variations in the nomenclature.



Figure 1. Map of the study area

| Dete       | Dept  | h (m)  | Ti    | me     | Coordinates           |                       |  |  |  |
|------------|-------|--------|-------|--------|-----------------------|-----------------------|--|--|--|
| Date       | Start | Finish | Start | Finish | Start                 | Finish                |  |  |  |
| 29 05 2009 | 320   | 344    | 11:25 | 12:25  | 37°59'93"N 26°44'82"E | 38°00'98"N 26°41'72"E |  |  |  |
| 20.03.2000 | 526   | 550    | 13:45 | 14:45  | 37°55'51"N 26°40'85"E | 37°55'08"N 26°43'69"E |  |  |  |
| 10.06.2009 | 319   | 343    | 11:40 | 12:40  | 37°59'93"N 26°44'82"E | 38°09'98"N 26°41'72"E |  |  |  |
| 19.00.2000 | 526   | 500    | 13:55 | 14:55  | 37°55'51"N 26°40'85"E | 37°55'08"N 26°43'69"E |  |  |  |
| 10.07.0009 | 494   | 539    | 08:40 | 09:40  | 37°55'81"N 26°39'36"E | 37°54'34"N26°41'11"E  |  |  |  |
| 12.07.2000 | 350   | 292    | 11:00 | 12:00  | 37°59'03"N 26°44'09"E | 38°01'39"N 26°43'32"E |  |  |  |
| 16 09 2009 | 316   | 366    | 09:10 | 10:10  | 37°59'83"N 26°45'54"E | 38°00'57"N 26°42'19"E |  |  |  |
| 10.00.2000 | 512   | 512    | 11:10 | 12:10  | 37°56'70"N 26°39'19"E | 37°54'70"N 26°42'92"E |  |  |  |
| 40.00.0000 | 310   | 347    | 09:50 | 10:50  | 37°59'84"N 26°44'96"E | 38°00'63"N 26°41'48"E |  |  |  |
| 13.09.2000 | 512   | 550    | 12:10 | 13:45  | 37°56'14"N 26°39'81"E | 37°54'92"N 26°44'20"E |  |  |  |
| 15 10 2009 | 530   | 545    | 07:15 | 08:15  | 37°55'28"N 26°41'38"E | 37°54'86"N 26°43'75"E |  |  |  |
| 15.10.2000 | 342   | 320    | 09:30 | 10:30  | 37°59'82"N 26°43'95"E | 38°01'09"N 26°41'75"E |  |  |  |
| 09 11 2009 | 520   | 550    | 06:40 | 08:10  | 37°55'11"N 26°42'35"E | 37°56'31"N 26°38'25"E |  |  |  |
| 00.11.2000 | 360   | 320    | 09:25 | 10:25  | 38°00'43"N 26°42'34"E | 37°59'80"N 26°45'35"E |  |  |  |
| 20 12 2009 | 495   | 510    | 09:50 | 10:20  | 37°55'10"N 26°42'74"E | 37°56'00"N 26°38'65"E |  |  |  |
| 20.12.2000 | 360   | 330    | 12:30 | 13:30  | 38°00'13"N 26°41'76"E | 38°00'33"N 26°44'99"E |  |  |  |
| 17.01.0000 | 520   | 550    | 07:18 | 08:40  | 37°56'09"N 26°39'73"E | 37°54'96"N 26°43'65"E |  |  |  |
| 17.01.2009 | 350   | 350    | 09:55 | 10:55  | 37°59'41"N 26°43'94"E | 38°00'75"N 26°41'96"E |  |  |  |
| 17 02 2000 | 520   | 550    | 07:10 | 08:40  | 37°55'07"N 26°43'06"E | 37°55'99"N 26°39'12"E |  |  |  |
| 17.02.2009 | 360   | 310    | 09:50 | 10:50  | 38°00'25"N 26°41'55"E | 38°00'18"N 26°44'56"E |  |  |  |
| 28.02.2000 | 500   | 530    | 12:05 | 13:35  | 37°54'96"N 26°43'23"E | 37°56'10"N 26°39'70"E |  |  |  |
| 20.03.2009 | 350   | 335    | 14:50 | 15:50  | 37°59'47"N 26°43'83"E | 38°01'12"N 26°41'84"E |  |  |  |
| 24.04.2000 | 350   | 335    | 08:25 | 09:25  | 37°59'99"N 26°45'84"E | 38°00'00"N 26°41'71"E |  |  |  |
| 24.04.2003 | 550   | 550    | 10:30 | 12:00  | 37°56'19"N 26°40'67"E | 37°55'02"N 26°43'49"E |  |  |  |

#### RESULTS

The bathyal trawling surveys in Sığacık Bay revealed 16 deep-sea decapod crustacean species, of which 3 are Anomura (Pagurus prideaux Leach, 1815, Iridonida speciosa (von Martens, 1878), Munida intermedia A. Milne-Edwards and Bouvier, 1899), 3 Brachyura (Bathynectes maravigna (Prestandrea, 1839), Inachus parvirostris (Risso, 1816), Macropipus tuberculatus (Roux, 1830), 1 Astacidea (Nephrops norvegicus (Linnaeus, 1758), 1 Polychelida (Polycheles typhlops Heller, 1862), 3 Dendrobranchiata (Aristeomorpha foliacea (Risso, 1827), Parapenaeus longirostris (Lucas, 1846), Solenocera membranacea (Risso, 1816), 5 Caridea (Plesionika heterocarpus (A. Costa, 1871), P. martia (A. Milne-Edwards, 1883), Aegaeon lacazei (Gourret, 1887), Pontophilus spinosus (Leach, 1816), Processa canaliculata Leach, 1815). Of these, 4 species (*M. intermedia*, *B. maravigna*, *P. spinosus*, P. canaliculata) newly recorded for the region. As a result of studies carried out in order to review the deep-sea decapod crustacean fauna of the Sığacık Bay, indicating the presence of 24 species inhabiting the Bay, of which 2 are Anomura, 6 Caridea, 3 Dendrobranchiata, 11 Brachyura, 1 Astacidea, 1 Polychelida.

The present study raises this species number, to 28, with the addition of the 4 new records.

#### Systematics

#### ANOMURA

SUPERFAMILY: GALATHEOIDEA SAMOUELLE, 1819

FAMILY: MUNIDIDAE AHYONG, BABA, MACPHERSON and POORE, 2010

GENUS: MUNIDA LEACH, 1820

#### Munida intermedia A. Milne-Edwards and Bouvier, 1899

**Synonyms:** *Munida bamffia* (Pennant, 1777) *sensu* Bonnier, 1888 (part); *Munida bamffica* (Pennant, 1777) *sensu* Bouvier, 1940; *Munida bamffica tenuimana* Sars, 1872 *sensu* Bouvier, 1940; *Munida bamffica var. gracilis* A. Milne-Edwards and Bouvier, 1899; *Munida bamffica var. intermedia* A. Milne-Edwards and Bouvier, 1899; *Munida sarsi meridionalis* Zariquiey Álvarez, 1952

This is the first record of *M. intermedia* from Sığacık Bay. This species was recorded for the first time in Turkish seas by Katağan et al. (1988) in the Saros Bay (Aegean Sea) at a depth of 520 m in a muddy biotope. Sex was determined under a stereo microscope by observing the condition of the gonophores; in the coxa of the third pereiopod in females or the coxa of the fifth pereiopod in males.

Habitat: Muddy bottom.

Depth range: 300-400 m

**Worldwide Distribution:** Eastern Atlantic, Mediterranean (d'Udekem d'Acoz, 1999)



Figure 2. Munida intermedia A. Milne-Edwards and Bouvier, 1899 Q, Sığacık Bay (dorsal view). CL (without rostrum): 15.3 mm

GENUS: *IRIDONIDA* MACPHERSON & BABA *IN* MACHORDOM, AHYONG, ANDREAKIS, BABA, BUCKLEY, GARCIA-JIMENEZ, MCCALLUM, RODRIGUEZ-FLORES & MACPHERSON, 2022

#### Iridonida speciosa (von Martens, 1878)

**Synonyms:** *Munida iris* A. Milne Edwards, 1880 sensu A. Milne Edwards and Bouvier, 1900; *Munida iris rutllanti* Zariquiey Álvarez, 1952; *Munida rutllanti* Zariquiey Álvarez, 1952; *Munida speciosa* von Martens, 1878

This species (as *Munida rutllanti*) was reported by Kocak et al. (2008), Özcan and Katağan (2009; 2011) from Sığacık Bay.

#### Depth range: 200-400 m

**Worldwide Distribution:** Eastern Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).

SUPERFAMILY: PAGUROIDEA LATREILLE, 1802

FAMILY: PAGURIDAE LATREILLE, 1802

GENUS: PAGURUS FABRICIUS, 1775

#### Pagurus prideaux Leach, 1815

**Synonyms:** Pagurus pridauxii Leach, 1815; Pagurus prideauxi Leach, 1815; Pagurus solitarius Risso, 182

*P. prideaux* was reported by Özcan and Katağan (2009) from Sığacık Bay.

Depth range: 200-300 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

#### BRACHYURA

SUPERFAMILY: PORTUNOIDEA RAFINESQUE, 1815

FAMILY: POLYBIIDAE ORTMANN, 1893

GENUS: BATHYNECTES STIMPSON, 1871

Bathynectes maravigna (Prestandrea, 1839)

**Synonyms:** Bathynectes superba (Costa, 1853); Portunus maravigna Prestandrea, 1839; Portunus superbus Costa, 1853; Thranites velox Bovallius, 1876

*B. maravigna* is new record for Sığacık Bay. *B. maravigna* was recorded for the first time in Turkish seas by Kocataş and Katağan (2003) in Aegean Sea at a depth of 720 m in a silty substratum. Sex was identified by observing the characteristic shape of the abdomen (triangular in males, circular in females) and the appearance of the first two pairs of pleopods (developed into gonopods in males).

Habitat: Sandy-muddy bottom.

Depth range: 500-600 m

**Worldwide Distribution:** Eastern Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).



Figure 3. Bathynectes maravigna (Prestandrea, 1839) &, Sığacık Bay (dorsal view). CL: 41.6 mm

GENUS MACROPIPUS PRESTANDREA, 1833

#### Macropipus tuberculatus (Roux, 1830)

**Synonyms:** Macropipus citrinus Cocco, 1832; Macropipus citrinus Prestandrea, 1833; Portunus macropipus Cocco, 1832; Portunus macropipus Prestandrea, 1833; Portunus tuberculatus Roux, 1830

The species was reported by Özcan and Katağan (2009; 2011) from Sığacık Bay.

Depth range: 200-400 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

SUPERFAMILY: CALAPPOIDEA DE HAAN, 1833

FAMILY: CALAPPIDAE DE HAAN, 1833

GENUS CALAPPA WEBER, 1795

#### Calappa granulata (Linnaeus, 1758)

Synonyms: Calappa tuerkayana Pastore, 1996; Calappa turkayana Pastore, 1995; Calappe granulata (Linnaeus, 1758);

Cancer granulata Linnaeus, 1758

*C. granulata* was recorded by Özcan and Katağan (2009) from Sığacık Bay.

Depth range: 200-400 m

Worldwide Distribution: Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).

SUPERFAMILY: GONEPLACOIDEA MACLEAY, 1838

FAMILY: GONEPLACIDAE MACLEAY, 1838

GENUS GONEPLAX LEACH, 1814

#### Goneplax rhomboides (Linnaeus, 1758)

**Synonyms:** Cancer angulata Pennant, 1777; Cancer rhomboides Linnaeus, 1758; Gelasimus Bellii J Couch, 1838; Goneplax angulata (Pennant, 1777); Goneplax rhomboidalis Risso, 1827; Gonoplax angulata (Pennant, 1777); Gonoplax rhomboides (Linnaeus, 1758); Ocypoda bispinosa Lamarck, 1801; Ocypoda unispinosa Rafinesque, 1814; Ocypode longimana Latreille, 1803

It was reported by Özcan and Katağan (2009) from Sığacık Bay.

Depth range: 200-400 m

**Worldwide Distribution:** Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).

SUPERFAMILY: MAJOIDEA SAMOUELLE, 1819

FAMILY: INACHIDAE MACLEAY, 1838

GENUS MACROPODIA LEACH, 1814

Macropodia tenuirostris (Leach, 1814)

**Synonyms:** Leptopodia tenuirostris Leach, 1814; Macropodia longipes (A. Milne-Edwards and Bouvier, 1899); Stenorhynchus longipes A. Milne-Edwards and Bouvier, 1899; Stenorhynchus longipes A. Milne-Edwards and Bouvier, 1894

This species was recorded by Özcan and Katağan (2009) from Sığacık Bay under the name *Macropodia longipes*.

Depth range: 200-400 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

#### Macropodia rostrata

**Synonyms:** Cancer rostrata Linnaeus, 1761; Cancer rostratus Linnaeus, 1761; Macropodia parva Van Noort and Adema, 1985; Macropodia spinulosa (Miers, 1881); Stenorhynchus inermis Heller, 1856; Stenorhynchus rostratus (Linnaeus, 1761); Stenorhynchus rostratus var. spinulosus Miers, 1881

*M. rostrata* was reported by Özcan and Katağan (2009) from Sığacık Bay.

Depth range: 200-300 m

**Worldwide Distribution:** Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).

#### GENUS: INACHUS WEBER, 1795

#### Inachus parvirostris (Risso, 1816)

**Synonyms:** Doclea fabriciana Risso, 1827; Macropus parvirostris Risso, 1816

The species was reported Kocak (2010) from Sığacık Bay.

Depth range: 300-400 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

SUPERFAMILY: DORIPPOIDEA MACLEAY, 1838

FAMILY: DORIPPIDAE MACLEAY, 1838

GENUS: MEDORIPPE MANNING & HOLTHUIS, 1981

#### Medorippe lanata (Linnaeus, 1767)

**Synonyms:** Cancer lanatus Linnaeus, 1767; Dorippe affinis Desmarest, 1823; Dorippe lanata (Linnaeus, 1767)

It was recorded by Özcan and Katağan (2009) from Sığacık Bay.

Depth range: 200-400 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

SUPERFAMILY: PARTHENOPOIDEA MACLEAY, 1838

FAMILY: PARTHENOPIDAE MACLEAY, 1838

GENUS: SPINOLAMBRUS TAN & NG, 2007

#### Spinolambrus macrochelos (Herbst, 1790)

**Synonyms:** Cancer macrochelos Herbst, 1790; Eurynome aldrovandi Risso, 1827; Lambrus macrochelos (Herbst, 1790); Lambrus mediterraneus Roux, 1828; Lambrus Miersii A. Milne-Edwards and Bouvier, 1898; Lambrus spinosissimus Osório, 1923; Parthenope humbertii Costa, 1838; Parthenope macrochelos (Herbst, 1790); Parthenope miersii (A. Milne-Edwards and Bouvier, 1898)

This species (as *Parthenope macrochelos*) was reported by Özcan and Katağan (2009) from Sığacık Bay.

Depth range: 200-300 m

Worldwide Distribution: Atlantic, Mediterranean (Falciai and Minervini, 1996).

GENUS: PARTHENOPOIDES MIERS, 1879

#### Parthenopoides massena (Roux, 1830)

**Synonyms:** Lambrus (Parthenopoides) bicarinatus Miers, 1881; Lambrus (Parthenopoides) massena (Roux, 1830); Lambrus (Parthenopoides) massena var. atlanticus Miers, 1881; Lambrus (Parthenopoides) massena var. goreensis Miers, 1881; Lambrus (Parthenopoides) massena var. spinifer Miers, 1881; Lambrus hexacanthus A. Costa in Hope, 1851; Lambrus massena Roux, 1830; Lambrus rugosus Stimpson, 1857; Lambrus setubalensis de Brito Capello, 1866; Parthenope contracta OG Costa and A Costa, 1840; Parthenope massena (Roux, 1830)

*P. massena* was reported by Özcan and Katağan (2009) from Sığacık Bay under the name *Parthenope massena*.

Depth range: 300-400 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

SUPERFAMILY: PILUMNOIDEA SAMOUELLE, 1819

FAMILY: PILUMNIDAE SAMOUELLE, 1819

GENUS: PILUMNUS LEACH, 1816

Pilumnus hirtellus (Linnaeus, 1761)

Synonyms: Cancer hirtellus Linnaeus, 1761

The species was reported by Özcan and Katağan (2009) from Sığacık Bay.

Depth range: 200-300 m

**Worldwide Distribution:** Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).

SUPERFAMILY: XANTHOIDEA MACLEAY, 1838

FAMILY: XANTHIDAE MACLEAY, 1838

GENUS: XANTHO LEACH, 1814

Xantho pilipes A. Milne-Edwards, 1867

Synonyms: -

It was reported by Özcan and Katağan (2009) from Sığacık Bay.

Depth range: 300-400 m.

Worldwide Distribution: Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).

#### CARIDEA

SUPERFAMILY: PROCESSOIDEA ORTMANN, 1896

FAMILY: PROCESSIDAE ORTMANN, 1896

GENUS: PROCESSA LEACH, 1815

#### Processa canaliculata Leach, 1815

**Synonyms:** *Nika cannelata* Griffith and Pidgeon, 1833; *Nika couchii* Bell, 1847; *Nika edulis* var. *britannica* Czerniavsky, 1884; *Nika edulis* var. *mediterranea* (Parisi, 1915); *Nika mediterranea* Parisi, 1915; *Processa mediterranea* (Parisi, 1915); *Processa prostatica* Zariquiey Cenarro, 1941

*P. canaliculata* is recorded for the first time from Sigacik Bay. This species was recorded for the first time in Turkish seas by Santucci (1928) from Aegean Sea. Sex was determined by the presence (males) and absence (females) of an appendix masculina on the second pleopod.

Habitat: Sandy-muddy bottom.

Depth range: 500-600 m

**Worldwide Distribution:** Eastern Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).



Figure 4. Processa canaliculata Leach, 1815 ♀, Sığacık Bay (lateral view). TL: 64.2 mm

SUPERFAMILY: CRANGONOIDEA HAWORTH, 1825

FAMILY: CRANGONIDAE HAWORTH, 1825

GENUS: PONTOPHILUS LEACH, 1817

Pontophilus spinosus (Leach, 1816)

Synonyms: Crangon spinosus Leach, 1816

The present report represents a new record for *P. spinosus* from Siğacık Bay. The species was recorded for the first time in Turkish seas by Adensamer (1898) from Aegean Sea. Sex determination was made by the same method as for *P. canaliculata*.

Habitat: Muddy bottom.

Depth range: 300-400 m

**Worldwide Distribution:** Eastern Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).



Figure 5. Pontophilus spinosus (Leach, 1816) o<sup>\*</sup>, Sığacık Bay (lateral view). CL: 11.7 mm TL: 48.3 mm

GENUS AEGAEON AGASSIZ, 1846

#### Aegaeon lacazei (Gourret, 1887)

**Synonyms:** Aegeon brendani Kemp, 1906; Aegeon lacazei (Gourret, 1887); Crangon lacazei Gourret,1887; Pontocaris habereri Doflein, 1902; Pontocaris lacazei (Gourret, 1887)

This species was reported by Özcan and Katağan (2009, 2011) from Sığacık Bay.

Depth range: 300-600 m

**Worldwide Distribution:** Atlantic, Mediterranean, Indo-Pacific (d'Udekem d'Acoz, 1999).

SUPERFAMILY: PANDALOIDEA HAWORTH, 1825

FAMILY: PANDALIDAE HAWORTH, 1825

GENUS: CHLOROTOCUS A. MILNE-EDWARDS, 1882

#### Chlorotocus crassicornis (Costa, 1871)

**Synonyms:** Chlorotocus gracilipes A. Milne-Edwards, 1882; Chlorotocus gracilipes var. andamanensis Alcock and Anderson, 1899; Chlorotocus incertus Spence Bate, 1888; Palemon chlorotocus Filhol, 1885; Pandalus crassicornis A. Costa, 1871

*C. crassicornis* was reported by Özcan and Katağan (2009, 2011) from Sığacık Bay

Depth range: 300-400 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

GENUS: PLESIONIKA SPENCE BATE, 1888

Plesionika narval (Fabricius, 1787)

**Synonyms:** Astacus narval Fabricius, 1787; Nisea formosa Risso, 1844; Palaemon tarentinum O.G. Costa, 1844; Palemon pristis Risso, 1816; Pandalus escatilis Stimpson, 1860; Pandalus narwal (Fabricius, 1787); Pandalus stylopus A. Milne-Edwards, 1883; Parapandalus narval (Fabricius, 1787)

This species was reported by Özcan and Katağan (2009) from Sığacık Bay as *Parapandalus narval*.

Depth range: 300-400 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

#### Plesionika heterocarpus (A. Costa, 1871)

**Synonyms:** *Pandalus heterocarpus* A. Costa, 1871; *Pandalus longicarpus* A. Milne-Edwards, 1883; *Pandalus sagittarius* A. Milne-Edwards, 1883

The species was reported by Özcan and Katağan (2009, 2011), Oraner et al. (2018), and Dereli et al. (2021) from Sığacık Bay.

Depth range: 200-600 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

#### Plesionika martia (A. Milne-Edwards, 1883)

**Synonyms:** *Pandalus martius* A. Milne-Edwards, 1883; *Plesionika (Pandalus) sicherii* Riggio, 1900; *Plesionika martia martia (A. Milne-Edwards, 1883)* 

It was reported by Koçak et al. (2012) and Dereli et al. (2021) from Sığacık Bay.

Depth range: 400-600 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

#### DENDROBRANCHIATA

SUPERFAMILY: PENAEOIDEA RAFINESQUE, 1815

FAMILY: PENAEIDAE RAFINESQUE, 1815

GENUS: PARAPENAEUS SMITH, 1885

#### Parapenaeus longirostris (Lucas, 1846)

**Synonyms:** *Penaeus bocagei* Johnson, 1863; *Penaeus lividus* Filhol, 1885; *Penaeus longirostris* Lucas, 1846; *Peneus cocco* Prestandrea, 1833

*P. longirostris* was reported by Özcan and Katağan (2009, 2011), and Dereli et al. (2021) from Sığacık Bay.

Depth range: 200-600 m

Worldwide Distribution: Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).

FAMILY: ARISTEIDAE WOOD-MASON // WOOD-MASON & ALCOCK, 1891

GENUS: ARISTAEOMORPHA WOOD-MASON IN WOOD-MASON & ALCOCK, 1891

#### Aristaeomorpha foliacea (Risso, 1827)

**Synonyms:** Aristaeomorpha giglioliana Wood-Mason, 1892; Aristaeomorpha mediterranea Adensamer, 1898; Aristaeomorpha rostridentata (Spence Bate, 1888); Aristeomorpha foliacea (Risso, 1827); Aristeus japonicus Yokoya, 1933; Aristeus rostridentatus Spence Bate, 1881 Penaeus meridionalis Hope, 1851; Peneus foliacea Risso, 1827

This species was reported by Dereli et al. (2021) from Siğacık Bay.

Depth range: 200-400 m

**Worldwide Distribution:** Atlantic, Mediterranean, Indo-Pacific (d'Udekem d'Acoz, 1999).

FAMILY: SOLENOCERIDAE WOOD-MASON *IN* WOOD-MASON & ALCOCK, 1891

GENUS: SOLENOCERA LUCAS, 1849

#### Solenocera membranacea (Risso, 1816)

Synonyms: Penaeus carinatus Otto, 1821; Penaeus distinctus De Haan, 1849; Penaeus membranaceus Risso, 1816; Penaeus siphonoceros Philippi, 1840; Peneus siphonoceros Philippi, 1840; Solenocera philippii Lucas, 1849

S. membranacea was recorded by Özcan and Katağan (2009, 2011) from Sığacık Bay.

Depth range: 200-400 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

SUPERFAMILY: PASIPHAEOIDEA DANA, 1852

FAMILY: PASIPHAEIDAE DANA, 1852

GENUS: PASIPHAEA SAVIGNY, 1816

#### Pasiphaea sivado (Risso, 1816)

**Synonyms:** Alpheus sivado Risso, 1816; Pasiphaea brevirostris H. Milne Edwards, 1837; Pasiphaea distincta Guérin-Méneville, 1844; Pasiphaea neapolitana Hope, 1851; Pasiphaea savignyi H. Milne Edwards, 1837

The species was reported by Özcan and Katağan (2009) from Sığacık Bay.

Depth range: 400-600 m

Worldwide Distribution: Atlantic, Mediterranean (d'Udekem d'Acoz, 1999).

#### ASTACIDEA

SUPERFAMILY: NEPHROPOIDEA DANA, 1852

FAMILY: NEPHROPIDAE DANA, 1852

GENUS: NEPHROPS LEACH, 1814

#### Nephrops norvegicus (Linnaeus, 1758)

**Synonyms:** Astacus rugosus Rafinesque, 1814; Cancer norvegicus Linnaeus, 1758; Nephrops norvegicus var. meridionalis Zariquey Cenarro, 1935; Nephrops norwegicus (Linnaeus, 1758); Nephropsis cornubiensis Spence Bate and Brooking Rowe, 1880

*N. norvegicus* was reported by Özcan and Katağan (2009, 2011), Aydın and Aydın (2011), and Dereli et al. (2021) from Sığacık Bay.

Depth Range: 200-600 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

#### POLYCHELIDA

SUPERFAMILY: ERYONOIDEA DE HAAN, 1841

FAMILY: POLYCHELIDAE WOOD-MASON, 1874

GENUS: POLYCHELES HELLER, 1862

Polycheles typhlops Heller, 1862

**Synonyms:** Eryoneicus Kempi Selbie, 1914; Pentacheles Agassizii A. Milne-Edwards, 1880; Pentacheles Hextii Alcock, 1894; Polycheles doderleini Riggio, 1895; Polycheles hextii (Alcock, 1894); Polycheles typhlops typhlops Heller, 1862; Stereomastis artuzi Artüz, Kubanç and Kubanç, 2014

The species was recorded by Özcan and Katağan (2009) from Sığacık Bay under the name Polycheles typhlops typhlops.

#### Depth Range: 300-400 m

**Worldwide Distribution:** Atlantic, Mediterranean (Falciai and Minervini, 1996).

#### DISCUSSION

In the present study, 16 deep-sea decapod crustaceans were determined from the Sigacik Bay, 5 of which belong to the Caridea, 3 to the Brachyura, 3 to the Dendrobranchiata, 1 to the Polychelida, 1 to the Astacidea, and 3 to the Anomura. Among these, 4 species (Bathynectes maravigna, Munida intermedia, Processa canaliculata, and Pontophilus spinosus) were new records for Sığacık Bay. B. maravigna was reported by Kocataş and Katağan (2003) from Aegean Sea coasts of Türkiye; and by Özcan et al. (2009b), Deval and Froglia (2016) and Deval et al. (2017) from the Mediterranean coasts of Türkiye. Previous records of *M. intermedia* from Turkish seas were only from Aegean Sea coasts of Türkiye (Katağan et al., 1988; Koçak et al., 2001; Kocataş and Katağan, 2003; Gönülal et al., 2014). P. canaliculata was previously reported by Müller (1986) from Sea of Marmara; by Santucci (1928) from the Aegean Sea coasts of Türkiye; by Kocatas and Katağan (2003), and Gönülal and Dalyan (2017) from the Mediterranean coasts of Türkiye. P. spinosus was reported by Adensamer (1898) and Kocatas and Katağan (2003) only from the Turkish Aegean Sea coasts.

In Özcan and Katağan (2009) 21 species are reported from Sığacık Bay, of which 5 are Caridea (Aegaeon lacazei, Chlorotocus crassicornis, Plesionika narval (as Parapandalus narval), P. heterocarpus, Pasiphaea sivado), 2 Dendrobranchiata (Parapenaeus longirostris, Solenocera membranacea), 10 Brachyura (Calappa granulata, Goneplax rhomboides, Macropipus tuberculatus, Macropodia tenuirostris

#### REFERENCES

- Adensamser, T. (1898). Berichte der Commission für Erforschung des östlichen Mittelmeers. XXII. Zoologische Ergebnisse. XI. Decapoden gesammelt auf S.M. Schiff Pola in den Jahren 1890-1894. Denkschriften der Mathematisch-Naturwissenschaftlichen Classe der Kaiserlichen Akademie der Wissenschaften, 65, 597-628.
- Aydın, I., & Aydın, C. (2011). Length-length and length-weight relationships in Nephrops norvegicus from the Aegean Sea (Linnaeus, 1758). Mediterranean Marine Science, 12(1), 121-128. https://doi.org/ 10.12681/mms.56
- Bakır A.K., Katağan T., Aker H.V., Özcan T., Sezgin M., Ateş A.S., Koçak C., & Kırkım F. (2014). The Marine Arthropods of Turkey. *Turkish Journal of Zoology*, 38, 765-831. https://doi.org/10.3906/zoo-1405-48
- Dereli, H., Salman, M. A., Özaydın, O., & Tosunoğlu, Z. (2021). Spatial and temporal characteristics of demersal assemblages in Sığacık Bay, Central Aegean Sea, Turkey. COMU Journal of Marine Science Fisheries, 4(2), 116-129. https://doi.org/10.46384/jmsf.977558

(as M. longipes), M. rostrata, Medorippe lanata, Spinolambrus macrochelos (as Parthenope macrochelos), Parthenopoides massena (as Parthenope massena), Pilumnus hirtellus, Xantho pilipes), 1 Astacidea (Nephrops norvegicus), 1 Polychelida (Polycheles typhlops (as Polycheles typhlops typhlops)), 2 Anomura (Iridonida speciosa (as Munida rutllanti), Pagurus prideaux). Among these, 9 were also recorded in the present study (A. lacazei, P. longirostris, S. membranacea, P. heterocarpus, M. tuberculatus, N. norvegicus, P. typhlops, I. speciosa, P. prideaux). Since then 3 more deep-sea decapod crustacean species have been reported from Sigacik Bay (Inachus parvirostris (Kocak, 2010), Plesionika martia (Koçak et al., 2012) and Aristaeomorpha foliacea (Dereli et al., 2021). The contributions increased the total number of deep-sea decapod crustacean species found in Sığacık Bay to 24.

#### CONCLUSION

In the present study, *Bathynectes maravigna*, *Munida intermedia*, *Pontophilus spinosus* and *Processa canaliculata* are the first record from Sığacık Bay. With these species, the total number of deep-sea decapod crustacean species in Sığacık Bay is raised from 24 to 28.

#### ACKNOWLEDGEMENTS AND FUNDING

I want to express my gratitude to Dr Zafer Tosunoğlu (Ege University, İzmir) who collected the specimens.

#### AUTHORSHIP CONTRIBUTIONS

Single author.

#### CONFLICT OF INTEREST STATEMENT

The author declare that there are no conflicts of interest or competing interests.

#### ETHICS APPROVAL

No specific ethical approval was necessary for this study.

#### DATA AVAILABILITY

All relevant data is in the article.

- Deval, M.C., & Froglia, C. (2016). New records of deep-sea decapod crustaceans in the Turkish Mediterranean Sea (North Levant Sea). Zoology in the Middle East, 62(4), 323–330. https://doi.org/10.1080/09397140.2016.1250709
- Deval, M.C., Yılmaz, S., & Kapiris, K. (2017). Spatio temporal variations in decapod crustacean assemblages of bathyal ground in the Antalya Bay (Eastern Mediterranean). *Turkish Journal of Fisheries and Aquatic Sciences*, 17, 967-979. https://doi.org/10.4194/1303-2712-v17\_5\_12
- Falciai, L., & Minervini, R. (1996). Guide des Homards, crabes, langoustes, crevettes et autres Crustacés Décapodos d'Europe. Paris, France: Delachaux et Niestlé Publishers.
- Geldiay, R., & Kocataş, A. (1970). A report on the Anomura collected from the Aegean coast of Turkey (Crustacea, Decapoda). İzmir, Türkiye: Ege University, Faculty of Science Publishers.
- Gönülal, O., & Dalyan, C. (2017). Bathymetric distribution of macroinvertebrates in the Northeastern Levantine Sea and the

Northeastern Aegean Sea based on bottom-trawl surveys. Oceanological and Hydrobiological Studies, 46(4), 405-413. https://doi.org/ 10.1515/ohs-2017-0040

- Gönülal, O., Sezgin, M., & Öztürk, B. (2014). Diversity and bathymetric distribution of decapod crustaceans attracted to baited traps from the middle slope of the Northern Aegean Sea. Crustaceana, 87, 19–34. https://doi.org/10.1163/15685403-00003278
- Ingle, R. W. (1993). Hermit crabs of the Northeastern Atlantic Ocean and Mediterranean Sea. An Illustrated key. London, Chapman and Hall Press.
- Katağan, T., Kocataş, A., & Benli, H.A. (1988). Note Préliminaire Sur Les Décapodes Bathyaux de la côte Turque de la Mer Egée. CIESM. Rapp. Comm. int. Mer Médit. 31(2), 23.
- Kocak, C. (2010). Supplementary data on the distribution of *Inachus parvirostris* (Risso, 1816) (Decapoda, Brachyura, Inachidae) from Turkey. *Crustaceana*, 83(9), 1135-1139. https://doi.org/10.1163/001121610X520 975
- Koçak, C., & Katağan, T. (2008). Contribution to the knowledge on the bathymetric Distribution of anomurans (Decapoda, Anomura) in the Aegean Sea (Eastern Mediterranean). *Crustaceana*, 81 (1), 99-108.
- Koçak, C., Katağan, T., & Kocataş, A. (2001). Anomurans of the Aegean Coasts of Turkey and Reported Species from Turkish Seas. *Turkish Journal of Zoology*, 25 (3), 305-311.
- Kocak, C., Leblebici, S., Ozaydın, O., & Katagan, T. (2008). Some morphometric aspects of *Munida rutilanti* Zariquiey Alvarez, 1952 (Decapoda, Anomura, Galatheidae) in Sıgacık Bay (Southeastern Aegean Sea). *Crustaceana*, 81(7), 873-881.
- Koçak, C., Özbek, M., & Tosunoğlu, Z. (2012). Aspects of biology of the deepwater pandalid shrimp *Plesionika martia* (A. Milne-Edwards, 1883) from Sığacık Bay (eastern Mediterranean). *Turkish Journal of Zoology*, 36(2), 215-221. https://doi.org/10.3906/zoo-1006-4
- Kocataş A., & Katağan, T. (2003). The decapod crustacean fauna of Turkish Seas. Zoology in the Middle East, 29, 63–74.
- Müller, G. J. (1986). Review of the hitherto recorded species of Crustacea Decapoda from the Bosphorus, the Sea of Marmara and the Dardanelles. *Cercetari Marine IRCM*, 19, 109-130.
- Noël, P. Y. (1992). Clé préliminaire d'identification des Crustacea Decapoda

de France et des principales autres espèces d'Europe. Secrétariat de la Faune et de la Flore. Paris, France: Muséum National d'Histoire Naturelle Publishers.

- Oraner, E., Tosunoğlu, Z., Koçak, C., & Özbek, M. (2018). Some morphometric features of *Plesionika heterocarpus* (Decapoda: Pandalidae) in Siğacık Bay, Aegean Sea. *Ege Journal of Fisheries and Aquatic Sciences*, 35(1), 1-6. https://doi.org/10.12714/egejfas.2018.35.1.01
- Özcan T, Irmak, E, Ateş A.S., & Katağan, T. (2009a). First record of the red shrimp, Aristeus antennatus (Risso, 1816) (Decapoda: Aristeidae) from the Aegean Sea coast of Turkey. *Mediterranean Marine Science*, 10, 121–124.
- Özcan, T., Irmak, E., Ateş, A.S., & Katağan, T. (2009b). The occurence of Bathynectes maravigna (Decapoda: Brachyura: Portunidae) in the Turkish Part of the Levantine Sea. Marine Biodiversity Records, 2, 1-2. https://doi.org/10.1017/S1755267209000955
- Özcan, T., & Katağan, T. (2009). Deep-Water Decapod Crustacean Fauna of the Sigacik Bay, Aegean Sea Coast of Turkey. Ege Journal of Fisheries & Aquatic Sciences, 26(2), 149-151.
- Özcan, T., & Katağan, T. (2011). Length-weight relationship of eight decapod crustaceans of the Siğacık Bay, Aegean Sea coast of Turkey. *IUFS Journal of Biology*, 70(1), 45-48.
- Sardà, F., Cartes, J.E., & Company, J.B. (1994). Spatio-temporal variations in megabenthos abundance in three different habitats of the Catalan deepsea (Western Mediterranean). *Marine Biology*, 120, 211-219. https://doi.org/10.1007/bf00349681
- Santucci R. (1928). Alcuni Crostacei Decapodi delle isole Egee. Ricerche faunistiche nelle isole italiane dell' Egeo. Archivio Zoologico ItalianoArchivio Zoologico Italiano,12, 345-354.
- Udekem d'Acoz, C.d', (1999). Inventaire et distribution des Crustacés Décapodes de l'Atlantique nord-oriental, de la Méditerranée et des eaux continentales adjacentes au nord de 25°N. Paris, France: Muséum National d'Histoire Naturelle Publishers.
- WoRMS (2024, February 14). World register of marine species. Decapoda. https://www.marinespecies.org/aphia.php?p=taxdetails&id=1130
- Zariquiey Álvarez, R. (1968). Crustáceos Decápodos Ibéricos. Barcelona, Juvenil Press.

# Distribution of the critically endangered fan mussel *Pinna nobilis* population in the Çanakkale Strait and Marmara Sea

### Sefa Acarlı<sup>1\* 10</sup> • Deniz Acarlı<sup>2 10</sup> • Semih Kale<sup>1 10</sup>

<sup>1</sup> Faculty of Marine Sciences and Technology, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Türkiye

<sup>2</sup> Vocational School of Maritime Technologies, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Türkiye

\*Corresponding author: sefaacarli@comu.edu.tr

Received date: 05.01.2024

Accepted date: 17.02.2024

#### How to cite this paper:

Acarlı, S., Acarlı, D., & Kale, S. (2024). Distribution of the critically endangered fan mussel *Pinna nobilis* population in the Çanakkale Strait and Marmara Sea. *Ege Journal of Fisheries and Aquatic Sciences*, *41*(1), 46-53. https://doi.org/10.12714/egejfas.41.1.07

**Abstract:** This study was conducted with the primary objective of determining the presence of both healthy and impacted *Pinna nobilis* populations along the European coasts of the Sea of Marmara, followed by the identification of *P. nobilis* abundance and survival rates in the region encompassing the Ganakkale Strait and the southern coasts of the Sea of Marmara. Underwater surveys were randomly conducted at 19 distinct stations, including 8 stations along the European coasts of the Sea of Marmara, 7 stations along the southern coasts of the Sea of Marmara, 7 stations along the southern coasts of the Sea of Marmara, 7 stations along the southern coasts of the Sea of Marmara, and 6 stations within the Çanakkale Strait. SCUBA diving equipment was utilized to record information on habitat structure, water temperature, depth, and visibility at each station. The transect length during underwater surveys and the number of transects at each station were determined based on the condition of the seabed and the size of the area, respectively. Throughout the study period (September 2021 and October 2023), water temperature fluctuated between 17.5°C and 26.6°C. At the end of the study, a total of 395 individuals (147 live, 248 dead) were observed, with live individuals exhibiting total lengths ranging from 16.4 cm to 50.9 cm. This study represents the first investigation into the spatial distribution of *P. nobilis* along the European coast of the Marmara Sea. The study contributes significantly to enhancing our understanding of the ecology of *P. nobilis* oppulations in both the Sea of Marmara and the Canakkale Strait. Additionally, recommendations for the rehabilitation of impacted populations and the conservation of buddenty populations have been provided for decision-makers and fisheries managers.

Keywords: Pinna nobilis, survival, density, conservation, mortality, attachment

#### INTRODUCTION

*Pinna nobilis* Linnaeus 1758 is endemic to the Mediterranean and exhibits a fan-shaped morphology, reaching lengths of up to 120 cm (Zavodnik et al., 1991). Found in seagrass meadows (*Posidonia oceanica* and *Cymodocea nodosa*) within sandy, sandy-muddy, and gravelly areas, these organisms partially embed themselves into the substrate from the umbo region, securing their attachment to the substrate through byssus threads (Tebble, 1966; Zavodnik et al., 1991; Acarli et al., 2011; Hendriks et al., 2011; Prado et al., 2014; Kurtay et al., 2018). Owing to its carbonate-hardened surface, *P. nobilis* provides a habitat for numerous substrate-dependent species (Acarli et al., 2010).

*P. nobilis* possesses the ability to filter water, contributing to the quality of the surrounding water by reducing organic and inorganic material through its filtration process (Vicente et al., 2002; Basso et al., 2015; Natalotto et al., 2015). Furthermore, it is hypothesized to have the capacity to regulate regional water characteristics (Trigos et al., 2014). In laboratory conditions, individuals with a length of 30 cm have been reported to filter more than 2500 liters of water per day, a process dependent on their physiological energy requirements (Caballero, 2021).

In 2016, cases of *P. nobilis* mortality reaching 100% were first reported in Spain, followed by subsequent occurrences along other Mediterranean coasts, including France, Tunisia, Morocco, Cyprus, the Adriatic Sea, and the Aegean Sea (Vázquez-Luis et al., 2017; Catanese et al., 2018; Carella et al., 2019; Katsanevakis et al., 2019; Acarlı et al., 2020). Subsequently, the IUCN elevated the conservation status of

*P. nobilis* to "Critically Endangered" due to these mass mortalities. *Haplosporidium pinnae* parasite was initially identified as the causative agent for these mass mortalities (Catanese et al., 2018). Later studies reported the involvement of different pathogens in conjunction with *H. pinnae* in these mass mortalities (Carella et al., 2019, 2020; Lattos et al., 2021a, b; Pensa et al., 2022).

Nevertheless, live populations of *P. nobilis* still exist in shallow bays, coastal lagoons (Katsanevakis et al., 2007; Ruitton and Lefebvre, 2021; García-March et al., 2020; Çınar et al., 2021a; Katsanevakis et al., 2022; Nebot-Colomer et al., 2022; Peyran et al., 2022; Papadakis et al., 2022), the Çanakkale Strait (Acarlı et al., 2021), and the Sea of Marmara (Çınar et al., 2021a; Acarli et al., 2021; Acarlı et al., 2022; Karadurmuş and Sarı, 2022) in the Mediterranean region.

The Sea of Marmara, situated between the Black Sea and the Aegean Sea, functions as an inland sea influenced by the Black Sea, Aegean, and Mediterranean. The saline waters of the Mediterranean (up to 40‰) mix with the less saline waters of the Black Sea (approximately 20‰) through subsurface currents and form the surface currents in the waters of the Sea of Marmara. The Marmara ecosystem, encompassing biological components from both seas, is recognized as an ecological corridor and is considered unique (lşinibilir-Okyar et al., 2015; Demirel et al., 2023). Despite encountering environmental disasters such as mucilage in the Sea of Marmara (Balkis-Ozdelice et al., 2021), it has been reported to continue harboring healthy populations of the endangered *P. nobilis* species (Acarli et al., 2021). Identifying healthy populations, revitalizing damaged populations, and rehabilitating them are crucial aspects. Although studies have been conducted on the presence of the species in some parts of the southern coast of the Çanakkale Strait and the Sea of Marmara, there is no information available regarding the situation on the European coast of the Sea of Marmara. Therefore, this study was conducted initially to determine the presence of healthy and damaged *P. nobilis* populations on the European coast of the Sea of Marmara. Subsequently, it aimed to assess the abundance and survival rate of *P. nobilis* on the southern coast of the Sea of Marmara Çanakkale Strait.

#### MATERIAL AND METHODS

This study was conducted at 19 different stations located in the Çanakkale Strait, the European coast of the Sea of Marmara, and the Anatolian coast (Figure 1). Additionally, observational dives were carried out at three different stations in the Çanakkale Strait, where healthy *P. nobilis* populations were reported by Acarli et al. (2021, 2022a) and Acarli et al. (2021) (checkpoint stations: 10, 21, 22). A two-year monitoring program was conducted between September 2021 and October 2023. Water temperature, salinity, and depth were recorded using YSI probe and Oceanic GEO2. SCUBA equipment was employed for underwater observations in the study area. The substrate structure at the stations was determined as gravel, gravel with macroalgae, sandy, *Cymodocea nodosa, Posidonia oceanica*, and rocky.



Figure 1. Map of the study area

The study area was systematically surveyed by a trained scientific diver, initiating the survey at a depth of 0.5 m perpendicular to the shoreline for each designated station. The transect underwater visual census method was employed for data collection, with transect lines initially planned at a standard distance of 50 m and a width of two meters on each side. However, variations in transect line distances occurred due to specific conditions at each station, including habitat structure, depth zone, and underwater visibility. At each station, a minimum of one transect was executed to assess the presence or absence of the *P. nobilis* population. Within each transect, a meticulously examined area of 200 m<sup>2</sup> was considered, and the number of transects ranged from 1 to 6.

In instances where no *P. nobilis* individuals were initially observed, additional transects were undertaken. The decision to conduct supplementary transects was contingent upon factors such as habitat structure, depth zone, and underwater visibility, as delineated in Table 1. However, in cases where no individuals were detected in these supplemental transects, no further transect activities were pursued.

All shells of both living and deceased *P. nobilis* individuals were measured for their widths, and subsequently, their total volumes were calculated using the formula established by Acarli et al. (2018) as follows:

$$TL = 2.74W + 2.018 \tag{1}$$

In this equation, *TL* denotes the total length, and *W* represents the width of the specimen. A one-way analysis of variance (ANOVA) was executed to compare the variations in lengths of *P. nobilis* among different stations. The population density for each station was determined by computing the number of individuals per 100 m<sup>2</sup>. To assess potential differences in the population density (ind./100 m<sup>2</sup>) of *P. nobilis* among stations, permutational analysis of variance (PERMANOVA) was employed. The PERMANOVA analysis was carried out using Past (v4.08) (Hammer et al., 2001). The Euclidean distance matrix was applied, and groups were delineated based on the presence or absence of specimens at the stations. The stations, where *P. nobilis* was identified (8 levels), were designated as a fixed factor in conducting the PERMANOVA.

#### RESULTS

Table 1 provides information about the surveyed area, maximum depth, underwater visibility, temperature, salinity, and habitat structure of the investigated stations in the study. Among these, stations numbered 1, 2, 3, 5, 6, 13, 16, 17, 19, and 20 did not exhibit any presence of *P. nobilis* individuals. These stations were characterized by a predominant sandy substrate in terms of habitat structure. In contrast, stations numbered 4, 7, 8, 9, 11, 12, 13, 15, and 18 revealed the presence of *P. nobilis* individuals in habitats characterized by sandy substrate, *C. nodosa*, and to a lesser extent, *P. oceanica*.

Observations (monitoring dives) conducted at stations 10, 21, and 22 did not reveal any signs of intense mass mortality, indicating a healthy population. Furthermore, the presence of young individuals (>15 cm) recruiting to the population was noted at these stations. During underwater surveys, a total of 147 living individuals and 282 deceased individuals were identified (Table 2). Observations throughout the study revealed that the highest number of living individuals was recorded at station 9, while the highest number of deceased individuals was documented at station 12. The lengths of living individuals ranged from 16.4 to 50.9 cm at stations 8 and 4, respectively, whereas the lengths of deceased individuals varied between 30.1 and 68.2 cm at stations 15 and 9, respectively. Furthermore, stations 4 (100%) and 9 (94.9%) were identified as having the highest survival rates.

| Table 1. | Stations | s, surveyed | d area (r | m²), maximun | n depth ( | m), horizonta | al underwa | ter visibility | (m), te | mpera | ture (°C), | salinit | y (‰ | נ), ar | nd obse | erved |
|----------|----------|-------------|-----------|--------------|-----------|---------------|------------|----------------|---------|-------|------------|---------|------|--------|---------|-------|
|          | habitat  | structure   | during    | underwater   | surveys   | conducted     | between    | September      | 2021    | and   | October    | 2023    | in † | the    | study   | area  |

| Sta.<br>No | Date           | Surveyed<br>Area (m <sup>2</sup> ) | Max.<br>Depth (m) | Underwater<br>Visibility (m) | Temperature<br>(°C) | Salinity<br>(‰) | Habitat Structure                                          |
|------------|----------------|------------------------------------|-------------------|------------------------------|---------------------|-----------------|------------------------------------------------------------|
| 1          | August 2022    | 1000                               | 8                 | 2.0                          | 25.8                | 20.2            | Gravel (10%), Sandy (80%), Rocky (10%)                     |
| 2          | August 2022    | 2000                               | 9                 | 4.0                          | 26.6                | 20.6            | Gravel (5%), Sandy (95%)                                   |
| 3          | August 2022    | 1000                               | 11                | 6.5                          | 25.6                | 20.6            | Gravel with macroalgae (10%), Sandy (90%)                  |
| 4          | August 2022    | 750                                | 9                 | 7.5                          | 25.8                | 20.2            | Gravel with macroalgae (90%), Sandy (10%)                  |
| 5          | August 2022    | 1000                               | 7                 | 4.0                          | 25.5                | 19.9            | Gravel (70%), Sandy (10%), <i>C. nodosa</i> (20%)          |
| 6          | September2021  | 1500                               | 7                 | 5.0                          | 24.4                | 20.02           | Gravel (10%), Sandy (20%), <i>C. nodosa</i> (70%)          |
| 7          | September 2021 | 500                                | 8                 | 7.0                          | 24.8                | 20.09           | Gravel (20%), Sandy (10%), <i>C. nodosa</i> (70%)          |
| 8          | September 2021 | 750                                | 5                 | 3.5                          | 24.7                | 20.09           | Gravel (20%), Sandy (10%), <i>C. nodosa</i> (70%)          |
| 9          | October2023    | 1250                               | 11                | 6.0                          | 22.6                | 24.7            | Sandy (10%), <i>C. nodosa</i> (90%)                        |
| 10*        | July 2023      | 750                                | 9                 | 3.0                          | 27.9                | 18.3            | Posidonia sp. (30%), Zostera sp. (70%)                     |
| 11         | October2023    | 500                                | 7                 | 4.0                          | 18.0                | 22.4            | Sandy (10%), C. nodosa (80%), P. ocenica (10%)             |
| 12         | October2023    | 1000                               | 4                 | 2.0                          | 22.2                | 24.6            | Sandy (10%), <i>C. nodosa</i> (90%)                        |
| 13         | October2023    | 250                                | 7                 | 7.0                          | 20.0                | 30.0            | Shell fragments (85%), Sandy (5%), C. nodosa (10%)         |
| 14         | October2023    | 750                                | 4                 | 2.5                          | 20.0                | 26.9            | Gravel (80%), Sandy (10%), C. nodosa (8%), P. ocenica (2%) |
| 15         | September 2021 | 1000                               | 12                | 10.0                         | 17.5                | 20.0            | Gravel (20%), Sandy (10%), <i>C. nodosa</i> (70%)          |
| 16         | September 2021 | 1500                               | 7                 | 3.0                          | 23.3                | 20.0            | Gravel (30%), Sandy (30%), <i>C. nodosa</i> (40%)          |
| 17         | September 2021 | 1000                               | 6                 | 4.0                          | 24.7                | 20.5            | Gravel (20%), Sandy (40%), C. nodosa (20%)                 |
| 18         | September 2021 | 1000                               | 8                 | 3.0                          | 24.6                | 20.7            | Gravel (10%), Sandy (10%), <i>C. nodosa</i> (80%)          |
| 19         | September 2021 | 1200                               | 3.5               | 2.0                          | 25.2                | 19.9            | Sandy (100%)                                               |
| 20         | September 2021 | 1000                               | 10                | 2-7                          | 21.6                | 20.0            | Sandy (70%), C. nodosa (30%)                               |
| 21*        | July 2023      | 1250                               | 13                | 6.0                          | 27.0                | 19.4            | Gravel (10%), <i>C. nodosa</i> (90%)                       |
| 22*        | July 2023      | 500                                | 10                | 2.0                          | 26.6                | 18.6            | Gravel (10%), Sandy (20%), C. nodosa (70%)                 |

\*Checkpoint stations previously studied by Acarlı et al. (2021, 2022a) and Acarli et al. (2021)

Table 2. Number of alive and dead individuals, minimum shell length (LMin), and maximum shell length (LMax) of Pinna nobilis individuals

| Stations | N  | Alive N | L <sub>Min</sub> (cm) | L <sub>Max</sub> (cm) | Mean±SD  | Dead N | $L_{Min}$ | L <sub>Max</sub> | Mean±SD   |
|----------|----|---------|-----------------------|-----------------------|----------|--------|-----------|------------------|-----------|
| 4        | 21 | 21      | 27.8                  | 50.9                  | 42.7±7.0 | 0      | -         | -                | -         |
| 7        | 41 | 21      | 22.9                  | 35.0                  | 27.3±6.7 | 20     | 33.0      | 45.1             | 38.2±3.8  |
| 8        | 32 | 26      | 16.4                  | 45.1                  | 34.6±6.7 | 6      | 32.7      | 56.4             | 39.9±8.5  |
| 9        | 59 | 56      | 18.5                  | 47.3                  | 37.9±5.4 | 3      | 39.6      | 68.2             | 50.7±15.3 |
| 11       | 21 | 4       | 29.2                  | 40.7                  | 34.6±5.8 | 17     | 42.6      | 53.3             | 47.5±5.4  |
| 12       | 92 | 0       | -                     | -                     | -        | 92     | 33.0      | 53.6             | 42.3±4.7  |
| 14       | 26 | 11      | 31.9                  | 39.6                  | 34.9±2.3 | 15     | 31.8      | 40.5             | 35.4±4.5  |
| 15       | 72 | 8       | 21.5                  | 44.8                  | 30.2±8.4 | 64     | 30.1      | 54.5             | 35.5±4.7  |
| 18       | 31 | 0       | -                     | -                     | -        | 31     | 31.0      | 42.0             | 37.35±4.7 |

The population density across stations, encompassing both living and deceased individuals, was determined to range between 2.8 ind./100 m<sup>2</sup> (gravelly habitat) and 8.2 ind./100 m<sup>2</sup> (seagrass habitat). The lowest population density was observed at station 4, while the highest population density was identified at station 7. It has been observed that *P. nobilis* is densely distributed in seagrass habitats while scarce or no populations are found in gravelly or sandy habitats. However, stations 12 and 18 exhibited a mortality rate of 100% (Figure 2). Furthermore, the population demonstrated a concentrated distribution at depths between 2 and 4 m, with a decrease in the number of individuals as depth increased (Figure 3).

The results of the PERMANOVA, aimed at assessing variations in population density across stations, indicated a statistically significant difference in the population density of *P. nobilis* among the surveyed stations (p<0.01). The total sum of squares was 1196, with a within-group sum of squares of 229.1. The resulting pseudo-F value was 4.641, and the associated p-value was determined to be 0.0001.



Figure 2. Population density (a) and mortality rates (b) of *Pinna* nobilis at stations



Figure 3. Frequency distribution of alive and dead *Pinna nobilis* individuals by depth (m)

#### DISCUSSION

*P. nobilis* is distributed in various seas surrounding Türkiye, excluding the Black Sea coast, including the Mediterranean, Aegean, and Marmara Seas, as well as the shallow waters of the Çanakkale Strait, encompassing sandy areas, seagrass beds, and calcium carbonate formations (locally called as 'tragana'). The northernmost reported point of its distribution in Turkish waters is the vicinity of the Marmara Sea near the Istanbul Strait (between Kızkulesi and Tophane) (Çınar et al., 2021a). Despite reports of intensive mortality cases in *P. nobilis* stocks at different points along the Aegean Sea coast of Türkiye, healthy *P. nobilis* beds have been identified in various locations in the Marmara Sea (Öndes et al., 2020a; Acarlı et al., 2021, 2022a; Çınar et al., 2021a). Acarlı et al. (2021) reported 100% mortality at the entrance of the Çanakkale Strait, connecting the Aegean and Marmara Seas, while a 90.38% survival rate was observed at station 10 in the Çanakkale Strait (checkpoint station). Similarly, Öndes et al. (2020a) identified a 90.48% survival rate at station 21 (checkpoint station). The lowest survival rate in the Çanakkale Strait was reported as 0.32% by Özalp and Kersting (2020). Additionally, mass mortalities have been reported in some stations in the Marmara Sea (Çınar et al., 2021b) and the Çanakkale Strait (Özalp and Kersting, 2020; Künili et al., 2021).

This study fills a gap in the literature by providing survival rates at stations along the European coast of the Marmara Sea, where no information was previously available. Survival rates were determined as 100%, 81.25%, and 51.22% at stations 4, 7, and 8, respectively. No dead or living individuals were encountered at five stations along the European coast of the Marmara Sea (stations 1, 2, 3, 5, and 6). In contrast, variable survival rates were observed at stations along the Çanakkale Strait and the Asian coasts of the Marmara Sea. Despite similar findings reported by different researchers in relatively close areas (Çınar et al., 2021a, b; Acarlı et al., 2021, 2022a, b), examinations of these studies reveal differences in the numbers of living and dead individuals, population density (ind./100 m<sup>2</sup>), and survival rates.

Furthermore, three different locations previously studied by Acarlı et al. (2021, 2022a) and Acarli et al. (2021) (Çanakkale Strait: station 10; Marmara Sea: stations 21 and 22) were designated as checkpoint stations in the current study, and no mass mortality was encountered during observation dives conducted in 2023. This highlights the crucial role of factors such as the spread or transport of the disease (Vázquez-Luis et al., 2017), environmental factors like wind direction, and current regimes that enhance the spread (Acarlı et al., 2022a) in the occurrence of mass mortalities in P. nobilis populations distributed in different areas. On the other hand, Cinar et al. (2021b) reported an 88% mortality rate during the period of mucilage occurrence. whereas Acarli et al. (2021) determined a mortality rate of 35.9% before the mucilage period (for the year 2020) and 16.1% during the mucilage period (for the year 2021). Acarly et al. (2022b) proposed that this phenomenon is attributed to the influx of Aegean Sea water, carried by bottom currents through the Canakkale Strait, reaching the island region in the southern part of the Marmara Sea. Moreover, despite high mortality rates observed in the same region, the presence of healthy populations in certain areas is believed to be due to different current regimes and prevailing northward winds (Acarlı et al., 2022b). The current study's observations near stations with intensive mortalities (stations 10, 21, and 22) still show a significantly high number of healthy individuals, supporting this assumption.

The youngest individuals identified in the study were determined to have lengths of 16 cm and 18.5 cm at stations 7 and 24, respectively. These individuals exhibited thin and transparent shells. It has been observed that in the cultivation of this species, they reach a length of 150 mm at the end of

the first year (Kožul et al., 2011; Acarlı et al., 2011; Demirci and Acarli, 2019). Hence, on the basis of the morphological characteristics of these individuals, it can be concluded that they are part of the previous year's cohort and are one year old. Acarlı et al. (2021) and Acarli et al. (2021) reported the detection of newly recruited individuals into the stock, emphasizing the dynamic nature of the population. Additionally, newly settled individuals were commonly observed at stations designated as checkpoint stations. The observation of this phenomenon in the Marmara Sea is of great significance. This is because, during the mucilage period observed from the fall of 2020 through 2021, researchers noted that P. nobilis spat could not attach to collectors left to gather juveniles (Personal observation). In other words, the identification of newly recruited healthy individuals after the mucilage formation period is promising, indicating that there is still hope for the sustainability and continuity of P. nobilis populations in the Marmara Sea. This finding suggests that efforts can be made to ensure the healthy maintenance and continuity of stocks in the face of environmental challenges, such as mucilage events.

The population density varied between 2.8 ind./100 m<sup>2</sup> and 8.2 ind./100 m<sup>2</sup> (by excluding practically zero densities). Rabaoui et al. (2010) indicated that the population density was zero in very shallow waters (<0.3 m depth) and increased in the 0-6 m depth. Rabaoui et al. (2010) noted the average and maximum measured densities were 1.5 and 56 ind./100 m<sup>2</sup>, respectively. In addition, several studies reported different densities in the Mediterranean Sea. Mean densities were reported as 11.5 ind./100 m<sup>2</sup> in Mljet National Park, Croatia (Šiletić and Peharda, 2003), 0.57 ind./100 m<sup>2</sup> in Souda Bay, Greece (Katsanevakis and Thessalou-Legaki, 2009), 11.6 ind./100 m<sup>2</sup> in Gulf of Oristano, Sardinia, Italy (Addis et al., 2009), 2.5 ind./100 m<sup>2</sup> in Tunisia coast (Rabaoui et al., 2008), 0.02 ind./100 m<sup>2</sup> in Lake Faro (Sicily, Italy) (Donato et al., 2021). 2.21 ind./100 m<sup>2</sup> in the shallow sites of Isla del Barón and 4.95 ind./100 m<sup>2</sup> Pueblo Cálido in the Mar Menor lagoon, located in the southeast of the Iberian Peninsula, (Nebot-Colomer et al., 2022). On the other hand, in the Marmara Sea, Acarlı et al. (2022a) noted that the highest mean population density was 27 ind./100 m<sup>2</sup> which is very close to Öndes et al. (2020a) with 25.2 ind./100 m<sup>2</sup>. However, Öndes et al. (2020b) stated that there was an exceptional population density of 100 ind./100 m<sup>2</sup> in the Aegean Sea. Acarli et al. (2021) recorded that the maximum population density reached 112 ind./100 m<sup>2</sup> in the Ocaklar Bay, southern part of the Marmara Sea. Cinar et al. (2021b) mentioned that population density varied from 0.3 ind./100 m<sup>2</sup> to 12 ind./100 m<sup>2</sup> along the coastlines of islands in the southern part of the Marmara Sea. Cinar et al. (2021a) affirmed that the average density ranged from 6 ind./100 m<sup>2</sup> to 240 ind./100 m<sup>2</sup> in the Marmara Sea (along the coastlines of islands in the southern part of the Marmara Sea). Densities depend largely on sampling design and field size; both vary significantly across studies.

In this study, it has been determined that P. nobilis individuals exhibit a dense distribution up to a depth of 6 meters. Generally, the depths at which this species is distributed show regional variations. Vázquez-Luis et al. (2014) reported that the highest densities are mostly limited to shallow coastal regions, with the expected maximum density being below 20 meters, and densities decreasing with increasing depth. Similarly, Basso et al. (2015) documented that there was a decreasing trend in the number of individuals with increasing depth, with higher densities in the first 10-12 m. It has also been observed that P. nobilis densely distributed in seagrass habitats while scarce or no population has been observed in gravelly or sandy habitats. Many researchers have reported the dense distribution of P. nobilis populations within seagrass meadows (Coppa et al., 2010; Basso et al., 2015; Tatton et al., 2019; Acarli, 2021; Acarlı et al., 2021). Basso et al. (2015) compared 24 scientific papers based on 77 observations and noted that P. nobilis were most frequently observed in P. oceanica beds with an average of 8.06±2.35 ind./100 m<sup>2</sup>, while in Cymodocea meadows with averages of 11.06±1.82 ind./100 m<sup>2</sup>. The widespread occurrence of P. nobilis individuals, especially in environments with seagrasses such as P. oceanica and C. nodosa, suggests that this species has a high oxygen demand. In other words, it is evident that P. nobilis thrives in areas where water quality is relatively good. Likewise, Rabaoui et al. (2010) indicated that the density increased with the distance from the city and it was attributed to pollution. Similarly, in the present study, the highest number of live individuals was observed among C. nodosa and P. oceanica seagrasses. The lowest number was found in sandy habitats. possibly due to the vulnerability of young individuals with thin and fragile shells to water movements and potential predators in sandy habitats.

However, individuals among seagrasses may exhibit a higher survival rate due to both increased protection against predators and less impact from water movements. Similarly, researchers have reported higher densities of P. nobilis populations in sheltered biotopes with weak hydrodynamics (low wave motion and low current velocity) and substrates composed of rocky, gravel, and biodegraded material along with P. oceanica and C. nodosa (Rabaoui et al., 2008, 2009; Hendriks et al., 2011; Acarlı et al., 2022a). On the other hand, Cinar and Bilecenoglu (2023) observed two cases related to predation pressure by the spiny sea star Marthasterias glacialis on P. nobilis juvenile individuals. Acarlı et al. (2022b) reported that no P. nobilis individuals were observed in all stations dominated by the north wind on the coast of the Kapıdağ Peninsula (southern Marmara Sea). Therefore, this ecosystem type is considered highly favorable for the settlement and survival of Pinnidae spat.

In the current study, the majority of *P. nobilis* individuals at all stations were observed to be oriented perpendicular to the shore. This positioning can be explained as a reduction in the potential effects by minimizing the exposed surface area subjected to hydrodynamic forces, aiming to alleviate the stress created by wave motion.

Following mass mortalities observed at different locations in the Mediterranean, the focus has shifted towards identifying healthy P. nobilis populations. Despite reports of mass mortalities at various points in the Marmara Sea and the Canakkale Strait, the documentation of the presence of healthy and dynamic populations is crucial for the continuity of the species. This study identified healthy populations at 9 researched stations (4, 7, 8, 9, 11, 13, and 15) and 3 checkpoint stations (10, 21, and 22). To ensure species sustainability, it is essential to continuously monitor populations identified as healthy in the Marmara Sea. Additionally, it is recommended to establish special environmental protection areas, such as marine parks, to conserve these habitats. Furthermore, the collection of young individuals using collectors in these areas and their transplantation to suitable locations with protected systems on the seafloor should be undertaken to ensure the conservation of the species.

#### CONCLUSION

This research represents the first exploration of the spatial distribution of *P. nobilis* along the European coast of the Marmara Sea. Healthy populations at 12 researched stations during the two-year monitoring study and no mass mortality was encountered during observation dives conducted in 2023 at checkpoint stations. It has also been observed that individuals of *P. nobilis* are densely distributed extending to a depth of 6 meters. In spite of reports indicating widespread mortalities at different locations in the Marmara Sea and the Çanakkale Strait, documenting the existence of thriving and dynamic populations is essential for the species' continuity. While the lowest numbers were found in sandy habitats,

#### REFERENCES

- Acarlı, S., Acarlı, D., & Kale, S. (2021). Current status of critically endangered fan mussel *Pinna nobilis* (Linnaeus 1758) population in Çanakkale Strait, Turkey. *Marine Science and Technology Bulletin*, 10(1), 62-70. https://doi.org/10.33714/masteb.793885
- Acarlı, D., Acarlı, S., & Kale, S. (2022a). The struggle for life: *Pinna nobilis* in the Marmara Sea (Turkey). *Thalassas*, 38, 1199-1212. https://doi.org/10.1007/s41208-022-00470-0
- Acarlı, D., Acarlı, S., & Kale, S. (2022b). Recent status of *Pinna nobilis* population in the Çanakkale Strait and the Marmara Sea. In B. Öztürk, H. A. Ergül, A. C. Yalçıner, H. Öztürk & B. Salioğlu (Eds.), *Marmara Sea* 2022 Symposium (pp. 434-442). İstanbul, Türkiye: Proceedings Book (in Turkish).
- Acarlı, D., Acarlı, S., & Öktener, A. (2020). Mass mortality report of critically endangered fan mussel (*Pinna nobilis*, Linnaeus 1758) from Cunda Island, Ayvalık (Aegean Sea, Turkey). Acta Natura et Scientia, 1(1), 109-117. https://doi.org/10.29329/actanatsci.2020.313.12
- Acarlı, S., Lok, A., Yigitkurt, S., & Palaz, M. (2011). Culture of fan mussel (*Pinna nobilis*, Linnaeus 1758) in relation to size on suspended culture system in Izmir Bay, Aegean Sea, Turkey. *Kafkas Üniversitesi Veteriner Fakültesi Dergisi*, 17(6), 995-1002.
- Acarlı, S., Lök, A., Acarlı, D., Serdar, S., Köse, A., Yiğitkurt, S., Kırtık, A., & Güler, M. (2010). Macrobenthic species attached on the shells of pina

individuals among seagrasses exhibited a higher survival rate possibly due to both increased protection against predators and less impact from water movements. The identification of recently recruited, healthy individuals following the mucilage formation period is promising, suggesting that there is still optimism for the sustainability and persistence of *P. nobilis* populations in the Marmara Sea. This study significantly contributes to advancing our comprehension of the ecology of *P. nobilis* populations in both the Sea of Marmara and the Çanakkale Strait. Therefore, recommendations for the restoration of affected populations and the preservation of healthy populations should be applied by decision-makers and fisheries managers.

#### ACKNOWLEDGEMENTS AND FUNDING

This research has not received a specific grant, fund or other support from any funding agency in the public, commercial, or not-for-profit sectors.

#### **AUTHORSHIP CONTRIBUTIONS**

Sefa Acarlı: Conceptualization, Writing-Original draft, Writing-Review and Editing, Supervision, Deniz Acarlı: Methodology, Writing-Original draft, Semih Kale: Writing-Original draft, Writing-Review and Editing, Formal analysis.

#### CONFLICT OF INTEREST

The authors declare that there are no conflicts of interest or competing interests.

#### **ETHICS APPROVAL**

No specific ethical approval was necessary for this study.

#### DATA AVAILABILITY

All relevant data is in the article.

(*Pinna nobilis*, Linnaeus 1758), distributed around Urla Karantina Island. In L. Barlas (Ed.), *Türkiye'nin Kıyı ve Deniz Alanları VIII. Ulusal Konferansı* (pp 741-746). Trabzon, Turkey: Proceedings Book. Vol.2 (in Turkish)

- Acarli, S. (2021). Population, aquaculture and transplantation applications of critically endangered species *Pinna nobilis* (Linnaeus 1758) in the Mediterranean Sea. *Marine Science and Technology Bulletin*, 10(4), 350-369. https://doi.org/10.33714/masteb.627562
- Acarli, D., Acarli, S., & Kale, S. (2021). The effects of mucilage event on the population of critically endangered *Pinna nobilis* (Linnaeus 1758) in Ocaklar Bay (Marmara Sea, Turkey). *Acta Natura et Scientia*, 2(2), 148-158. https://doi.org/10.29329/actanatsci.2021.350.09
- Acarli, S., Lok, A., & Acarli, D. (2011). Preliminary spat settlement of fan mussel *Pinna nobilis* Linnaeus 1758 on a mesh bag collector in Karantina Island (Eastern Aegean Sea, Turkey). *Fresenius Environmental Bulletin*, 20(10), 2501-2507.
- Acarli, S., Lok, A., Acarli, D., & Kirtik, A. (2018). Reproductive cycle and biochemical composition in the adductor muscle of the endangered species fan mussel *Pinna nobilis*, Linnaeus 1758 from the Aegean Sea, Turkey. *Fresenius Environmental Bulletin*, 27(10), 6506-6518.
- Addis, P., Secci, M., Brundu, G., Manunza, A., Corrias, S., & Cau, A. (2009). Density, size structure, shell orientation and epibiontic colonization of

the fan mussel *Pinna nobilis* L. 1758 (Mollusca: Bivalvia) in three contrasting habitats in an estuarine area of Sardinia (W Mediterranean). *Scientia Marina*, 73, 143-152. https://doi.org/10.3989/scimar.2009.73n1143

- Balkis-Ozdelice, N., Durmuş, T., & Balci, M. (2021) A preliminary study on the intense pelagic and benthic mucilage phenomenon observed in the Sea of Marmara. *International Journal of Environment and Geoinformatics*, 8(4), 414–422. https://doi.org/10.30897/ijegeo.954787
- Basso, L., Vázquez-Luis, M., García-March, J. R., Deudero, S., Alvarez, E., Vicente, N., Duarte, C. M., & Hendriks, I. E. (2015). The pen shell, *Pinna nobilis*: A review of population status and recommended research priorities in the Mediterranean Sea. *Advances in Marine Biology*, *71*, 109-160. https://doi.org/10.1016/bs.amb.2015.06.002
- Caballero, S. H. (2021). Advances in ecology and biology for the conservation of the critically endangered species Pinna nobilis (Linnaeus, 1758) endemic of the Mediterranean (in Spanish). Doctoral Dissertation, 232 p. Universidad Catolica de Valencia, San Vicente Martir.
- Carella, F., Aceto, S., Pollaro, F., Miccio, A., Iaria, C., Carrasco, N., Prado, P., & De Vico, G. (2019). A mycobacterial disease is associated with the silent mass mortality of the pen shell *Pinna nobilis* along the Tyrrhenian coastline of Italy. *Scientific Reports*, 9, 2725. https://doi.org/10.1038/s41 598-018-37217-y
- Carella, F., Antuofermo, E., Farina, S., Salati, F., Mandas, D., Prado, P., Panarese, R., Marino, F., Fiocchi, E., Pretto, T., & De Vico, G. (2020). In the wake of the ongoing mass mortality events: co-occurrence of *Mycobacterium, Haplosporidium* and other pathogens in *Pinna nobilis* collected in Italy and Spain (Mediterranean Sea). *Frontiers in Marine Science*, 7, 48. https://doi.org/10.3389/fmars.2020.00048
- Catanese, G., Grau, A., Valencia, K. J. M., Garcia-March, J. R., Vázquez-Luis, M., Alvarez, E., Deudero, S., Darriba, S., Carballal, M. J., & Villalba, A. (2018) *Haplosporidium pinnae* sp. nov., a haplosporidan parasite associated with mass mortalities of the fan mussel, *Pinna nobilis*, in the Western Mediterranean Sea. *Journal of Invertebrate Pathology*, 157, 9-24. https://doi.org/10.1016/j.jip.2018.07.006
- Çınar, M. E., Bilecenoğlu, M., Yokeş, M., & Güçlüsoy, H. (2021a). Pinna nobilis in the Marmara Islands (Sea of Marmara); it still remains uninfected by the epidemic and acts as egg laying substratum for an alien invader. Mediterranean Marine Science, 22(1), 161-168. https://doi.org/10.12681/mms. 25289
- Çınar, M. E., Bilecenoğlu, M., Yokeş, M., & Güçlüsoy, H. (2021b). The last fortress fell: Mass mortality of *Pinna nobilis* in the Sea of Marmara. *Mediterranean Marine Science*, 22(3), 669-676. https://doi.org/10.12681/ mms.27137
- Çinar, M. E., & Bilecenoglu, M. (2023). The predation of *Pinna nobilis* (Mollusca) juveniles by the spiny sea star *Marthasterias glacialis* (Echinodermata) in the Sea of Marmara. *Sustainability*, *15*(22), 15719. https://doi.org/10.3390/su152215719
- Coppa, S., Guala, I., de Lucia, G. A., Massaro, G., & Bressan, M. (2010). Density and distribution patterns of the endangered species *Pinna* nobilis within a *Posidonia oceanica* meadow in the Gulf of Oristano (Italy). *Journal of the Marine Biological Association of the United Kingdom*, 90(5), 885-894. https://doi.org/10.1017/S002531540999141X
- Demirci, A., & Acarli, S. (2019) Estimation growth parameters of endangered the fan mussel species (*Pinna nobilis* L.) by using different growth models from Izmir Bay, Aegean Sea, Turkey. *Fresenius Environmental Bulletin*, 28(10), 7368-7374.
- Demirel N., Yıldız, T., Ulman, A., Zengin, M., Akoğlu, E., Saygu, İ., Ertör-Akyazı, P., Gül, G., Bedikoğlu, D., & Yilmaz, İ. N. (2023). Status of the Sea of Marmara ecosystem and its fishery resources: Mucilage episodes and recommendations for sustainable fisheries. In M. Albay (Ed.), *Mucilage problem in the Sea of Marmara* (pp. 217-232). İstanbul: Istanbul University Press. https://doi.org/10.26650/B/LS32.2023.003.10
- Donato, G., Vázquez-Luis, M., Nebot-Colomer, E., Lunetta, A., & Giacobbe, S. (2021). Noble fan-shell, *Pinna nobilis*, in Lake Faro (Sicily, Italy): Ineluctable decline or extreme opportunity? *Estuarine, Coastal and Shelf Science*, 261, 107536. https://doi.org/10.1016/j.ecss.2021.107536

- García-March, J. R., Tena, J., Henandis, S., Vázquez-Luis, M., López, D., Téllez, C., Prado, P., Navas, J. I., Bernal, J., Catanese, G., Grau, A., López-Sanmartín, M., Nebot-Colomer, E., Ortega, A., Planes, S., Kersting, D., Jimenez, S., Hendriks, I., Moreno, D., ...& Deudero, S. (2020). Can we save a marine species affected by a highly infective, highly lethal, waterborne disease from extinction? *Biological Conservation*, 243, 108498. https://doi.org/10.1016/j.biocon.2020.108498
- Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. *Palaeontologia Electronica*, 4(1), 4.
- Hendriks, I. E., Cabanellas-Reboredo, M., Bouma, T. J., Deudero, S., & Duarte, C. M. (2011). Seagrass meadows modify drag forces on the shell of the fan mussel *Pinna nobilis*. *Estuaries and Coasts*, 34, 60-67. https://doi.org/10.1007/s12237-010-9309-y
- İşinibilir-Okyar, M., Üstün, F., & Orun, D. A. (2015). Changes in abundance and community structure of the zooplankton population during the 2008 mucilage event in the northeastern Marmara Sea. *Turkish Journal of Zoology*, 39(1), 28-38. https://doi.org/10.3906/zoo-1308-11
- Karadurmuş, U., & Sarı, M. (2022). The last hope: the struggle for survival of fan mussels in the Gulf of Erdek, Sea of Marmara, Turkey. *Mediterranean Marine Science*, 23(3), 473-483. https://doi.org/10.12681/ mms.28474
- Katsanevakis, S. (2007). Density surface modelling with line transect sampling as a tool for abundance estimation of marine benthic species: the *Pinna nobilis* example in a marine lake. *Marine Biology*, 152, 77-85. https://doi.org/10.1007/s00227-007-0659-3
- Katsanevakis, S., Carella, F., Çınar, M. E., Cizmek, H., Jimenez, C., Kersting, D. K., & Moreno, D. (2022). The fan mussel *Pinna nobilis* on the brink of extinction in the Mediterranean. *Imperiled: The Encyclopedia of Conservation*, 1-3, 200-209. https://doi.org/10.1016/B978-0-12-821139-7.00070-2
- Katsanevakis, S., & Thessalou-Legaki, M. (2009). Spatial distribution, abundance and habitat use of the protected fan mussel *Pinna nobilis* in Souda Bay (Crete). *Aquatic Biology*, 8, 45-54. https://doi.org/10.3354/ab00204
- Katsanevakis, S., Tsirintanis, K., Tsaparis, D., Doukas, D., Sini, M., Athanassopoulou, F., Nikolaos Kolygas, M., Tontis, D., Koutsoubas, D., & Bakopoulos, V. (2019) The cryptogenic parasite *Haplosporidium pinnae* invades the Aegean Sea and causes the collapse of *Pinna nobilis* populations. *Aquatic Invasions*, 14(2), 150-164. https://doi.org/10.3391/ai.2019.14.2.01
- Kožul, V., Glavić, N., Bolotin, J., & Antolović, N. (2011). The experimental rearing of fan mussel *Pinna nobilis* (Linnaeus, 1758). 46th Croatian and 6th International Symposium on Agriculture (pp. 803-806). Zagreb, Croatia. Proceedings Book.
- Kurtay, E., Lok, Kirtik, A., Kucukdermenci, A., Yigitkurt, S. (2018). Spat recruitment of endangered Bivalve *Pinna nobilis* (Linnaeus, 1758) at two different depths in Izmir Bay, Turkey. *Cahiers de Biologie Marine*, 59, 501-507. https://doi.org/10.21411/CBM.A.43183913
- Künili, İ. E., Ertürk Gürkan, S., Aksu, A., Turgay, E., Çakir, F., Gürkan, M., & Altinağaç, U. (2021). Mass mortality in endangered fan mussels *Pinna nobilis* (Linnaeus, 1758) caused by co-infection of *Haplosporidium pinnae* and multiple *Vibrio* infection in Çanakkale Strait, Turkey. *Biomarkers*, 26(5), 450-461. https://doi.org/10.1080/1354750X.2021.191 0344
- Lattos, A., Bitchava, K., Giantsis, I. A., Theodorou, J. A., Batargias, C., & Michaelidis, B. (2021a). The implication of *Vibrio* bacteria in the winter mortalities of the critically endangered *Pinna nobilis*. *Microorganisms*, 9(5), 922. https://doi.org/10.3390/microorganisms9050922
- Lattos, A., Feidantsis, K., Georgoulis, I., Giantsis, I. A., Karagiannis, D., Theodorou, J. A., Staikou, A., & Michaelidis, B. (2021b). Pathophysiological responses of *Pinna nobilis* individuals enlightens the etiology of mass mortality situation in the Mediterranean populations. *Cells*, *10*(11), 2838. https://doi.org/10.3390/cells10112838
- Natalotto, A., Sureda, A., Maisano, M., Spanò, N., Mauceri, A., & Deudero, S. (2015). Biomarkers of environmental stress in gills of *Pinna nobilis*

(Linnaeus 1758) from Balearic Island. *Ecotoxicology and Environmental* Safety, 122, 9-16. https://doi.org/10.1016/j.ecoenv.2015.06.035

- Nebot-Colomer, E., Álvarez, E., Belando, M. D., Deudero, S., Catanese, G., Bernardeau-Esteller, J., Garcia-Muñoz, R., Ramos-Segura, A., Ruiz, J. M., & Vázquez-Luis, M. (2022). Living under threat: Will one of the last *Pinna nobilis* populations be able to survive? *Aquatic Conservation: Marine and Freshwater Ecosystems*, 32(1), 1-13. https://doi.org/10.1002/aqc.3738
- Öndes, F., Alan, V., Akçalı, B., & Güçlüsoy, H. (2020a). Mass mortality of the fan mussel, *Pinna nobilis* in Turkey (eastern Mediterranean). *Marine Ecology*, 41(5), e12607. https://doi.org/10.1111/maec.12607
- Öndes, F., Kaiser, M. J., & Güçlüsoy, H. (2020b). Human impacts on the endangered fan mussel *Pinna nobilis. Aquatic Conservation: Marine and Freshwater Ecosystems*, 30(1), 31-41. https://doi.org/10.1002/aqc.3237
- Özalp, H. B., & Kersting, D. K. (2020). A pan-Mediterranean extinction? Pinna nobilis mass mortality has reached the Turkish straits system. Marine Biodiversity, 50, 81. https://doi.org/10.1007/s12526-020-01110-7
- Papadakis, O., Papadimitriou, E., & Katsanevakis, S. (2022). *Pinna nobilis*, in search for the surviving populations in Greece. In T. Akriotis, D. Koutsoubas, P. Zannetos, Y. Zevgolis, C. S. Georgiadis & P. Lymberakis (Eds.), (2022), 15th International Congress on the Zoogeography and Ecology of Greece and Adjacent Regions (pp. 89). Mytilini, Greece: Abstract Book. https://doi.org/10.13140/RG.2.2.11353.60007
- Pensa, D., Fianchini, A., Grosso, L., Ventura, D., Cataudella, S., Scardi, M., & Rakaj, A. (2022). Population status, distribution and trophic implications of *Pinna nobilis* along the South-eastern Italian coast. *npj Biodiversity*, 1(1), 3. https://doi.org/10.1038/s44185-022-00002-2
- Peyran, C., Morage, T., Nebot-Colomer, E., Iwankow, G., & Planes, S. (2022). Unexpected residual habitats raise hope for the survival of the fan mussel *Pinna nobilis* along the Occitan coast (Northwest Mediterranean Sea). *Endangered Species Research*, 48, 123-137. https://doi.org/10.3354/esr01191
- Prado, P., Caiola, N., & Ibáñez, C. (2014). Habitat use by a large population of *Pinna nobilis* in shallow waters. *Scientia Marina*, 78(4), 555-565.
- Rabaoui, L., Tlig-Zouari, S., & Ben Hassine, O. K. (2008). Distribution and habitat of the fan mussel *Pinna nobilis* Linnaeus, 1758 (Mollusca: Bivalvia) along the northern and eastern Tunisian coasts. *Cahiers de Biologie Marine*, 49(1), 67-78.
- Rabaoui, L., Tlig-Zouari, S., Cosentino, A. & Hassine, O.K.B. (2009) Associated fauna of the fan shell *Pinna nobilis* (Mollusca: Bivalvia) in the

northern and eastern Tunisian coasts. Scientia Marina, 73(1), 129-141. https://doi.org/10.3989/scimar.2009.73n1129

- Rabaoui, L., Tlig-Zouari, S., Katsanevakis, S., & Ben Hassien, O. K. (2010). Modelling population density of *Pinna nobilis* (Bivalvia) on the eastern and southeastern coast of Tunisia. *Journal of Molluscan Studies*, 76, 340-347. https://doi.org/10.1093/mollus/eyq023
- Ruitton, S., & Lefebvre, C. (2021). Toward a recovery of the pen shell Pinna nobilis in the French Mediterranean open sea?. Scientific Reports of the Port-Cros National Park, 35, 429-434.
- Šiletić, T., & Peharda, M. (2003). Population study of the fan shell *Pinna* nobilis L. in Malo and Veliko Jezero of the Mljet National Park (Adriatic Sea). Scientia Marina, 67, 91-98. https://doi.org/10.3989/scimar.2003.67n191
- Tatton, B., Gütte, C., Meek, S., Grandjean, T., Miliou, A., Sargeant, S., & Steer, M. D. (2019). The importance of *Posidonia oceanica* meadows to the distribution of Pinna nobilis through habitat suitability modelling. In H. Langar, A. Ouerghi (Eds.), 6th Mediterranean Symposium on Marine Vegetation (pp. 133-134). Antalya, Turkey: Proceedings Book.
- Tebble, N. (1966). British bivalve seashells. A Handbook for Identification. London: Trustees of the British Museum (Natural History). 212 p.
- Trigos, S., García-March, J. R., Vicente, N., Tena, J., & Torres, J. (2014). Utilization of muddy detritus as organic matter source by the fan mussel *Pinna nobilis. Mediterranean Marine Science*, 15(3), 667-674. https://doi.org/10.12681/mms.836
- Vázquez-Luis, M., March, D., Álvarez, E., Álvarez-Berastegui, D., & Deudero, S. (2014). Spatial distribution modelling of the endangered bivalve *Pinna nobilis* in a Marine Protected Area. *Mediterranean Marine Science*, 15(3), 626-634. https://doi.org/10.12681/mms.796
- Vázquez-Luis, M., Álvarez, E., Barrajón, A., García-March, J. R., Grau, A., Hendriks, I. E., Jiménez, S., Kersting, D., Moreno, D., Pérez, M., Ruiz, J. M., Sánchez, J., Villalba, A., & Deudero, S. (2017). S.O.S. *Pinna nobilis:* A mass mortality event in Western Mediterranean Sea. *Frontiers in Marine Science*, *4*, 220. https://doi.org/10.3389/fmars.2017.00220
- Vicente, N., de Gaulejac, B., & Avon, M. (2002). Pinna nobilis biological indicator of the Mediterranean littoral quality. Premier Séminaire International Sur La Grande Nacre de Méditerranée: Pinna nobilis (pp. 111-126). Embiez, France: Proceedings Book.
- Zavodnik, D., Hrs-Brenko, M., & Legac, M. (1991). Synopsis on the fan shell Pinna nobilis L. in the eastern Adriatic Sea. In C. F. Boudouresque, M. Avon, V. Gravez (Eds.), Les Espèces Marines à Protéger en Méditerranée. GIS Posidonie Publ. Marseille, 169-178.

#### **RESEARCH ARTICLE**

ARAŞTIRMA MAKALESİ

# Estimation of spawning stock biomass and spawning areas of sardine, (*Sardina pilchardus*) with winter time ichthyoplankton sampling in the Sea of Marmara, Türkiye

İsmail Burak Daban<sup>1\*®</sup> • Yusuf Şen<sup>1</sup>® • Alkan Öztekin<sup>1</sup>® • Adnan Ayaz<sup>1</sup>® • Uğur Altınağaç<sup>1</sup>® • Ali İşmen<sup>1</sup>® • Ahsen Yüksek<sup>2</sup>® • Uğur Özekinci<sup>1</sup>® • Fikret Çakır<sup>1</sup>® • Tekin Demirkıran<sup>3</sup>® • Gençtan Erman Uğur<sup>3</sup>® • Oğuzhan Ayaz<sup>3</sup>® • Buminhan Burkay Selçuk<sup>3</sup>®

<sup>1</sup>Faculty of Marine Science and Technology, University of Çanakkale Onsekiz Mart, 17100, Çanakkale, Türkiye <sup>2</sup>Institute of Marine Science and Management, University of Istanbul, 34093, Istanbul, Türkiye <sup>3</sup>Institute of Natural Sciences, University of Çanakkale Onsekiz Mart, 17100, Çanakkale, Türkiye

\*Corresponding author: burakdaban@gmail.com

Received date: 10.10.2023

Accepted date: 21.02.2024

#### How to cite this paper:

Daban, I.B., Şen, Y., Öztekin, A., Ayaz, A., Altınağaç, U., İşmen, A., Yüksek, A., Özekinci, U., Çakır, F., Demirkıran, T., Uğur, G.E., Ayaz, O., & Selçuk, B.B. (2024). Estimation of spawning stock biomass and spawning areas of sardine, (*Sardina pilchardus*) with winter time ichthyoplankton sampling in the Sea of Marmara, Türkiye. *Ege Journal of Fisheries and Aquatic Sciences*, 41(1), 54-62. https://doi.org/10.12714/egejfas.41.1.08

**Abstract:** The spawning areas and spawning stock biomass of sardine were studied with ichthyoplankton sampling in the winter period from the 32 stations, in the Marmara Sea. The mean fish egg and larvae biomass in a unit area were calculated as  $18.4 \pm 5.3$  eggs/10 m<sup>2</sup> and 2.5 larvae/10 m<sup>2</sup>, respectively. Three main spawning areas were detected as Karacabey Floodplain area, Gönen, and Büyükçekmece estuarine area. The larvae are mostly located in the western part. The batch fecundity of sardine was detected between 2415.9 and 16738.3, with a mean of 6899.8  $\pm$  255.7 eggs. The sex ratio (*R*), spawning fraction (*S*), mortality rate, and daily egg production (*Po*) were calculated as 0.53, 0.098, 0.62, and 9.25 eggs/m<sup>2</sup> in the Marmara Sea. The spawning stock biomass (*B*) is estimated at 2998 tonnes in the Marmara Sea. Both ichthyoplankton biomass and spawning stock biomass were found relatively lower. It is recommended to apply stricter management sanctions for the sustainability of sardine stocks.

Keywords: Fish eggs, fish larvae, small pelagic fish, stock estimation, daily egg production

#### INTRODUCTION

Sardine, Sardina pilchardus (Walbaum, 1792) has a wide geographical distribution from Northeastern Atlantic to Senegal, and the Mediterranean including Adriatic, Marmara Sea, and the Black Sea (Whitehead, 1988). It is mostly found in marine waters, but it can be distributed in brackish and freshwaters (Riede, 2004). The preferred depth range of the sardine occurs between 25 m and 100 m depths (FAO-FIGIS, 2005). It forms a school and shows more coastal distribution between 10 m and 35 m at night. The diet of juvenile and adult sardines differ (Nikolioudakis et al., 2011) and juvenile sardines fed heavily on copepods, whereas diatoms and autotrophic dinoflagellates (Nikolioudakis et al., 2012). The maximum reported length was 27.5 cm SL (Macer, 1974), and the maximum age was 15 (Muus and Nielsen, 1999).

Sardine is a member of Clupeidae, and is one of the most important fish species in both the global fishing industry and Türkiye, due to high supply demand for fresh fish and canned products. The Clupeidae family is represented by 12 species, and between them, *S.pilchardus* and *Sprattus sprattus* are two abundant Clupeidae species in Türkiye waters. *S.sprattus* has a minor commercial interest, it is usually utilized as a fishmeal component. Whereas *S. pilchardus* is evaluated as human consumption in Türkiye, mostly caught in the Marmara Sea and Aegean Sea. In terms of landing data presented by TUIK (2023) sardine ranked third after Anchovy and Bonito, with 825.5 tonnes of catch. When considered small pelagic fish species, its landing was higher than *Pomatomus saltatrix* (618.7 tonnes), *Trachurus trachurus* (751.4 tonnes), *Trachurus mediterraneus* (508.6 tonnes), *Scomber japonicus* (480.9 tonnes), *Sardinella aurita* (26.7 tonnes), and *Scomber scombrus* (3.9 tonnes), but relatively lower than *Engraulis encrasicolus* (13,444.6 tonnes) and *Sarda sarda* (3,113.4 tonnes) catch landings.

Although of great importance for small-scale gillnet fisheries, 85-90% of the total global catch stemmed from seine net fisheries in recent years. According to FAO 2019 fishing reports, a global catch of sardine was reported as 1,499,361 tonnes, whereas 1.4% of the total catch (19,119 tonnes) was caught in Türkiye waters (FAO, 2021). With the increasing industrialization of fishing vessels, the seine net fishery asserted its dominance over commercial catch, and small-scale gillnet fisheries have become able to catch fish only in the summer months when the seine net fishery is under seasonal restriction. This pattern caused a great decline in catchable stocks of sardine in Turkish waters, which was 34,709 tonnes in 2011 and decreased to 16,729 tonnes in the

2022 (TUIK, 2023). The sardine landing constitutes only 5.5% of the total catch (301,747 tonnes) in 2022 fishing season.

Previous studies were realized according to the reproductive biology of adult sardines. The first maturity length (TL, total length) was found as 12 cm in the Aegean Sea (Cihangir, 1995), 12.5 cm in Spain and 13.5 cm in Adriatic (Beverton, 1963), 13.5 cm in the Gulf of Lion (Campillo, 1992), 15 cm in the Gulf of Biscay (Dorel, 1986), and 16 cm in the Madeira (Silva et al., 2006). Also, spawning season occurred between October and April in Portugal (Figueiredo and Santos, 1989), between October and January in Northwest Africa (Delgado and Fernandez, 1985), between January and September in Southwest England (Wirtz et al., 2008), between December and February in the Sığacık Bay (Uygun and Hossucu, 2020), and between October and May in the Canakkale Strait (Daban, 2013). According to Turkish notification on the regulation of commercial fishing, the minimum landing size of sardine is 11 cm in TL. The seasonal restriction application on a species-basis is not available, but the closed season of purse-seining is being implemented between April and September, which is not related to the spawning season of this species.

This declining pattern of sardine stocks may pose a clear threat in the near future in terms of sustainability. A sustainable use of natural resources is known as one of the most important heritage that a nation can leave to future generations. Due to the fisheries stocks being under excessive fishing pressure, lots of stocks become near threatened. Thus, some protective measures should be conducted to prevent sudden collapses of fish stocks. Whereas fisheries managers need accurate information to deal with stock size capacity for stock assessment. Fish stock assessment methods should reveal more robust results by using sufficient observational data obtained from field surveys (Chrysafi and Kuparinen, 2016). Ichthtyoplankton-based data allows estimation independently of occupational fishing (Govoni, 2005) with lower survey costs and in less time (Yüksek, 1993). Besides, ichthyoplanktonic data presents concrete results for estimating stock size and determining stock size-recruitment relationships (Lockwood, 1988). In addition, the most accurate method of the determination of spawning areas and spawning season of fish species was stated as ichthyoplankton studies (Fuiman and Werner, 2002). Although varied stock assessment models have been applied to lots of species such as analysis of length frequency data of catches (Length Cohort Analysis - LCA) and analysis of catch-at-age data (Virtual Population Analysis -VPA), the most appropriate model for small pelagic fish species stated as direct assessment methods based on ichthyoplanktonic data (Oliver, 2002). Among all direct stock assessment methods, the daily egg production method is defined as one of the most important tools, especially for the determination of the stock size of small pelagic fish species. The biomass of fish eggs and prelarvae, sampled with an ichthyoplankton survey constitutes an important part of this method along with fecundity information obtained from adult

fish (Alheit, 1993). Among all other species, sprats, anchovies, sardines, and mackerels were the species whose stock size was most frequently calculated with the daily egg production method. Whereas, the previous findings for stock size estimation with daily egg production method were limited only to Taylan and Hoşcucu (2016)'s study in Turkish waters.

After noticing the decrease in catch records, we aimed to reveal the stock size of sardine by applying the daily egg production method. In addition, we tried to ascertain the spawning areas of sardine in the Marmara Sea with a broadscale geographical sampling strategy.

#### MATERIALS AND METHODS

To determine stock size with daily egg production method and spawning areas, three ichthyoplankton surveys were conducted in December 2021, February 2022, and March 2022 from 32 stations located at equal distance from each other (10 miles) in the Marmara Sea, Türkiye (Figure 1). The sardine eggs and prelarvae obtained from the vertical hauls of each station were sorted from plankton samples, recorded, and standardized with a unit of individual number/10 m<sup>2</sup>.

For the purpose of the stock estimation of sardine based on the daily egg production method, both ichthyoplankton (sardine eggs and prelarvae) and adult sardine individuals were examined. The sexes of the adult individuals were determined and recorded, and all sexed individuals were weighted. Then, the sex ratio for spawning stock biomass (R) was determined from the division of mean female weight to mean total weight of all individuals. For determining batch fecundity (F), the hydrated oocytes of adult females were examined (Hunter et al., 1985). Oocytes were counted and their diameters were measured under a binocular microscope. Oocytes greater than 395 µm diameter were accepted as "large-hydrated" oocytes. The spawning fraction (S) is the fraction of mature females spawning per day (spawning frequency) which is determined by the development stages of oocytes. The total survey area (A) was calculated from the results of ichthyoplankton sampling. In accordance with the method requirement, the stations containing fish eggs and prelarvae were marked as positive, and the positive-coded areas were calculated differently from the total area. The total area of the Marmara Sea was accepted as 11500 km<sup>2</sup>. The total survey area (A) in the spawning stock biomass equation is estimated from the fraction of positive stations to all stations, due to all stations being located at equal distances. To calculate the daily egg production (P<sub>0</sub>), initially, the ages of eggs need to be determined. The aging of fish eggs was determined according to the temperature-dependent model of sardine developmental rate (Miranda et al., 1990),

$$Y = 17.52 * e^{-0.136T - 0.173i} * i^{2.222}$$
(1)

where T is the sea surface temperature of the station (5 m), Y is the sampling hour of the fish egg, i is the development stage of the fish egg (stage 1-10), and peak spawning time is 20.00 (Ganias et al., 2003).



Figure 1. Study area and equally-spaced ichthyoplankton sampling stations in the Marmara Sea, Türkiye

The age of the egg was accepted as "zero" when the development stage was between 1st and 6th, whereas accepted as "one" when the development phase was ranged from the 7th to 12th stage. Due to zero-age development being completed in less than 24 hours, the zero-age stage revealed an estimated spawning time. When the estimated spawning time was subtracted from the sampling time, if the duration was higher than 48 hours, the age of the egg was determined as 2. Somarakis (2005) stated that the mortality rate calculation did not show differences from 0 when the mortality curve was constituted only from fish eggs and advised that the mortality curve should be plotted using both fish eggs and prelarvae count. The aging of prelarvae is determined according to eye pigmentation, where age accepted 1 when pigmentation has not started yet, and 2 when brown pigmentation occurred (Somarakis, 2005), After all age classes were determined, a single mortality curve was constructed for both eggs and prelarvae. The slope of the curve reveals the daily instantaneous mortality rate (Z). Thus, daily egg production (P<sub>0</sub>) is estimated according to the given equation:

$$P_{\rm t} = P_{\rm o} e^{-zt} \qquad (2)$$

where e is the number of eggs or yolk-sac larvae produced per day per unit area at age t days; Po is daily egg production at age zero; and Z is the daily instantaneous mortality rate (Lo, 1986).

The spawning stock biomass (B) was estimated according to the given equation of Stauffer and Picquelle (1980);

$$B = (k * P * A * W) / (R * F * S)$$
(3)

where k defines the conversion factor from grams to metric tons,  $P_0$  is the daily egg production (the number of eggs and prelarvae per sampling unit (m<sup>2</sup>)), A the total survey area, W is the mean weight of mature females (g), R the sex ratio, F the batch fecundity and S the fraction of mature females spawning per day.

Non-parametric Kruskal–Wallis test was used to compare the spatial variation of physico-chemical parameters rather than parametric tests because the data was limited due to 3month sampling and did not show a normal distribution.

Besides, Kruskal–Wallis test is preferred due to this distribution-free test proved to be more robust than its parametric counterpart in the case of non-normal distribution of sample data, and it is a viable alternative to parametric statistics (Potvin and Roff 1993). The variations in abundance and physico-chemical parameters based on sampling months and stations were tested with the non-parametric Kruskal-Wallis test. Then, the Mann-Whitney U post-hoc test was applied to understand where differences occurred within these variables. Significant differences were established at 0.05 significance level.

#### RESULTS

#### Spawning area estimation

Mean sea surface temperature, salinity, and dissolved oxygen values of 32 ichthyoplankton stations were measured. The temperature values ranged from 11.2°C (P7) to 12.1°C (P15) (mean: 11.5 ± 0.03°C) in December 2022, ranged between 6.8°C (P8) and 7.8°C (P5) (mean: 7.2 ± 0.05°C) in February 2023 and distributed from 6.4°C (P19) to 9.1°C (P6) (mean:  $7.4 \pm 0.1^{\circ}$ C) in March 2023. The temporal variation of sea surface temperature (SST) showed statistically important variations. The SST in December was statistically different from the SST of February and March (K-W test; H=63.39; P≤0.05). The salinity values ranged from 25.6 ppt (P13) to 26.9 ppt (P6) (mean:  $26.7 \pm 0.6$  ppt) in December, ranged between 24.4 ppt (P27) and 30.7 ppt (P3) (mean: 28.8 ± 0.3 ppt) in February and distributed from 22.3 ppt (P28) to 28.3 ppt (P1) (mean: 25.9 ± 0.3 ppt) in March. The dissolved oxygen values were ranged from 7.6 mg/l (P3) to 9.3 mg/l (P25) (mean: 8.4  $\pm$ 0.07 mg/l) in December, ranged between 8.4 mg/l and 9.4 mg/l

(mean:  $8.9 \pm 0.04$  mg/l) in February, and distributed from 6.9 mg/l to 9.5 mg/l (mean:  $7.8 \pm 0.14$  mg/l) in March. The salinity values were statistically differ between December and February (K-W test; H=35.56; P≤0.05) and between February and March (K-W test; H=35.56; P≤0.05). The dissolved oxygen values were statistically different between December and February (K-W test; H=35.56; P≤0.05), between December and February (K-W test; H=35.56; P≤0.05), between December and March (K-W test; H=35.56; P≤0.05), between December and March (K-W test; H=35.56; P≤0.05), and between February and March (K-W test; H=35.56; P≤0.05). Whereas SST did not differ statistically between the stations (K-W test; H=9.71; P≥0.05). Similarly, the sea surface salinity (K-W test; H=35.98; P≥0.05) and dissolved oxygen (K-W test; H=36.26; P≥0.05) values did not differ statistically between stations.

The mean sardine egg biomass in a unit area was calculated as  $18.4 \pm 5.3 \text{ eggs}/10 \text{ m}^2$  in the Marmara Sea. 15 of 32 stations contained sardine eggs. The dead fish egg ratio was detected as 5.5%. Using spatial variation of sardine eggs, the highest biomass was observed in station 18 where under

the influence of Karacabey Floodplain area with a 130.7 eggs/10 m<sup>2</sup> mean biomass (22.2% of the total biomass). The area between Karabiga and Gönen Stream was found the second most abundant area with a mean of 58.8 eggs/10 m<sup>2</sup>. The other abundant area was detected as between Büyükçekmece and İstanbul Strait, with a 43.6 eggs/10 m<sup>2</sup> mean biomass. A common feature of all 3 areas is their proximity to freshwater input.

Between all sites, the prelarvae of sardine were only detected in station 18 (Karacabey Floodplain area). Postlarvae of sardine were observed in 6 of 32 stations, with a relatively low mean biomass (2.5 postlarvae/10 m<sup>2</sup>). Postlarave distribution was also supported by the fish egg distribution data, which was closer to the shores of the freshwater input. When all 3 life phases were considered together, the main spawning area was seen as Karacabey Floodplain area, and Gönen Estuarine and Büyükçekmece estuarine areas were the other spawning sites of sardine in the Marmara Sea (Figure 2)



Figure 2. The spatial variation of sardine, Sardina pilchardus eggs, and larvae in the Marmara Sea, Türkiye

#### Stock size estimation

The parameters used for estimating spawning stock biomass such as mean female weight (W), batch fecundity (F), and sex ratio (R) were determined from the examination of adult sardine individuals. For this purpose, a total of 257 individuals were examined, and 114 of 257 individuals was detected as female. The remaining 128 individuals were male and 15 were not sexed due to damaged reproduction organs. The mean gonad-free body weight of mature females was calculated as 21.49 g. The sex ratio (R) in this study was calculated as 0.53. Yolk compact mass diameters in hydrated oocytes ranged between 395  $\mu$ m and 935  $\mu$ m with a mean of 695  $\pm$  11  $\mu$ m. The batch fecundity ranged between 2415.9 and 16738.3, with a mean of 6899.8  $\pm$  255.7 eggs. The fish length-batch fecundity relationship was shown in Figure 3, and a linear relationship was detected.



Figure 3. The fish length (TL) – batch fecundity (F) relationship of sardine, Sardina pilchardus in the Marmara Sea, Türkiye

15 of the 32 stations contained fish eggs and/or prelarvae, and were codded as positive areas. Thus, the total survey area (A) which is also referred to as the spawning area was detected as 5405 km<sup>2</sup>. The spawning fraction (S) was calculated as 0.098.

The mortality rate is estimated from the slope of the mortality curve as 0.62 (Figure 4). Thus, the daily egg production (P<sub>0</sub>) was estimated as 9.25 eggs/m<sup>2</sup> in the Marmara Sea. When the calculated R, A, W, F, S, and P<sub>0</sub> variables were substituted into the equation, the spawning stock biomass (B) was estimated as 2998 tonnes in the Marmara Sea.



Figure 4. The mortality curve of sardine, Sardina pilchardus

The mean fish egg ( $18.4 \pm 5.3 \text{ eggs}/10 \text{ m}^2$ ) and larvae (2.5larvae/10 m<sup>2</sup>) biomass of sardine were detected relatively lower than the results of the previous studies. Kara (2015) found that the mean egg biomass in Erdek Bay was 166 eggs/10 m<sup>2</sup>, and the highest mean egg biomass was calculated in October as 600 eggs/10 m<sup>2</sup>. Daban (2013) stated that the mean sardine egg biomass was 118 eggs/10 m<sup>2</sup>, with the highest mean egg biomass at 326 eggs/10 m<sup>2</sup> in February in the Çanakakle Strait, Marmara Sea. Yüksek (1993) found only a single fish egg individual in the northeastern Marmara Sea (Büyükçekmece) and stated that this egg drifted with currents from the southwestern part to this area and was sampled accidentally. In the present study, it can be seen in Figure 2, except from Büyükçekmece and nearby areas, fish eggs and larvae of sardine were not found in the Northern part of the Marmara Sea. We detected both early life phases (egg, prelarvae, and postlarvae) of sardine in Büyükçekmece region. In addition, Daban et al. (2023) detected juvenile individuals of sardine around Büyükçekmece coasts with beach seine samplings. Thus, we thought that, Büyükçekmece region is one of the local spawning areas for sardine in the Sea of Marmara. According to our results, this situation was not related to sea water physico-chemical properties. As explained in the results section, the temperature, salinity, and dissolved oxygen values did not show statistical variations between the North and South parts of the Marmara Sea. Thus, the absence of Sardine in the northern part (except Büyükçekmece) could not be explained by physico-chemical properties. It may be associated with the spawning area selection of adults such as vicinity of estuarine areas.

In the same area, Alimoğlu (2002) detected the highest mean egg biomass of sardines in October as 180 eggs/10 m<sup>2</sup>. In our study, although Büyükçekmece was the 3rd abundant area for sardine egg biomass, the mean value was determined as 43.6 eggs/10 m<sup>2</sup>. As well, Karacabey Floodplain area, the most abundant area for sardine eggs in this study, had a lower mean value (130.7 eggs/10 m<sup>2</sup>) than in previous studies. Also, relatively higher mean fish egg and larvae biomass values were reported from the Aegean Sea and Mediterranean Sea. The mean fish egg biomass in a unit area was found as 607 eggs/10 m<sup>2</sup> in Edremit Bay (Türker Çakır, 2004; Türker Çakır et al., 2008), as a 49 eggs/10 m<sup>2</sup> in the Sigacik Bay (Uygun and Hossucu, 2020), and as 40 eggs/10 m<sup>2</sup> in the Mersin Bay (Ak, 2004). It can be seen that the mean biomass was found lowest in the present study. Several parameters may have caused to occur these differences. In addition, a dense fishing effort by purse seiners on small pelagic fish species in the semi-enclosed basin, Marmara Sea can play a major role. As a result of the high fishing pressure, species become mature earlier than they should be. Thus, younger females generate smaller eggs and embryos, and the survival rate of these larvae faces trouble due to inadequate development in unfavorable conditions. Besides, the increasing pollution and resulting decreases in dissolved oxygen, and the changes in water

temperatures due to global warming may cause changes in spawning areas.

The results of this study and previous ichthyoplankton studies from the Marmara Sea showed that the S.pilchardus spawning peaked in specific temperature intervals between 11°C and 16°C, and mostly centered upon 12-13°C. According to monthly sampling intervals, Daban (2013) detected that the spawning peaked at 11.8°C in February in the Dardanelles, whereas Kara (2015) found that it peaked at 12.3°C in October in the Erdek Bay. In the present study, the fish egg and larvae biomass decreased with the decrease of the sea surface temperature (SST) from 11.5°C in December to 7-8°C in February and March. Also, similar temperature intervals and spawning seasons were stated in the Aegean Sea. Sardine spawning peaked between 13-15°C in İzmir Bay (Hossucu, 1992), and 12.5-15.3°C in February in the Sigacik Bay (Uygun and Hossucu, 2020). Similar SST ranges were revealed also for the Bay of Biscay as between 12.5 and 15°C according to Sola et al. (1990) and 10-16°C according to Arbault and Lacroix (1977). The main factor that controls the spawning density was explained as SST for small pelagic fish species (Maynou et al., 2020; Peck et al., 2012). The results of sardine spawning pattern confirm this hypothesis. Whereas, more frequent sampling intervals should be applied for understanding temporal changes (Daban and İşmen, 2020).

The present study revealed the first results related to spatial variation of sardine eggs and larvae on a scale covering the entire Marmara Sea. Three main spawning areas were detected explicitly such as Karacabey Floodplain area, Büyükçekmece area, and the Gönen estuarine area, where all these are close to brackish waters. Whereas larvae of Sardine increased in Gönen estuarine area, Karabiga and Mürefte, where located western part of the Marmara Sea. In addition, both Daban et al. (2023) identified early juveniles of sardine as a school with beach seine in the Büyükçekmece and high fish egg and larvae biomass in the present study in this area supported the hypothesis that this area is a spawning location. Palomera et al. (2007) stated that estuarine areas are favorable for the growth of planktivorous small pelagic fish species due to carrying high nutrients through streams. Some authors stated that sardine avoid cloudy waters and lower saline waters and distributed off-shore areas rather than coastal areas (Olivar et al., 2003; Coombs et al., 2004; Santos et al., 2004). Conversely, Ramos et al. (2009) found relatively high sardine eggs and larvae around the Lima estuary during 2-year ichthyoplankton sampling and stated that the total ichthyoplankton biomass was dominated by sardine. When the results were compared, the outputs coincided with the findings of Palomera et al. (2007) and Ramos et al. (2009). As can be seen in Figure 2, the fish egg and larvae biomass is mostly concentrated around shallower areas rather than deeper waters. This may be a result of the instinct to be close to river input, accordingly nutrient and food. Somarakis et al. (2006) stated that sardines mostly prefer depths between 40 m and 90 m for spawn, and biomass is concentrated especially in

zooplankton-rich areas in open water conditions in the Aegean Sea. Also, Zwolinski et al. (2006) determined the dense fish egg biomass around 40-60 meter depths between the Gulf of Cadiz and Algarve, Portugal, and stated the eggs distributed between 25 and 75 meters in the Siğacık Bay (Uygun and Hoşsucu, 2020). In the present study, the stations in which sardine fish egg and larvae biomass was higher (3, 5, 15, 18, and 30) were mostly located between 35 and 53 m depths. The depths deeper than 60 meters had relatively lower biomass values and the deepest center channel had not any sardine eggs and larvae. The results show similarities with the findings of Somarakis et al. (2006), Zwolinski et al. (2006), and Uygun and Hoşsucu (2020).

Roy et al. (1989) stated that sardine adapted their reproductive strategy to the coastal upwelling ecosystem of the Portuguese West coast to minimize Ekman offshore transport effects. Due to the two-layered stratification of the Marmara Sea, the Black Sea water flow discharges via the upper thermocline. It was thought that immobile and semi-mobile fish eggs and larvae could be transported from one place to another by this strong current. However the results of the spatial variation of sardine egg and larvae biomass did not reflect this situation and it was seen to be concentrated in 3 main regions, especially close to freshwater inlets. The absence of biomass in the middle deep water channel strengthened this finding. The coastal distribution of the sardine has aroused curiosity as to whether it is a strategy developed to be less affected by the Marmara Sea surface current. This issue generates another study issue, which should be considered together with physical oceanographers.

By means of the reproductive biology of sardine, several valuable works were realized in the Marmara Sea and the Aegean Sea. Taylan et al. (2019) were detected that the fecundity of sardine ranged between 4.600 and 9.800 eggs, with a mean of 6.110  $\pm$  1.755, which closely similar to the findings of the presented study which fecundity estimated between 2.416 and 16.738, with a mean of  $6.899 \pm 255.7$  eggs. A slightly higher fecundity in the present study may be a result of the higher length distribution of the adult females in the present study. Similarly, linear length-fecundity relationships were found in both two studies. Also, Cihangir (1995) stated that the lengths at first maturity of sardine were to be 12.0 cm for females and 12.7 cm for males in the Aegean Sea. As can be seen in Figure 3, all mature females examined for fecundity ranged between 12.4 and 16.8 cm in TL in the present study. This coincides with the findings of the authors. Also, the gonadosomatic index, which shows the spawning period of fish, peaked between December and February in İzmir Bay, when the STT values were lowest (Cihangir, 1996). Thus, it was understood that the adult reproductive characteristics coincide with the results of ichthyoplankton studies.

The estimation of spawning stock biomass by daily egg production method has been applied to lots of small pelagic fish stocks up to date, but it has not been applied sufficiently in Turkish waters. In a single study, the spawning stock biomass of anchovy, *Engraulis encrasicolus* estimated as 403.9 metric tonnes (mt) in the Edremit Bay, Aegean Sea by Taylan and Hoşsucu (2016).

The estimated value is relatively higher than our findings which calculated for sardine as 2998 tonnes (~3 mt). In terms of previous findings related sardine spawning stock biomass from adjacent seas or other seas, it was estimated as 134195 tonnes in Galicia, 33503 tonnes in western Cantabrian, and 12467 tonnes in the eastern Cantabrian (Garcia et al., 1992), 14196 tonnes in the Adriatic (Casavola et al., 1996), 5149 tonnes in the Ionian Sea (Somarakis et al., 2006), 16174 tonnes in the Aegean Sea (Somarakis et al., 2006). In both studies, the highest egg production took place between 20:00 and 24:00, during the day. When all previous findings were compared, the estimation of spawning stock size was close to the estimation of the Ionian Sea, and Iower stock size was detected against all other areas. These differences may have arisen due to the long passage of time since previous studies were conducted. Besides, the increased fishing pressure in all these areas from the past to date may reveal variations in the spawning stock size of sardine in these areas.

The comparison with current studies may provide an opportunity to make more accurate comparisons. Nevertheless, it was stated that the spawning stock biomass showed variations among each survey area and over the years in the same areas. The fishing pressure on demersal fish stocks of the Marmara Sea has increased within the last 20 years (Daban et al., 2021). For these reasons, fisheries efforts verge upon the fisheries of small pelagic fish species in the Marmara Sea. In terms of fisheries of sardine in the Türkiye Seas, the highest pressure stemmed from purse seine net boats, which are fishing intensively in the winter period, when the sardine spawning occurs.

Sardine spawning occurs from October to May, and peaks in December and January. In Greece, sardine fishing in the North Aegean Sea with purse seining is banned between mid-December and the end of February (Stergiou et al., 1997). A similar short intermediate fishing ban should also be conducted by the Fisheries Management Authority of Türkiye.

#### REFERENCES

- Ak, Y. (2004) The abundance and distribution of the pelagic eggs and larvae of some teleost fishes in off Erdemli. Doctoral dissertation, Ege University, Türkiye.
- Alheit, J. (1993). Use of the daily egg production method for estimating biomass of clupeoid fishes: a review and evaluation. *Bulletin of Marine Science*, 53(2), 750-767.
- Alimoğlu, S. (2002). Dispersion and abundance of pelagic eggs and larvae of teleosts fish at northeast of Marmara Sea. Master thesis, University of Istanbul, Türkiye.
- Arbault, S., & Lacroix, N. (1977). Eggs and larvae of Clupeidae and Engraulidae in the Bay of Biscay (1969-1973). Distribution of spawning grounds. Relations between environmental factors and reproduction. *Revue des Travaux de l'Institut des Pêches Maritimes*, 41(3), 227–254.
- Beverton, R.J.H. (1963). Maturation, growth and mortality of clupeid and engraulid stocks in relation to fishing. Rapports et Procès-verbaux des

#### CONCLUSION

The sustainability of these species becomes even more important for eutrophic seas such as the Marmara Sea due to they act as a bridge between the lower and upper food web. Hence, the studies related estimation of spawning stock size should be supported permanently and more efforts should be realised in varied local seas and varied small pelagic fish species such as *E. encrasicolus, S. pilchardus,* and *S. sprattus.* Additionally, the spawning season of these species should be monitored more closely, and seasonal fishing restrictions related to these should be revised more frequently by the fisheries management authority. Once continuous stock size information is obtained, quota application can be initiated on these species when necessary.

#### ACKNOWLEDGEMENT AND FUNDING

This work is supported by TUBITAK (The Scientific and Technological Research Council of Turkey) (Project No: 121G097). The authors thank Captain Osman Odabaşı and Able Seaman Umut Tunçer for their help in the field works.

#### AUTHOR CONTRIBUTIONS

İsmail Burak Daban: Writing-Original draft, data analyses, sampling. Yusuf Şen: Sampling, laboratory works, visualization, investigation. Ali İşmen, Ahsen Yüksek: Supervision, data-analyses. Uğur Özekinci, Fikret Çakır: Laboratuary works, visualization, investigation. Alkan Öztekin, Adnan Ayaz, Uğur Altınağaç, Tekin Demirkıran, Gençtan Erman Uğur, Oğuzhan Ayaz, Buminhan Burkay Selçuk: Sampling, laboratuary Works.

#### **CONFLICTS OF INTEREST**

The authors declare that there are no conflicts of interest or competing interests.

#### ETHICS APPROVAL

No specific ethical approval was necessary for this study.

#### DATA AVAILABILITY

For questions regarding datasets, the corresponding author should be contacted.

#### Réunions, 154, 44-67. https://doi.org/10.17895/ices.pub.19274888

- Campillo, A. (1992). French fisheries in Mediterranean Sea. Knowledge synthesis. Institut Francais de Recherche pour l'Exploitation de la Mer, France. 206 p.
- Casavola, N., Rizzi, E., & Marano, C. (1996). First data on batch fecundity and relative fecundity of Sardina pilchardus (Walbaum, 1792) (Clupeidae) in the South-Western Adriatic Sea. Boletin-Instituto Español de Oceanografia, 12, 53-64.
- Chrysafi, A., & Kuparinen, A. (2016). Assessing abundance of populations with limited data: lessons learned from data-poor fisheries stock assessment. *Environmental Reviews*, 24(1), 25-38. https://doi.org/10.1139/er-2015-0044
- Cihangir, B. (1995). Abundance and distribution of European pilchard, Sardina pilchardus eggs in reproduction period in Izmir Bay, Aegean Sea (in Turkish). Turkish Journal of Zoology, 19, 17-26.

- Cihangir, B. (1996). Reproduction of European pilchard (Sardina pilchardus Walbaum, 1792) in the Aegean Sea. Turkish Journal of Zoology, 20(1), 33-50.
- Coombs, S.H., Boyra, G., Rueda, L.D., Uriarte, A., Santos, M., Conway, D.V.P., & Halliday, N.C. (2004). Buoyancy measurements and vertical distribution of eggs of sardine (*Sardina pilchardus*) and anchovy (*Engraulis encrasicolus*). *Marine Biology*, 145, 959-970. https://doi.org/1 0.1007/s00227-004-1389-4
- Daban, İ.B. (2013). Community structure and temporal variations of ichthyoplankton in Dardanelles. Master Thesis, University of Çanakkale Onsekiz Mart, Türkiye.
- Daban, I.B., & İşmen, A. (2020). Fish larvae assemblages of Gökçeada Island, North Aegean Sea: effect of weekly sampling interval on their incidences. *Turkish Journal of Zoology*, 44(2), 165-172. https://doi.org/10.3906/zoo-1907-46
- Daban, İ.B., İşmen, A., Şirin, M., Yığın, C.Ç., & İhsanoğlu, M.A. (2021). Analysis of demersal fish founa off the sea of Marmara, Turkey. *Çanakkale Onsekiz Mart University Journal of Marine Sciences and Fisheries*, 4(1), 20-31. https://doi.org/10.46384/jmsf.912403
- Daban, İ.B., Şen, Y., Öztekin, A., Ayaz, A., Altınağaç, U., İşmen, A., Yüksek, A. Özekinci, U., Çakır, F., Demirkıran, T., Uğur, G.E., Ayaz, O., & Selçuk, B.B. (2023). Preliminary investigation of the frame net sampling in the pelagic environment of Marmara Sea, Türkiye. *Acta Biologica Turcica*, 36(3), 9-1.
- Delgado, A., & Fernandez, M.A.R. (1985). Datos sobre la biología de la sardina (Sardina pilchardus Walb., 1972) capturado por los cerqueros españoles en Africa Occidental de 1976 a 1982. In C. Bas, R. Margalefy, P. Rubíes (Eds.), Simposio internacional sobre las áreas de afloramiento más importantes del oeste africano (Cabo Rlanco y Renguela)(pp. 935-955). 21-25 de noviembre, 1983. Barcelona, España. II. Proceedings Book.
- Dorel, D. (1986). North-east Atlantic fishes: Length-weight relationships. Institut Francais de Recherche pour l'Exploitation de la Mer. Nantes, France. 165 p.
- FAO-FIGIS (2005). A world overview of species of interest to fisheries. Sardina pilchardus. 3p. FIGIS Species Fact Sheets. Species Identification and Data Programme-SIDP, FAO-FIGIS. Retrieved from https://www.fao.org/figis/servlet/species?fid=2910
- FAO (2019). Food and Agriculture Organization of The United Nations. Retrieved from https://www.fao.org/home/en/
- FAO (2021). Food and Agriculture Organization of The United Nations. Retrieved from https://www.fao.org/home/en/
- Figueiredo, I.M., & Santos, A.M. (1989). Reproductive biology of Sardina pilchardus (Walb.): Seasonal maturity evolution (1986 to 1988). ICES, C.M.H (40), 21p.
- Fuiman, L.A., & Werner, R.G. (2002). Fishery science, the unique contributions of early life stages. England: Blackwell Science.
- Ganias, K., Somarakis, S., Machias, A., & Theodorou, A.J. (2003). Evaluation of spawning frequency in a Mediterranean sardine population (*Sardina pilchardus* sardina). *Marine Biology*, 142, 1169-1179. https://doi.org/10.1 007/s00227-003-1028-5
- Garcia, A., Pérez, N., Lo, N.C.H., Lago de Lanzós, A., & Solá, A. (1992). The egg production method applied to the spawning biomass estimation of sardine, Sardina pilchardus (Walb.), on the North Atlantic Spanish coast. Boletin Instituto Español de Oceanografía, 8(1), 123-138.
- Govoni, J.J. (2005). Fisheries oceanography and the ecology of early life histories of fishes: a perspective over fifty years. *Scientia Marina*, 69(1), 125-137. https://doi.org/10.3989/scimar.2005.69s1125
- Hoşsucu, B. (1992). Some of bioecological investigations about European pilchardus's (Sardina pilchardus, Walb.) eggs and larvae in Izmir Bay (In Turkish). University of Istanbul, Fisheries Bulletin, 2, 5-12.
- Hunter, J.R., Lo, N.C.H., & Leong, R.J. (1985). Batch fecundity in multiple spawning fishes. NOAA Technical Report Nmfs, 36, 67-77.
- Kara, A. (2015). Investigation of distributions of some teleost fish eggs and/or larvae in the Bay of Erdek. Master thesis, University of Istanbul, Türkiye.

- Lo, N.C.H. (1986). Modeling life-stage-specific instantaneous mortality rates, an application to northern anchovy, *Engraulis mordax*, eggs and larvae. *Fisheries Bulletin*, 84, 395-407.
- Lockwood, S.J. (1988). The mackerel, Its biology, assessment and the management of a fishery. England: Fishing News Books Ltd., Surrey.
- Macer, C.T. (1974). Some observations on the fecundity of the pilchard (Sardina pilchardus Walbaum) off the south-west coast of England. ICES, C.M. J (9), 11 p.
- Maynou, F., Sabatés, A., & Raya, V. (2020). Changes in the spawning habitat of two small pelagic fish in the Northwestern Mediterranean. *Fisheries Oceanography*, 29(2), 201-213. https://doi.org/10.1111/fog.12464
- Miranda, A., Cal, R.M., & Iglesias, J. (1990). Effect of temperature on the development of eggs and larvae of sardine Sardina pilchardus Walbaum in captivity. Journal of Experimental Marine Biology and Ecology, 140(1-2), 69-77. https://doi.org/10.1016/0022-0981(90)90082-N
- Muus, B.J., & Nielsen, J.G. (1999). Sea fish. Scandinavian Fishing Year Book, Hedehusene, Denmark. 340 p.
- Nikolioudakis, N., Isari, S., Pitta, P., & Somarakis, S. (2012). Diet of sardine Sardina pilchardus: an 'end-to-end'field study. Marine Ecology Progress Series, 453, 173-188. https://doi.org/10.3354/meps09656
- Nikolioudakis, N., Palomera, I., Machias, A., & Somarakis, S. (2011). Diel feeding intensity and daily ration of the sardine Sardina pilchardus. Marine Ecology Progress Series, 437, 215-228. https://doi.org/10.3354/meps09 275
- Olivar, M.P., Catalán, I.A., Emelianov, M., & Fernández de Puelles, M.L. (2003). Early stages of Sardina pilchardus and environmental anomalies in the Northwestern Mediterranean. *Estuarine, Coastal and Shelf Science*, 56(3-4), 609-619. https://doi.org/10.1016/S0272-7714(02)00210-X
- Oliver, P. (2002). Methods for assessing Mediterranean fisheries. SAC/GFCM, 1-4.
- Palomera, I., Olivar, M.P., Salat, J., Sabatés, A., Coll, M., García, A., & Morales-Nin, B. (2007). Small pelagic fish in the NW Mediterranean Sea: An ecological review. *Progress in Oceanography*, 74(2-3), 377-396. https://doi.org/10.1016/j.pocean.2007.04.012
- Peck, M.A., Kanstinger, P., Holste, L., & Martin, M. (2012). Thermal windows supporting survival of the earliest life stages of Baltic herring (*Clupea* harengus). ICES Journal of Marine Science, 69(4), 529-536. https://doi.org/10.1093/icesjms/fss038
- Potvin, C, Roff, D.A. (1993). Distribution-free and robust statistical methods: viable alternatives to parametric statistics? *Ecology*, 74,1617–1628
- Ramos, S., Ré, P., & Bordalo, A.A. (2009). New insights into the early life ecology of Sardina pilchardus (Walbaum, 1792) in the northern Iberian Atlantic. Scientia Marina, 73(3), 449-459. https://doi.org/10.3989/scimar. 2009.73n3449
- Riede, K. (2004). Global register of migratory species from global to regional scales. Final Report of the R&D-Projekt 808 05 081. Federal Agency for Nature Conservation, Bonn, Germany, 329 p.
- Roy, C., Cury, P., Fontana, A., & Belvèze H. (1989). Spatio-temporal reproductive strategies of the clupeoids in West African upwelling areas. *Aquaí. Living Resour.* 2, 21-29.
- Santos, A.M.P., Peliz, A., Dubert, J., Oliveira, P.B., Angélico, M.M., & Ré, P. (2004). Impact of a winter upwelling event on the distribution and transport of sardine (*Sardina pilchardus*) eggs and larvae off western Iberia: a retention mechanism. *Continental Shelf Research*, 24(2), 149-165. https://doi.org/10.1016/j.csr.2003.10.004
- Silva, A., Santos, M.B., Caneco, B., Pestana, G., Porteiro, C., Carrera, P., & Stratoudakis, Y. (2006). Temporal and geographic variability of sardine maturity at length in the northeastern Atlantic and the western Mediterranean. *ICES Journal of Marine Science*, 63(4), 663-676. https://doi.org/10.1016/j.icesjms.2006.01.005
- Sola, A., Motos, L., Franco, C. & Lago de Lanzos, A. (1990). Seasonal occurrence of pelagic fish eggs and larvae in the Cantabrian Sea (VIIIc) and Galicia (IXa) from 1987 to 1989. ICES CM1990/H, 25, 14.

#### Estimation of spawning stock biomass and spawning areas of sardine, (Sardina pilchardus) with winter time ichthyoplankton sampling in the Sea of Marmara, Türkiye

- Somarakis, S. (2005). Marked interannual differences in reproductive parameters and daily egg production of anchovy in the northern Aegean Sea. *Belgian Journal of Zoology*, 135(2), 247-252.
- Somarakis, S., Ganias, K., Siapatis, A., Koutsikopoulos, C., Machias, A., & Papaconstantinou, C. (2006). Spawning habitat and daily egg production of sardine (*Sardina pilchardus*) in the eastern Mediterranean. *Fisheries Oceanography*, 15(4), 281--292. https://doi.org/10.1111/j.1365-2419.200 5.00387.x
- Stauffer, G.D., & Picquelle, S.J. (1980). Estimates of the 1980 spawning biomass of the subpopulation of northern anchovy. California: National Marine Fisheries Service Southwest Fisheries Center La Jolla. Rep. LJ-80±09, 41 pp.
- Stergiou, K.I., Christou, E.D., Georgopoulos, D., Zenetos, A., & Souvermezoglou, C. (1997). The hellenic seas: physics, chemistry, biology and fisheries. In A.D. Ansell, R.N. Gibson, M. Barnes (Eds.), Oceanography and Marine Biology: An Annual Review, 35, 415-538. Greece, UCL Press.
- Taylan, B., & Hossucu, B. (2016). Daily egg production method for spawning biomass estimates of European anchovy Engraulis encrasicolus (Linnaeus, 1758) in Edremit Bay (Aegean Sea). Fresenius Environmental Bulletin, 25(11), 4742-4746.
- Taylan, B., Taskavak, E., & Gurkan, S. (2019). A preliminary study on the determination of reproductive biology of European Pilchard, Sardina pilchardus (Walbaum, 1792) Distributed in The Aegean Sea. Turkish Journal of Agriculture-Food Science and Technology, 7(12), 2264-2266. https://doi.org/10.24925/turjaf.v7i12.2264-2266.3032

- TUIK (2023). Aquaculture statistics of Türkiye, Turkish Statistical Institute. Retrieved from https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr
- Türker Çakır, D. (2004). Ichthyoplankton of the Edremit Bay (Aegean Sea). Doctoral dissertation, Ege University, Türkiye.
- Türker Çakır, D., Yarmaz, A., & Hossucu, B. (2008). Distribution, abundance and mortality rates of eggs/larvae of sardina, (*Sardina pilchardus* Walb., 1792) in Edremit Bay (Aegean Sea, Turkey). 32nd. In Annual Larval FISH conference (4-7 pp), Kiel.
- Uygun O., & Hoşsucu B. (2020). The Abundance and Distribution of the Early Life Stages of Sardine (Sardina pilchardus) in Central of the Aegean Sea (Siğacık Bay) and their Interactions with Certain Environmental Factors. Thalassas: An International Journal of Marine Sciences, 36(2), 507-515. https://doi.org/10.1007/s41208-020-00216-w
- Whitehead, P.J.P. (1988). Clupeoid fishes of the world (suborder Clupeoidei). An annotated and illustrated catalogue of the herrings, sardines, pilchards, sprats, shads, anchovies and wolf-herrings. FAO Species Catalogue, Vol. 7. 125(7/1), (pp. 1-303). Rome, FAO.
- Wirtz, P., Fricke, R. & Biscoito, M.J. (2008). The coastal fishes of Madeira Island - new records and an annotated checklist. *Zootaxa*, 1715, 1-26.
- Yüksek, A. (1993). Distribution and abundance of pelagic eggs and larvae of teleost fishes in northern Marmara Sea. Bakırköy- Marmara Ereğlisi. Doctoral dissertation, University of Istanbul, Türkiye.
- Zwolinski, J., Mason, E., Oliveira, P.B., & Stratoudakis, Y. (2006). Fine-scale distribution of sardine (Sardina pilchardus) eggs and adults during a spawning event. Journal of Sea Research, 56(4), 294-304. https://doi.or g/10.1016/j.seares.2006.05.004

#### **RESEARCH ARTICLE**

# Prebosphoric occurrence of Korean rockfish, Sebastes schlegelii Hilgendorf, 1880 in southwestern Black Sea with notes on its morphometry and dispersal potential

# Güneybatı Karadeniz'in boğaz önü sularında görülen Kore iskorpiti, Sebastes schlegelii Hilgendorf, 1880'in morfometrisi ve yayılma potansiyeli

#### Uğur Uzer<sup>1</sup> • Firdes Saadet Karakulak<sup>1</sup> • Hakan Kabasakal<sup>2,3\*</sup>

<sup>1</sup>İstanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies and Management, Vezneciler, İstanbul, Türkiye <sup>2</sup>İstanbul University, Institute of Science, Fisheries Technologies and Management Program, İstanbul, Türkiye <sup>3</sup>WWF Türkiye, Asmalı Mescit, İstiklal Cd. No:136, 34430, Beyoğlu, İstanbul, Türkiye

\*Corresponding author: kabasakal.hakan@gmail.com

Received date: 21.01.2024

Accepted date: 07.03.2024

#### How to cite this paper:

Uzer, U., Karakulak, F.S., & Kabasakal, H. (2024). Prebosphoric occurrence of Korean rockfish, *Sebastes schlegelii* Hilgendorf, 1880 in southwestern Black Sea with notes on its morphometry and dispersal potential. *Ege Journal of Fisheries and Aquatic Sciences*, 41(1), 63-68. https://doi.org/10.12714/egejfas.41.1.09

Abstract: On 21 December 2023 one specimen of Sebastes schlegelii Hilgendorf, 1880 have been captured by means of a commercial bottom trawler towed at a depth of 30 m off Şile coast. Following its first occurrence in Turkish Black Sea waters off Giresun coast on 6 March 2023, it has recently reported from the Sea of Marmara (Gulf of İzmit) on 7 January 2024, exhibiting a noteworthy dispersal speed which required less than one year to migrate across nearly a 1,000 km. Therefore, the dispersal and potential interactions with indigenous species of this invasive teleostean along theTurkish coast should be monitored carefully. In the present article, authors provide full morphometric and meristic characters of *S. schlegelii*, as well.

Keywords: Sebastidae, invasive alien species, prebosphoric, dispersal

Öz: 21 Aralık 2023 tarihinde Şile açıklarında 30 m derinlikte çekilen ticari dip trolü ile avcılık sırasında Sebastes schlegelii Hilgendorf, 1880 türünün bir bireyi elde edilmiştir. S. schlegelii Türkiye sularında ilk kez görüldüğü (Giresun, güneydoğu Karadeniz) 6 Mart 2023 tarihi ile Marmara Denizi'nde (İzmit Körfezi) ilk kez kaydedildiği 7 Ocak 2024 arasında dikkate değer bir yayılım başarısı sergilemiştir ki bir yıldan az bir sürede 1,000 km'ye yakın bir mesafeyi aştığı görülmektedir. Bu nedenle, bu istilacı türün gerekTürkiye kıyısı boyunca güney yönünde yayılımı gerekse yerel türlerle olası etkileşimleri dikkatle izlenmelidir. Bu makalede incelenen S. schlegelii bireyinin eksiksiz morfometrisi de verilmektedir.

Anahtar kelimeler: Sebastidae, istilacı yabancı tür, boğaz önü, yayılma

#### INTRODUCTION

The Korean rockfish, Sebastes schlegelii Hilgendorf, 1880 (Perciformes: Scorpaenoidei), is a member of the teleostean family Sebastidae, which is represented by 7 genera and 133 species worldwide (Froese and Pauly, 2023). S. schlegelii is a livebearing (ovoviviparous), demersal fish occurring near shore and over rocky bottoms at the depths between 3 and 100 m in temperate waters of northwest Pacific off the coasts off Japan, Korean peninsula and China (Froese and Pauly, 2023).

In a recently published checklist of Mediterranean marine fishes, which is based on evidence approach criteria for the definition of "confirmed occurrence", Kovačić et al. (2021) emphasized that no representatives of genera *Sebastes* have been reported to occur in any parts of the region. So, the dispersal of *Sebastes* into the Black Sea can be assumed as a very remote possibility in the light of its absence in the Mediterranean Sea. However, after it was realized that a record of a teleostean captured off the Crimean coast misidentified as dogtooth grouper (*Epinephelus caninus*) (Boltachev and Karpova, 2013), was actually a Korean rockfish, of which

further specimens from the region were caught thereafter, confirmed the first record and the presence of an established population in the Black Sea (Karpova et al., 2021). *S. schlegelii* is a boreal species, of which the natural distribution range extends in very limited area in northwest Pacific (Froese and Pauly, 2023); therefore, its introduction in the region assumed may because of random introduction with ship ballast waters or during acclimatization of the giant oyster (*Crassostrea gigas*) (Karpova et al., 2021).

S. schlegelii reported from Turkish Black Sea coast for first time by Bilecenoğlu et al. (2023) based on specimens previously sighted (and photographed) or captured from several localities in the region, which followed by another recent capture of the species off the coast of Akçakoca (southwestern Black Sea; Yağlıoğlu et al., 2023) and the first record of the Korean rockfish in the Sea of Marmara (Karadurmuş et al., 2024). In the present article authors report on a prebosphoric capture of *S. schlegelii*, provide detailed morphometric and meristic characteristics of the examined specimen, as well as make a projection of its dispersal potential along Turkish coasts.

#### MATERIAL AND METHODS

#### Study area

The area of investigation of the present study is located in the southwestern Black Sea and in accordance with GFCM's definition of geographical subareas (GSAs) of the Mediterranean Sea, Black Sea is defined as GSA29 (Carpentieri et al., 2021).

Examined specimens have been captured, almost 8,3 kilometers away to the west from northern entrance of the Bosphorus Strait, which measured as a point-to-point distance by means of Google Maps measure distance function (Figure 1).



Figure 1. Map shows the approximate locality (red dot) of capture of the examined specimen of Sebastes schlegelii in prebosphoric Black Sea

#### **Examined specimen**

On 21 December 2023, one specimen of S. schlegelii (Figure 2) has been captured by means of a commercial bottom trawler towed at a depth of 50 m off Sile coast (41°16.69'N - 29°13.53'E). Following the capture, the present specimen was stored in a deep freezer at minus 18°C on board of the fishing trawler, then transferred to Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries Technologies, and Management laboratories. Since the Sebastes species occurring in the Atlantic Ocean have 14-16 spiny rays in the dorsal fin, and one or two lachrymal (also called as preorbital) spines (Hureau and Litvinenko, 1986), identification of S. schlegelii was based on the following descriptive characters (Karpova et al., 2021): 13 spiny rays in the dorsal fin and three lachrymal spines on the head. Taxonomic nomenclature follows Froese and Pauly (2023). Morphometric measurements and meristic counts were performed in accordance with the procedure adopted from Kai and Nakabo (2002) and Bilecenoğlu et al. (2023). Morphometric distances were measured either with a measurement tape to the nearest 0.5 mm (for distances >10 cm) or with a digital vernier caliper to the nearest 0.05 mm (for distances ≤10 cm) on fresh specimen to avoid affecting shape variations or changing of the distances because of fixation (Martinez et al., 2013). Definitions of body depths 1 and 2 are the distances between the anterior origin of the 13th dorsal spine and that of the 1st anal spine, and body depth 2 is the distance between the anterior origin of the 1st dorsal spine and that of the pelvic spine, respectively (Kai and Nakabo, 2002). Body proportions were expressed as percentages of standard length (SL) and head length (HL). Terminology of head spines follows Orr et al. (2000). Total weight (TW) of the examined specimen was weighed on a precision balance to the nearest 0.05 g. The best practice approach for the first record notes that proposed by (Bello et al., 2014), which requires depositing of evidence specimens preserved in curated collection, photographs of the examined specimen, and morphometric measurements and meristic counts, was strictly followed. The examined specimen was fixed in 10% formalin and 90% distilled water buffered with borax and deposited in the Istanbul University Faculty of Aquatic Sciences laboratory with the barcode number PSC20230114-120.

#### RESULTS

The examined specimen has a slightly laterally compressed and robust body, and a large head with prominent spines (Figures. 2 and 3). Three lachrymal spines are present, one of which is quite separated from the other two (Figure 3). Strong nasal, preopercular and postocular spines are present (Figure 3), with weakly developed superior cranial spines and suborbital ridge. On the preopercle five spines, of which the second one is the longest, are developed (Figure 3). On the upper corner of the opercle, two flattened and posteriorly

Prebosphoric occurrence of Korean rockfish, Sebastes schlegelii Hilgendorf, 1880 in southwestern Black Sea with notes on its morphometry and dispersal potential

directed spines, of which the upper one is the larger, are visible. A single dorsal fin with 13 spines and 13 soft rays (XIII-13), of which the 13<sup>th</sup> spine, providing anterior support to soft part of the dorsal fin, is longer than the 12<sup>th</sup> one. Formulae of pelvic and anal fins I-5 and III-8, respectively. Caudal fin rounded. Ctenoid scales covering the body and 46 pored scales were counted along the lateral line. 25 gill rakers were counted on the first gill arch on the left side of the head. A large and oblique mouth with a maxilla extending the posterior rim of eye. The main color of the body is brown with darker fades on dorsal surfaces and become paler ventrally, blotched with dark spots scattered with an irregular pattern; ventral surface is light grayish with brownish spots; a dark brown stripe on the maxilla; two dark bands, of which the front one is more prominent, are extending radially from the eye. Morphometric measurements of the present specimen is presented in Table 1.



Figure 2. Examined specimen of S. schlegelii. Scale bar = 90 mm



Figure 3. (A) Side view of the head of S. schlegelii. Scale bar = 40 mm. (B) Close-up view of three lachrymal spines denoted by the white rectangle. Scale bar = 20 mm
| Measurements (mm)                         | Present Specimen |           | Karpova et al.<br>(2021) | Bilecenoğlu et al.<br>(2023) | Yağlıoğlu et al.<br>(2023) | Karadurmuş et al.<br>(2024)* |
|-------------------------------------------|------------------|-----------|--------------------------|------------------------------|----------------------------|------------------------------|
| TL                                        | :                | 311       | 325-391                  | 245                          | 350                        | 275                          |
| SL                                        | 2                | 63.5      | 277-331                  | 206                          | 299.3                      | 240                          |
|                                           | (mm)             | (% of SL) | (% of SL)                | (% of SL)                    | (% of SL)                  |                              |
| Body depth 1                              | 89.98            | 34.15     | -                        | 36.5                         | 34.0                       | 38.3                         |
| Body depth 2                              | 73.95            | 28.06     | -                        | 30.1                         | -                          | -                            |
| Caudal peduncle depth                     | 25.87            | 9.82      | 10.2-10.5                | 9.7                          | 10.2                       | 9.2                          |
| Predorsal length                          | 77.47            | 29.40     | 33.0-35.8                | 27.1                         | 31.1                       | 33.3                         |
| Postdorsal length                         | 10.01            | 3.80      | 12.5-13.1                | 13.3                         | -                          |                              |
| Prepelvic length                          | 103.45           | 39.26     | 37.4-38.9                | 39                           | 34.0                       | 41.3                         |
| Preanal length                            | 178.57           | 67.77     | 67.8-69.2                | 66.7                         | -                          | 68.8                         |
| Prepectoral length                        | 88.22            | 33.48     | 33.6-35.5                | 29.8                         | -                          | 37.1                         |
| Distance between pelvic and pectoral fins | 15.15            | 5.75      | 4.7-5.2                  | 4.7                          | -                          |                              |
| Distance between pelvic and anal fins     | 60.62            | 23.01     | 18.8-30.2                | 22.4                         | -                          | -                            |
| Dorsal fin base length                    | 154.92           | 58.79     | 62.5-62.7                | 60.8                         | 15.8                       | 63.8                         |
| Anal fin base length                      | 43.72            | 16.59     | 15.5-16.4                | 15.9                         | 17.8                       |                              |
| Pectoral fin length                       | 59.25            | 22.49     | 21.2-22.9                | 25.2                         | 20.1                       | 24.2                         |
| Pelvic fin length                         | 49.21            | 18.68     | 20.3-20.6                | 22.7                         | 34.0                       | -                            |
| Pelvic spine length                       | 26.98            | 10.24     | -                        | -                            | -                          | -                            |
| Caudal fin length                         | 52.9             | 20.08     | 21.1-21.2                | 13.4                         | 17.0                       | -                            |
| 1st dorsal fin spine                      | 12.99            | 4.93      | -                        | -                            | -                          | -                            |
| 2 <sup>nd</sup> dorsal fin spine          | 22.06            | 8.37      | -                        | -                            | -                          | -                            |
| 3 <sup>rd</sup> dorsal fin spine          | 29.26            | 11.10     | -                        | -                            | -                          | -                            |
| 4 <sup>th</sup> dorsal fin spine          | 34.62            | 13.14     | -                        | -                            | -                          | -                            |
| 5 <sup>th</sup> dorsal fin spine          | 36.36            | 13.80     | -                        | -                            | -                          | -                            |
| 12 <sup>th</sup> dorsal fin spine         | 18.72            | 7.10      | -                        | -                            | -                          | -                            |
| 13 <sup>th</sup> dorsal fin spine         | 24.36            | 9.24      | -                        | -                            | -                          | -                            |
| 1 <sup>st</sup> anal fin spine            | 13.04            | 4.95      | -                        | -                            | -                          | -                            |
| 2 <sup>nd</sup> anal fin spine            | 27.08            | 10.28     | -                        | -                            | -                          | -                            |
| 3 <sup>rd</sup> anal fin spine            | 26.53            | 10.07     | -                        | -                            | -                          | -                            |
| Pelvic fin spine                          | 26.97            | 10.24     | -                        | -                            | -                          | -                            |
| Head length                               | 90.36            | 34.29     | 35.5-40.1                | 34                           | 30.5                       | 36.7                         |
|                                           |                  | % of HL   | % of HL                  | % of HL                      | % of HL                    | % of HL                      |
| Snout length                              | 20.9             | 23.13     | 29.7-32.0                | 19.8                         | 30.6                       | -                            |
| Orbit length                              | 15.49            | 17.14     | 18.3-21.1                | 18.7                         | 18.9                       | 20.4                         |
| Postorbital length                        | 56.55            | 62.58     | 52.5-52.5                | 61.5                         | -                          | -                            |
| Interorbital width                        | 38.04            | 42.10     | -                        | -                            | 30.9                       | -                            |
| Upper jaw length                          | 32.29            | 35.73     | 47.2-49.4                | 45.5                         | -                          | -                            |

Table 1. Morphometric measurements of the examined and published specimens of S. schlegelii recorded from the Marmara (\*) and Black Seas

#### DISCUSSION

The above description of the examined specimen is coincided with those given in Karpova et al. (2021), Froese and Pauly (2023), Bilecenoğlu et al. (2023), Yağlıoğlu et al. (2023) and Karadurmuş et al. (2024). The morphometric distances of the examined specimen of *S. schlegelii* are also coincided with those reported in the literature (Karpova et al., 2021; Bilecenoğlu et al., 2023; Yağlıoğlu et al., 2023; Karadurmuş et al., 2024), and the slight differences between the examined and published ratios (as % SL), all of which are in the safe limits for the Korean rockfish, may be arised because of intraspecific allopatry (Moyle and Cech Jr., 1988). The number of observed lachrymal spines (3) in the examined specimen, one of the main descriptive characteristic of *S. schlegelii*, as well as the number preopercular (5) and opercular (2) spines are also

coincided with the numbers reported by Karpova et al. (2021), Bilecenoğlu et al. (2023) and Yağlıoğlu et al. (2023), also confirm the identification of the examined specimen.

According to Froese and Pauly (2023), maximum total length (TL) of *S. schlegelii* is 650 mm and the published maximum total weight (TW) is 3100 g. With a reported maximum age of 20 years, Korean rockfish attain sexual maturity between a TL range of 260 to 280 mm (Froese and Pauly, 2023). Although the present specimen is larger (TL 311 mm) than the reported size range of maturity, its dissection revealed that it is female and bearing ovaries (total weight of both ovaries were 1.25 g) at 2c stage that described in the MEDITS maturity scale for bony fish (Follesa and Carbonara,

2019). To date, reproductive biology of *S. schlegelii* from the Black Sea has not been investigated and available information was not allowed to evaluate the reason of the occurrence of such nonmatured ovaries due to recent spawning or the Korean rockfish attains maturity at a larger size in the Black Sea. Further research is required to clarify this uncertainty.

In the past 10 years between the first record date of S. schlegelii in the Black Sea (26 May 2013; Boltachev and Karpova, 2013) and date of capture of present specimen (21 December 2023), Korean rockfish distributed from the Crimean coast (northern Black Sea) to prebosphoric waters. During this time, chronological order of records of S. schlegelii has begun off southwestern coast of Crimean peninsula (Boltachev and Karpova, 2013), then further specimens reported from the Russian waters along the eastern coast of the Black Sea (Karpova et al., 2021), of which followed by the sighting records of Korean rockfish off Giresun (6 March 2023), Ordu (27 April 2023) and Kastamonu (13 June 2023) coasts along the Turkish coast of eastern and central Black Sea (Bilecenoğlu et al., 2023). With the capture of a specimen off Fatsa coast on 16 June 2023, first physical evidence of S. schlegelii from Turkish Black Sea waters has been obtained (Bilecenoğlu et al., 2023), which was followed by the capture of a single specimen off Akçakoca coast (southwestern Black Sea; Yağlıoğlu et al., 2023). According to (Bilecenoğlu et al., 2023) Korean rockfish is captured regularly but with few numbers off the coast of Ordu (southeastern Black Sea).

Based on Google Maps measure distance function result, the distance between Giresun (southeastern Black Sea), where S. schlegelii sighted in Turkish waters for first time on 6 March 2023, and Sile (prebosphoric Black Sea), where the present specimen captured on 21 December 2023, is about 833 km and just a few weeks later, on 7 March 2024 the Korean rockfish finally occurred in the Gulf of İzmit, where it has been reported for the first time in the Sea of Marmara (Karadurmuş et al., 2024). Regarding the above mentioned dates, dispersal of S. schlegelii along this distance just took 10 months, suggesting a remarkable dispersal speed (83.3 km per month) from east to west, from southeastern Black Sea to the Sea of Marmara. Marine environment is a dynamic realm, and the distribution of species in the marine environment can be deeply affected and changed under the influence of changing conditions (Chen et al., 2021). The Black Sea is one of the marine areas where the species composition of marine life has changed, either due to natural processes (e.g. Mediterrannization; Azzurro et al., 2011), or due to anthropogenic factors (e.g. transportation with ballast waters; Oztürk, 2021). As emphasized in a recent FAO publication, the number of non-native species in the fauna of the Black Sea is gradually increasing (Öztürk, 2021), and among these species there are fish that are not native to the region (Yankova et al., 2013). Although the number of alien fish species in the Black Sea was reported to be 2 a decade ago (Yankova et al., 2013), new species are being added to this number with changing conditions, and one of them is *S. schlegelii* (Karpova et al., 2021; Bilecenoğlu et al., 2023; Yağlıoğlu et al., 2023).

The chronology of the distribution direction of S. schlegelii. which has been occurring in the Black Sea since the early 2010s (Karpova et al., 2021; Bilecenoğlu et al., 2023; Yağlıoğlu et al., 2023), reminds the dispersal history of the invasive gastropod Rapana venosa (Oztürk, 2021). The rapa whelk has been first recorded in the Black Sea in 1947 near Novorossiysk (northeastern Black Sea) and followed by the records of R. venosa off the coast of Sinop (central south Black Sea) in 1955, in the Sea of Marmara in 1966 and in the Aegean Sea in 1969 (Öztürk, 2021). R. venosa, which was initially tried to be eradicated due to the damage it caused to mussel (Mytilus sp.) and ovster (Ostrea sp.) beds, is now considered an important economic resource in the Black Sea (Öztürk, 2021). Based on our previous ecological experience with R. venosa in the Black Sea, Sea of Marmara and Aegean Sea, the occurrence and dispersal of S. schlegelii far from its natural distribution range (nortwestern Pacific), arise several questions, such as whether the Korean rockfish brings with ecological problems or economic opportunities as it moves towards the Sea of Marmara, where it has been recently reported (Karadurmuş et al., 2024). Although Sebastes species were previously classified in the same family with closely related species of scorpion fish (Scorpaenidae) in the past (Hureau and Litvinenko, 1986), are today divided into the Sebastidae family (Froese and Pauly, 2023). Therefore, S. schlegelii can be assumed to compete with Scorpaena notata, S. porcus and S. scrofa, which are indigenous species of the fish fauna of Sea of Marmara (Bilecenoğlu et al., 2014), can not be ruled out. Since Korean rockfish is an economically valuable aguaculture species in its natural distribution area, just like in the case of the rapa whelk, S. schlegelii can induce its own economy in the future.

#### CONCLUSION

According to Chen et al. (2021), who emphasize that changing climatic conditions will negatively affect the distribution patterns of S. schlegelii in the northwest Pacific, if the conditions do not change, it is predicted that the species will experience a 45% habitat loss in its natural distribution area by the end of this century. The most important environmental parameter affecting the distribution of S. schlegelii is bottom water temperature, and the species can be expected to be occur in regions with bottom water temperatures between 3°C and 13°C (Chen et al., 2021). Considering the fact that the annual average sea water temperature in the Sea of Marmara is increasing year-by-year (Turkish State Meteorological Service, 2022), the southward dispersal of this relatively coldwater inhabitant species may not extend further than Sea of Marmara. Documenting the species' southerly dispersal and possible colonizations is necessary to achieve an in-depth understanding of the persistence and potential impacts of S. schlegelii in its new habitat.

#### ACKNOWLEDGMENTS

Authors thank to the crews of commercial fishing trawler (Ömer Halis Demir) and the fisherman Sefer GÜZEY for generously sharing the specimen of *S. schlegelii* examined in the present study. Authors also thank to anonymous reviewers for their valuable comments, which improved the content and guality of the article.

#### FUNDING

No additional grants to carry out or direct this particular research were obtained.

#### **AUTHORSHIP CONTRIBUTIONS**

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Hakan Kabasakal and Uğur Uzer. The first draft of the manuscript was written by Hakan Kabasakal and all

#### REFERENCES

- Azzurro, E., Moschella, P., & Maynou, F. (2011). Tracking Signals of Change in Mediterranean Fish Diversity Based on Local Ecological Knowledge. *PLoS ONE*, 6(9), e24885. https://doi.org/10.1371/journal.pone.0024885
- Bello, G., Causse, R., Lipej, L., & Dulčić, J. (2014). A proposed best practice approach to overcome unverified and unverifiable "first records" in ichthyology. *Cybium*, 38(1), 9-14.
- Bilecenoğlu, M., Kaya, M., Cihangir B., & Çiçek, E. (2014). An updated checklist of the marine fishes of Turkey. *Turkish Journal of Zoology*, 38(6), 901-929. https://doi.org/10.3906/zoo-1405-60
- Bilecenoğlu, M., Yokeş, M.B., & Aydın, M. (2023). First record of Sebastes schlegelii Hilgendorf, 1880 along the Turkish Black Sea coast-new addition to the alien species inventory. Turkish Journal of Maritime and Marine Sciences, 9(2), 119-128. https://doi.org/10.52998/trjmms.1358814
- Boltachev, A., & Karpova, E. (2013). First record of dogtooth grouper Epinephelus caninus (Valenciennes, 1834), Perciformes, Serranidae, in the Black Sea. BioInvasions Records, 2(3), 257–261. https://dx.doi.org/10.3391/bir.2013.2.3.14
- Carpentieri, P., Nastasi, A., Sessa, M., & Srour, A. (Eds.) (2021). Incidental catch of vulnerable species in Mediterranean and Black Sea fisheries-A review. Studies and Reviews no. 101 (General Fisheries Commission for the Mediterranean). Rome: FAO. https://doi.org/10.4060/cb5405en
- Chen, Y., Shan, X., Ovando, D., Yang, T., Dai, F., & Jin, X. (2021). Predicting current and future global distribution of black rockfish (*Sebastes schlegelii*) under changing climate. *Ecological Indicators*, *128*, 107799. https://doi.org/10.1016/j.ecolind.2021.107799
- Froese, R., & Pauly, D. (2023). FishBase. World Wide Web electronic publication. https://fishbase.se/summary/Sebastes-schlegelii.html (last accession: 18 January 2024)
- Follesa, M.C., & Carbonara, P. (2019). Atlas of the maturity stages of Mediterranean fishery resources. Studies and Reviews n. 99. Rome, FAO.
- Hureau, J.-C., & Litvinenko, N.I. (1986). Scorpaenidae. In P.J.P. Whitehead, M.L. Bauchot, J.C. Hureau, J. Nielsen & E. Tortonese (Eds.), *Fishes of the north-eastern Atlantic and the Mediterranean* (pp. 1211-1229). Paris, UNESCO.
- Kai, Y., & Nakabo, T. (2002). Morphological differences among three color morphotypes of Sebastes inermis (Scorpaenidae). Ichthyological Research,

authors commented on previous versions of the manuscript. All authors approved the final manuscript.

#### CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

#### **ETHICS APPROVAL**

Specimen of Sebastes schlegelii examined in the present study was consisted of a bycatch fish captured in commercial fisheries. Live fishes were never euthanized and their wellfare were never violated. Since the present sample was only consisted of already death animal, no approval of ethical committe required.

#### DATA AVAILABILITY

Raw data, including excel tables, figures, etc. are available on request from corresponding author for further inspection.

#### 49(3), 260-266. https://doi.org/10.1007/s102280200037

- Karadurmuş, U., Güner, A., & Aydın, M. (2024). First Record and Geographic Expansion of the Sebastes schlegelii (Hilgendorf, 1880) in the Sea of Marmara (Türkiye). Journal of Anatolian Environmental and Animal Sciences, 9(1), 82-86. https://doi.org/10.35229/jaes.1431890
- Karpova, E.P., Tamoykin, I.Y., & Kuleshov, V.S. (2021). Findings of the Korean Rockfish Sebastes schlegelii Hilgendorf, 1880 in the Black Sea. Russian Journal of Marine Biology, 47(1), 29-34. https://doi.org/10.1134/S106307 402101003X
- Kovačić, M., Lipej, L., Dulčić, J., Iglesias, S.P., & Goren, M. (2021). Evidencebased checklist of the Mediterranean Sea fishes. *Zootaxa*, 4998(1), 1-115. https://doi.org/10.11646/zootaxa.4998.1.1
- Martinez, P.A., Berbel-Filho, W.M., & Jacobina, U.P. (2013). Is formalin fixation and ethanol preservation able to influence in geometric morphometric analysis? Fishes as a case study. *Zoomorphology*, 132(1), 87–93.
- Moyle, P.B., & Cech Jr., J.J. (1988). Fishes. An Introduction to Ichthyology. Englewood Cliffs, Prentice Hall.
- Orr, J.W., Brown, M.A., & Baker, D.C. (2000). Guide to rockfishes (Scorpaenidae) of the genera Sebastes, Sebastolobus, and Adelosebastes of the Northeast Pacific Ocean, second edition. U.S. Department of Commerce, NOAA Technical Memorandum, NMFS-AFSC-117.
- Öztürk, B. (2021). Non-indigenous species in the Mediterranean and the Black Sea. Studies and Reviews No. 87 (General Fisheries Commission for the Mediterranean). Rome, FAO. https://doi.org/10.4060/cb5949en
- Turkish State Meteorological Service (2022). available at: https://www.mgm.gov.tr/FILES/resmi-istatistikler/denizSuyu/Marmara-Deniz-Suyu-Sicakligi-Analizi-2022.pdf (last accession: 7 March 2024).
- Yankova, M., Pavlov, D., Ivanova, P., Karpova, E., Boltachev, A., Bat, L., Oral, M., & Mgeladze, M. (2013). Annotated check list of the non-native fish species (Pisces) of the Black Sea. *Journal of Black Sea and Mediterranean Environment*, 19(2), 247-255.
- Yağlıoğlu, D., Doğdu, S.A., & Turan, C. (2023). First Morphological and Genetic Record and Confirmation of Korean Rockfish Sebastes schlegelii Hilgendorf, 1880 in the Black Sea Coast of Türkiye. NESciences, 8(3), 140-150. https://doi.org/10.28978/nesciences.1363941

# Gökkuşağı alabalığı (*Oncorhynchus mykiss* Walbaum, 1792) endüstrisinde yeni bir yaklaşım: "Türk Somonu" üretim ve pazarlama eğilimleri

A new approach in rainbow trout (Oncorhynchus mykiss Walbaum, 1792) industry: "Turkish Salmon" production and marketing trends

### Eyüp Çakmak<sup>1\*®</sup> • Osman Tolga Özel<sup>1®</sup> • Esin Batır<sup>1®</sup> • Derya Evin<sup>2®</sup>

<sup>1</sup>Su Ürünleri Merkez Araştırma Enstitüsü Müdürlüğü, 61250, Yomra, Trabzon

<sup>2</sup>Hayvan ve Hayvansal Ürünler Sınır Kontrol Daire Başkanlığı, Gıda ve Kontrol Genel Müdürlüğü, Ankara

\*Corresponding author: eyup.cakmak@tarimorman.gov.tr

Received date: 17.10.2023

Accepted date: 26.02.2024

#### How to cite this paper:

Çakmak, E., Özel, Ö.T., Batır, E., & Evin, D. (2024). Gökkuşağı alabalığı (Oncorhynchus mykiss Walbaum, 1792) endüstrisinde yeni bir yaklaşım: "Türk somonu" üretim ve pazarlama eğilimleri. Ege Journal of Fisheries and Aquatic Sciences, 41(1), 69-81. https://doi.org/10.12714/egejfas.41.1.10

Öz: Türkiye'de 2022 yılı itibarıyla farklı üretim kapasitelerine sahip 1703 adet işletme alabalık üretimi yapmaktadır. Bu işletmelerin porsiyonluk (200-250 g), filetoluk adayı (400-600 g) ve filetoluk (Türk Somonu) (>3000 g) alabalık üretimi toplam 167.286 ton/yıl'dır. Türk Somonu üretiminde kuluçkahane, baraj gölü ağ kafes sistemleri ve açık deniz ağ kafes sistemleri üretim zinciri şeklinde kullanılmaktadır. Alabalık yumurta ve yavru üretimi için 680 adet kuluçkahane kullanılmakta olup toplam yumurta üretimi 1.360.029.485 adet/yıl'dır. Genel olarak Türk Somonu adayı alabalıkların (400-600 g) üretimi için 622 adet gölet/baraj gölü ağ kafes sistemleri kullanılmakta olup bu işletmelerin üretim kapasitesi 163.525 ton/yıl'dır. Karadeniz'de toplam 6 ilin denizel alanında açık deniz ağ kafes sistemleri kullanılmakta olup bu işletmelerin üretim kapasitesi 163.525 ton/yıl'dır. Karadeniz'de toplam 6 ilin denizel alanında açık deniz ağ kafes sistemleri ber ise 221.188 ton/yıl olarak hesaplanımıştır. Dünya su ürünleri sektöründe yaşanan gelişmelere kaytısız kalmayan Türkiye, farklı türlerin yetiştiriciliğine uygun çevresel koşulları ve yeni teknoloji kullanımı ile günümüzde sektörde söz sahibi ülkeler tarafından dikkatle takip edilmektedir. Dünya alabalık üretiminde söz sahibi ülkelerin üretim kapasiteleri düşünüldüğünde, Türkiye'nin yumurta/yavru üretim kapasitesi oldukça iyi durumdadır. Fakat Türkiye doğal sucul alanları için biyolojik ve genetik risk teşkil eden biyoteknoloji uygulanmış gözlenmiş yumurta ithalatına halen devam etmektedir. Türkiye'nin alabalık üretimi son 20 yılda 3,75 kat büyüyerek 167.286 ton/yıl'a ulaşmış ve önemli bir gıda üretim endüstrisi haline gelmiştir. Bu başarıda; elverişli çevresel şartlar, sürekli yükselme eğilimi gösteren tüketici talebi ve üretimde yeni teknolojilerin kullanılması ile birlikte istikrarlı yatırını başarıda; elverişli çevresel şartlar, sürekli yükselme eğilimi gösteren tüketici talebi ve üretimde yeni teknolojilerin kullanılması ile birlikte istikrarlı yatırını da getirmişt

Anahtar kelimer: Fileto, büyük boy alabalık, yetiştiricilik, kuluçkahane, ağ kafes

Abstract: With favorable environmental conditions and the adoption of new technologies, Türkiye has 1703 enterprises producing trout as of 2022. These enterprises collectively produce 167,286 tons of trout per year, including portioned fish (200-250 g), fillet candidates (400-600 g), and fillets (known as Turkish Salmon) (>3000 g). The production chain for Turkish Salmon involves hatcheries, dam lake net cage systems, and offshore net cage systems. There are 680 hatcheries producing Turkish Salmon candidates weighing 400-600 g, with a total annual production capacity of 163,525,079 kg per year. Offshore net cage systems are used for producing Turkish Salmon candidates weighing 400-600 g, with a total production capacity of 163,525,079 kg per year. Offshore net cage systems in the Black Sea region, spread across six provinces, are utilized for Turkish Salmon production. Production planning is underway for two global aquaculture sector, paying close attention to its advancements. Türkiye has a strong egg/juvenile production capacity compared to other countries involved in trout production globally. However, the importation of biotechnology-applied and observed eggs continues, posing biological and genetic risks to Türkiye's natural aquatic areas. Over the past 20 years, Türkiye's trout production has grown significantly, reaching 167,286 tons per year, marking it as a significant food production industry. This success can be attributed to favorable environmental conditions, increasing consumer demand, the adoption of new technologies, and consistent investments. However, the rapid growth in the trout farming sector over the past five years has led to an uncontrollable decline in survival rates. This decline can be attributed to the spread of diseases, incorrect treatment methods, improper breeding management practices, flawed business management, unregulated fish transport, and compromised sanitary and environmental conditions.

Keywords: Fillet, large size trout, aquaculture, hatchery, net cage

#### GİRİŞ

Birleşmiş Milletler Gıda ve Tarım Örgütünün (FAO) tahminlerine göre, sürekli artış eğilimi gösteren dünya nüfusunun 2050 yılına kadar 9,3 milyara ulaşması beklenmektedir. Bu nüfusun gıda talebini karşılamak için toplam gıda üretiminin %60 oranında büyümesi gerekmektedir. Bu arada, doğal kaynakların da tükenmeye devam ettiği unutulmamalıdır. FAO, gıda arz ve talebi arasındaki boşluğu doldurmada su ürünleri yetiştiriciliğinin kilit bir role sahip olduğunu, bunun gerçekleşmesi için sürdürülebilir bir üretime ihtiyaç olduğunu belirlemiştir (FAO, 2022). Dünya toplam su ürünleri üretiminde yıllar itibarıyla avcılıktan gelen üretim miktarı küçük dalgalanmalarla sabit kalırken yetiştiricilik üretiminin payı sürekli olarak artış göstermektedir. Yetiştiricilik üretiminin yıllar içinde artması, gıda gereksinimi için su ürünleri temininde avcılığın yerini yetiştiriciliğe bırakması olarak değerlendirilebilir. Dünya su ürünleri üretimi 2021 yılında 218.378.013,33 milyon ton olarak gerçekleşmiş, bu üretimin 126.035.296,8 tonu (%57,71) yetiştiricilik, 92.342.716,53 milyon tonu (%42,29) avcılık yolu ile elde edilmiştir (FAO, 2023). Dünya yetiştiricilik sektöründe

2021 yılında en yüksek üretim 72.805.297 ton ile Çin ilk sırada yer alırken, bu ülkeyi 1.665.112 ton ile Norveç ve 1.460.868 ton ile Şili takip etmektedir. Türkiye ise 471.686 ton ile sektörde söz sahibi Ülkerler arasında yer almaktadır (FAO, 2023).

Dünyada, yetiştiriciliği yapılan türler arasında Gökkuşağı alabalığı (*Oncorhyncus mykiss*) 15. sırada olup yetiştiriciliği yapılan alabalık türleri arasında ise en ön sıradadır (FAO, 2022). Dünya gökkuşağı alabalığı yetiştiricilik sıralamasında ise 326.054 ton ile Şili ilk sırada yer alırken, İran 193.852 ton ile ikinci ve Türkiye 165.683 ton ile üçüncü sırada yer almaktadır (FAO, 2023) (Tablo 1).

Türkiye su ürünleri sektöründeki gelişmeler, dünya su ürünleri sektöründe yaşananlar ile benzerlik göstermektedir. Türkiye'nin 2022 yılı toplam su ürünleri üretimi 849.808 ton olarak gerçekleşmiş ve bu üretimin %60,58'ı yetiştiricilik yoluyla, %39,42'ı ise avcılık yolu ile elde edilmiştir (TUİK, 2023). Ülkemizde, son 10 yılda yetiştiricilikten sağlanan üretim miktarı yıllık 212.410 tondan 471.686 tona ulaşmıştır. Yetiştiriciliği yapılan türler arasında ilk sırayı alabalık (%35,5) almakta, bunu sırası ile levrek (%32,9), çipura (%28,3), granyöz, orkinos, midye ve diğerleri izlemektedir (TÜİK, 2022). Son yıllarda oldukça hızlı gelişme gösteren Karadeniz'de ağ kafes sistemlerindeki balık yetiştiriciliği ilk sırayı gökkuşağı alabalığı (Oncorhynchus mykiss) üretimi almaktadır. Bunun yanı sıra Karadeniz alabalığı (Salmo labrax), levrek (Dicentrarchus labrax) ve diğer bazı türlerin üretimi de yapılmaktadır. Av stoklarındaki azalmanın önüne geçilebilmesi ve artan nüfusun ihtiyaç duyacağı su ürünleri kaynaklı proteinin elde edilmesi için yetiştiricilik faaliyetlerinin ülkesel çapta artırılması büyük önem taşımaktadır.

 Tablo 1. Dünyada söz sahibi ülkelerin yetiştiricilik üretimi, ton (FAO, 2023)

| Table 1. Aquaculture production of the countries that have a s | ay in the world, | tons (FAO, 2023) |
|----------------------------------------------------------------|------------------|------------------|
|----------------------------------------------------------------|------------------|------------------|

| Ülkeler    | Toplam Yetiştiricilik Üretimi (ton) | G. alabalığı Üretimi (ton) | Toplam Üretimdeki Payı (yüzde) | İthalat (ton) | İhracat (ton) |
|------------|-------------------------------------|----------------------------|--------------------------------|---------------|---------------|
| Çin        | 72.805.297                          | 37.258,81                  | 0,05                           | 37.258,81     | 11.878,98     |
| Norveç     | 1.665.112                           | 94.659,75                  | 5,68                           | 224,24        | 63.359,06     |
| Şili       | 1.460.868                           | 326.053,52                 | 22,32                          | 394,61        | 326.053,52    |
| İran       | 478.737                             | 193.852                    | 40,49                          | 22,89         | 2.673,00      |
| Türkiye    | 471.686                             | 165.683                    | 35,13                          | 291,47        | 50.563,53     |
| ABD        | 451.878                             | 18.035,57                  | 3,99                           | 221.216,56    | 18.035,57     |
| Kanada     | 194.517                             | 5.512,33                   | 2,83                           | 58.217,37     | 5.512,33      |
| Kolombiya  | 192.521                             | 30.185                     | 15,68                          | 4,87          | 1.529,72      |
| Finlandiya | 14.399                              | 13.550                     | 94,10                          | 4.856,81      | 2.811,22      |

Türkiye su ürünleri sektöründeki gelişmeler, dünya su ürünleri sektöründe yaşananlar ile benzerlik göstermektedir. Türkiye'nin 2022 yılı toplam su ürünleri üretimi 849.808 ton olarak gerçekleşmiş ve bu üretimin %60,58'ı yetiştiricilik yoluyla, %39,42'ı ise avcılık yolu ile elde edilmiştir (TUİK, 2023). Ülkemizde, son 10 yılda yetiştiricilikten sağlanan üretim miktarı yıllık 212.410 tondan 471.686 tona ulaşmıştır. Yetiştiriciliği yapılan türler arasında ilk sırayı alabalık (%35,5) almakta, bunu sırası ile levrek (%32,9), çipura (%28,3), granyöz, orkinos, midye ve diğerleri izlemektedir (TÜİK, 2022). Son yıllarda oldukça hızlı gelişme gösteren Karadeniz'de ağ kafes sistemlerindeki balık yetiştiriciliği ilk sırayı gökkuşağı alabalığı (Oncorhynchus mykiss) üretimi almaktadır. Bunun yanı sıra Karadeniz alabalığı (Salmo labrax), levrek (Dicentrarchus labrax) ve diğer bazı türlerin üretimi de yapılmaktadır. Av stoklarındaki azalmanın önüne gecilebilmesi ve artan nüfusun ihtiyac duyacağı su ürünleri kavnaklı proteinin elde edilmesi icin vetistiricilik faalivetlerinin ülkesel çapta artırılması büyük önem taşımaktadır.

Türkiye Tarım ve Orman Bakanlığı Balıkçılık ve Su Ürünleri Genel Müdürlüğü, 2018 yılında Karadeniz tuzluluğunda yetiştiriciliği yapılan büyük boy gökkuşağı alabalığının "Türk Somonu" markası altında dünya balık pazarına giriş yapmasına vesile olmuştur (Turan ve Çenesiz, 2023). Bununla birlikte Chris Loew (2023) alabalıkların, Japonya'da bir tür somon olarak kabul edildiğini ve Türk ihracatçıların, kültür koşullarında yetiştirilen gökkuşağı alabalığını Japonya'da "Türk Somonu" olarak pazarladığını bildirmiştir. Türkiye'de özellikle büyük boy alabalığa (Türk Somonu-Oncorhynchus mykiss) yurtdışından gelen yüksek talep, kültür balıkçılığı üretimindeki artışa hız kazandırmıştır. Tatlısu kaynakları, baraj gölleri ve denizi ile büyük boy alabalık üretimi için oldukça uygun çevresel koşullara sahip olan Karadeniz Bölgesi üretimde cazibe merkezi olmuştur. Kuluçkahane, havuz, baraj gölü ağ kafes ve deniz ağ kafes sistemlerinin yumurtadan hasat boyuna kadar üretim zinciri halinde kullanılabilmesi Karadeniz Bölgesinin önemini gün gectikce artırmaktadır.

Türkiye'de 2022 yılı itibarıyla farklı üretim kapasitelerine sahip 1.703 adet işletme alabalık yetiştiriciliği yapmaktadır. Bu işletmelerin porsiyonluk (200-250 g), filetoluk adayı (400-600 g) ve filetoluk (Türk Somonu) (>3000 g) alabalık üretimi toplam 167.286 ton/yıl'dır (BSGM, 2022). Türkiye'nin sahip olduğu coğrafyada alabalık üretimi için uygun çevresel koşullara sahip tatlısu kaynakları bulunmaktadır. Bu nedenle kuluçkahane ve tatlısu havuz yetiştiriciliği oldukça yaygındır. Çoğunluğunda geleneksel üretim yönteminin kullanıldığı 670 adet kuluçkahanede 1.350.629.485 adet/yıl yumurta üretimi yapılmaktadır (TUİK, 2022).

Bu çalışma, Türkiye'de son yıllarda yüksek oranda talep gören Türk somonu yetiştiriciliğinin mevcut durumunu belirleyerek sürdürülebilir üretimin sağlanmasına yönelik tartışmalara katkı sağlamak amacıyla hazırlanmıştır.

#### MATERYAL VE METOT

Çalışmada, mevcut durumun belirlenmesinde Balıkçılık ve Su Ürünleri Genel Müdürlüğü (BSGM) ve Türkiye İstatistik Kurumu (TÜİK) verileri ile Su Ürünleri Merkez Araştırma Enstitüsü (SUMAE) tarafından yürütülen projelerin verileri kullanılmıştır. Çalışmada, büyük boy alabalık üretiminde sacayağı olan tatlısu kara, baraj ağ kafes ve deniz ağ kafes işletmeleri bölgesel olarak değerlendirmeye tabi tutulmuş ve geleceğe dönük üretim potansiyelleri ülkemiz sucul alanları dikkate alınarak irdelenmiştir.

Su ürünleri yetiştiricilik işletmeleri değerlendirilirken üretilen tür Alabalık-Gökkuşağı olanlar dikkate alınmıştır. Su ürünleri yetiştiricilik işletmeleri ile ilgili bilgiler BSGM tarafından yayınlanan verilerden derlenmiştir (BSGM, 2022). Kuluçkahanesi olan işletmelerde türün adet olarak verilen üretim kapasite miktarları yumurta üretim miktarı olarak alınmıştır. Kuluçkahaneler yumurta üretim kapasitesine göre 4 sınıfa ( $\leq 199$  bin, 200-599 bin, 600-999 bin ve  $\geq 1$  milyon) ayrılmıştır. BSGM verilerinde ver alan ve tesis tipi büyütme olan Alabalık-Gökkuşağı işletmeleri üretim metoduna göre havuz, baraj ağ kafes ve deniz ağ kafes olarak ayrılmıştır. Üretim metodu beton/toprak havuz olanlar Kaynak/akarsu havuz işletmeleri olarak belirlenmiştir. Havuz işletmeleri üretim kapasitesine göre 4 sınıfa (≤ 29 ton, 30-99 ton, 100-499 ton ve ≥500 ton) ayrılmıştır. Baraj gölü ağ kafes işletmeleri belirlenirken "Üretim Metodu" ağ kafes olanlar seçilmiş, ilin denize sınırı yoksa baraj ağ kafes işletmesi olarak alınmıştır. Eğer hem baraj hem deniz ağ kafes işletmesi varsa "Proje Kapasitesi" <1000 ton/yıl olanlar baraj ağ kafes olarak alınarak hesaplanmıştır. Baraj gölü ağ kafes işletmeleri üretim kapasitesine göre 4 sınıfa (≤ 29 ton, 30-99 ton, 100-499 ton ve ≥500 ton) ayrılmıştır. Deniz ağ kafes işletmeleri de baraj işletmelerindeki kriterler dikkate alınarak belirlenmiştir. Denize kıyısı olan illerde "Üretim Metodu" ağ kafes olan işletmeler ve baraj gölü olup denize sınırı olan illerde "Proje Kapasitesi" >950 ton/yıl olanlar deniz ağ kafes işletmesi olarak belirlenmiştir. Deniz ağ kafes işletmeleri üretim kapasitesine göre 3 sınıfa (≤ 499 ton, 500-999 ton, ≥1000 ton) ayrılmıştır.

İhracat miktarlarının değerlendirilmesinde Tarım ve Orman Bakanlığı, Hayvan ve Hayvansal Ürünler Sınır Kontrol Daire Başkanlığı Gıda ve Kontrol Genel Müdürlüğü verileri kullanılmıştır (TUİK, 2022). Canlı olarak ihraç edilen balıkların kuluçkahane ve tatlısu havuz işletmelerinden hasat edildiği kabul edilmiştir. İhracatta kullanılan ürünler; taze veya soğutulmuş alabalık, dondurulmuş alabalık, taze veya soğutulmuş alabalık fileto, dondurulmuş alabalık fileto ve tütsülenmiş alabalık olarak isimlendirilmiştir. Üretim sistemleri ve ürün isimleri işleme tesisleri ile görüşülerek belirlenmiştir.

Çalışmada elde edilen sonuçlar Microsoft Excel 2016 programı kullanılarak analiz edilmiştir.

#### BULGULAR

#### Kuluçkahaneler ve yumurta/yavru üretimi

Türkiye'nin sahip olduğu yedi coğrafik bölgede alabalık üretimi için uygun çevresel koşullara sahip tatlı su kaynakları bulunmaktadır. Bundan dolayı kuluçkahane ve tatlısu havuz yetiştiriciliği ülke geneline yayılmış durumdadır. Çoğunluğu aile işletmesi (0-29 ton/yıl) niteliği taşıyan ve geleneksel üretim yönteminin kullanıldığı 670 adet kuluçkahanede 1.350.629.485 adet/yıl yumurta üretimi yapılmaktadır. Karadeniz Bölgesi 192 adet kuluçkahane ile ilk sırayı almasına rağmen üretim kapasitesi sıralamasında dördüncü sırada yer almaktadır. 374.107.490 adet/yıl üretim kapasitesi ile ilk sırada yer alan Ege Bölgesi, kuluçkahane sayısı sıralamasında 144 adet kuluçkahane ile ikinci sırada yer almaktadır (Tablo 2).

Kuluçkahanelerin tamamına yakını yumurta inkübasyonu ve yavru alabalık üretiminde kaynak suyu kullanmaktadır. Kaynak sularının miktar bakımından fazla olduğu bölgelerde (Ege, Doğu Anadolu, Akdeniz) üretim kapasitesi yüksek işletmeler yoğunlaşırken, kaynak sularının sayısal olarak fazla, fakat debi olarak az olduğu Karadeniz Bölgesinde ise kuluckahane sayısı fazla üretim kapasitesi düsük olan işletmeler bulunmaktadır. Marmara Bölgesinde kaynak suları diğer bölgelere nazaran sayısal ve miktar olarak oldukça azdır. Bu nedenle bölgede 42 kuluçkahanede 27.062.271 adet/yıl yumurta üretilmektedir. Güneydoğu Anadolu Bölgesi kaynak suları bakımından oldukça zengin olmasına rağmen bölgede yalnızca 6 kuluçkahane bulunmaktadır ve üretim kapasitesi 27.905.000 adet vumurta/vıldır (Tablo 2). Bunun başlıca nedenlerinin; iklim koşullarının ve coğrafik koşulların zorluğu olduğu düşünülmektedir.

Kuluçkahaneler yumurta üretim kapasiteleri, üretim amaçları, üretim metodu ve hedef pazarı gözetilerek 4 grupta irdelenmiştir (Tablo 3). Toplam kuluçkahane sayısının çoğunluğunu oluşturan (%70) 1. ve 2. grup kuluçkahaneler kendi tesisinin ihtiyacını karşılayacak miktarda üretim vaptığından Türk Somonu üretimine katkı sağlamamaktadır. %3 oranı ile temsil edilen 3. grup kuluckahaneler Türk Somonu üretimine az miktarda katkı sağlarken, asıl üretimin %28 pay ile temsil edilen 4. grup kuluckahanelerden Kuluckahanelerin sağlandığı görülmektedir. üretim kapasiteleri dağılımında %95 kapasiteye sahip olan 4.grup kuluçkahaneler Türk Somonu üretiminde ilk sırada yer almaktadır.

| Bölge Adı | Kapasite Sınıfı<br>(Bin adet) | Kuluçkahane<br>Sayısı (Adet) | Üretim Miktarı<br>(Bin Adet) | Bölge Adı              | Kapasite Sınıfı<br>(Bin adet) | Kuluçkahane<br>Sayısı (Adet) | Üretim Miktarı<br>(Bin Adet) |
|-----------|-------------------------------|------------------------------|------------------------------|------------------------|-------------------------------|------------------------------|------------------------------|
|           | ≤ 199                         | 58                           | 3.534                        |                        | ≤ 199                         | 37                           | 2.341                        |
| Akdoniz   | 200-599                       | 20                           | 6.788                        | la Anadalu             | 200-599                       | 13                           | 4.730                        |
| Akueniz   | 600-999                       | 3                            | 2.750                        | iç Anadolu             | 600-999                       | 1                            | 750                          |
|           | 1.000 ≥                       | 50                           | 278.960                      |                        | 1.000 ≥                       | 19                           | 145.300                      |
| Karadeniz | ≤ 199                         | 116                          | 6.020                        |                        | ≤ 199                         | 44                           | 3.501                        |
|           | 200-599                       | 37                           | 13.160                       | Dožu Anodolu           | 200-599                       | 10                           | 3.500                        |
|           | 600-999                       | 3                            | 1.900                        | Dogu Anadolu           | 600-999                       | 1                            | 600                          |
|           | 1.000 ≥                       | 36                           | 158.299                      |                        | 1.000 ≥                       | 30                           | 289.418                      |
|           | ≤ 199                         | 25                           | 1.162                        | O" and a Yes Associate | ≤ 199                         | 1                            | 105                          |
| Marmara   | 200-599                       | 9                            | 2.750                        |                        | 200-599                       | 0                            | 0                            |
| Marmara   | 600-999                       | 2                            | 1.700                        | Guneydogu Anadolu      | 600-999                       | 1                            | 800                          |
|           | 1.000 ≥                       | 6                            | 21.450                       |                        | 1.000 ≥                       | 4                            | 27.000                       |
|           | ≤ 199                         | 82                           | 4.844                        |                        | ≤ 199                         | 363                          | 21.510                       |
| Гао       | 200-599                       | 15                           | 5.470                        | Taulau                 | 200-599                       | 104                          | 36.398                       |
| ⊏ge       | 600-999                       | 2                            | 1.448                        | ropiam                 | 600-999                       | 13                           | 9.948                        |
|           | 1.000 ≥                       | 45                           | 362.344                      |                        | 1.000 ≥                       | 190                          | 1.282.772                    |

## Tablo 2. Bölgeler bazında kuluçkahane ve yumurta kapasitesi Table 2. Hatchery and egg capacity by regions

 Tablo 3. Yumurta üretim kapasiteleri, üretim amaçları, üretim metodu ve hedef pazarına göre kuluçkahane grupları

 Table 3. Hatchery groups according to egg production capacities, production purposes, production method and target market

| Grup<br>Sıra No | Üretim Kapasitesi<br>(adet/yıl) | Üretim Kapasitesi<br>(ton/yıl) | İşletme<br>Sayısı (adet) | Üretim Kapasiteleri<br>(adet/yıl) | Kuluçkahanenin Özellikleri                                                                                                                                                             |
|-----------------|---------------------------------|--------------------------------|--------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | ≤199.000                        | 0-29                           | 363                      | 21.510.191                        | Porsiyonluk balık üreten, geleneksel üretim yapan, kendi<br>ihtiyacı kadar yumurta üreten ve restoranı olan aile işletmeler                                                            |
| 2               | 200.000–599.000                 | 30-99                          | 104                      | 36.398.000                        | Porsiyonluk balık üreten, teknik personel çalıştıran, yeni<br>teknoloji kullanan, diğer kuluçkahanesi olmayan işletmelere<br>de yumurta üreten ve çoğunlukla restoranı olan işletmeler |
| 3               | 600.000–999.000                 | 100-999                        | 13                       | 9.948.500                         | Kendi işletmesine ve diğer kuluçkahanesi olmayan<br>işletmelerle beraber az miktarda baraj gölü ağ kafes<br>işletmelerine yavru balık temini için üretim yapan işletmeler              |
| 4               | ≥1.000.000                      | ≥150                           | 190                      | 1.282.772.794                     | Kendi işletmesine ve daha çok baraj gölü ağ kafes<br>işletmelerine Türk Somonu adayı yavru balık temini için üretim<br>yapan işletmeler                                                |

Kuluçkahanelerde, 2021 yılında toplam 1.350.629.485 adet gökkuşağı alabalığı yumurtası üretilmiştir. Aynı yıl (16.655.000 g/ 0,090 g/adet) 185.055.556 adet yumurta ithalatımız olmuştur (BSGM, 2022). Türkiye'nin 2021 yılı toplam 167.286.000 kg alabalık üretimi için 1.535.685.041 adet yumurta kullanılmıştır. 167.286.000 kg alabalık hasadında kullanılan yumurta sayısı hesabı aşağıda verilmiştir.

2021 yılı deniz ağ kafes sistemlerinden hasat edilen alabalıkların tamamı (31.554.000 kg) Türk Somonu olarak ihracatta kullanılmış olarak kabul edilmiştir. Zayiatsız hasat miktarı kriter alınarak yumurta ihtiyacı (31.554.000 kg ÷ ortalama hasat ağırlığı 3 kg) 10.518.000 adet olmuştur. Aynı yıl akarsu havuz işletmelerinin toplam balık üretimi 40.690.708 kg olmuştur. Bu üretimin %10 (4.069.070 kg)'u somon adayı (ortalama ağırlık 500 g) olarak deniz ağ kafes işletmelerine satılırken geriye kalan %90 (39.621.637 kg)'ı restoranı olan işletmelerde veya işletmeden taze porsiyonluk (ortalama ağırlık 250 g) olarak satıldığı varsayılmıştır. Buna göre akarsu havuz işletmelerinin zayiatsız hasat kriter olarak kabul edildiğinde ihtiyaç duyulacak yumurta miktarı (36.621.637.000 g ÷ ortalama hasat ağırlığı 250 g) 146.486.548 adet olmuştur. Türkiye'nin 2021 yılı içsu alabalık üretimi 135.732.000 kg olmuştur (TÜİK, 2022). Bu üretimin 40.690.708 kg akarsu havuz işletmelerinde, geriye kalan 95.041.292 kg baraj gölü ağ kafes işletmelerinde gerçekleşmiştir.

2021 yılı toplam alabalık ihracatımız 50.569.436 kg olmuştur. Bu miktarın (50.569.436 kg – deniz ağ kafes hasatı 31.554.000 kg) 19.015.436 kg'ı baraj gölü ağ kafes işletmelerinden özellikle yaz aylarında taze balık (ortalama ağırlık >2 kg) ihracatında kullanıldığı anlaşılmaktadır. İhracat üretimi için zayiatsız hasat kriter olarak kabul edildiğinde ihtiyaç duyulacak yumurta miktarı (19.015.436 kg ÷ 2 kg) 9.507.718 adettir. Baraj gölü üretiminden Türk somonu üretimi için deniz ağ kafes işletmelerine somon adayı (ortalama ağırlığı 500 g) satılmaktadır. Bu üretimin toplam miktarı (10.518.000 adet yumurta x 500 g) 5.290.000 kg'dır. Bu durumda baraj gölü ağ kafes işletmelerinden iç piyasaya satılan balık miktarı ise (95.041.292 kg - (19.015.436 kg + 5.290.000 kg) 70.735.856 kg olarak hesaplanmıştır. Baraj gölü üretiminden iç piyasaya genelde porsiyonluk balık (ortalama ağırlığı 250 g) satılmaktadır. Buna göre baraj gölü ağ kafes işletmelerinin zayiatsız hasat kriter olarak kabul edildiğinde ihtiyaç duyulacak yumurta miktarı (70.735.856.000 g ÷ 250 g) 282.943.424 adettir. Deniz ağ kafes işletmeleri için 10.518.000 adet, akarsu havuz işletmeleri için 146.486.548 adet, baraj gölü ağ kafes isletmelerinden ihracatta kullanılan üretim için 9.507.718 adet ve baraj gölü ağ kafes işletmelerinden iç piyasaya satışı yapılan üretim için 282.943.424 adet olmak üzere toplam 449.455.690 adet/yumurtadır.

Buna göre alabalık üretiminde zayiatsız hasat kriter olarak kabul edildiğinde yumurtadan hasata üretim başarası %30,10

olarak hesaplanmıştır. Kuluçkahanelerde hasat, büyütme işletmelerinin tercihine uygun yapılmaktadır. Bazı tatlısu havuz işletmeleri/baraj gölü ağ kafes işletmeleri üretimde 3-5 g ağırlığındaki yavru balıkları tercih ederken bazıları da 20-30 g ağırlığa sahip hastalık direnci gelişmiş yavruları tercih etmektedir.

#### İçsu/Akarsu havuz işletmelerinde üretim

Daha çok taze balık tüketiminin tercih edildiği Türkiye'de kaynak/akarsu havuz alabalık işletmeleri tüm bölgelere dağılmış durumdadır. Bu işletmelerin toplam sayısı 948 adet, üretim kapasitesi ise 40.691 ton/yıl'dır. Karadeniz Bölgesi işletme sayısı (266 adet) bakımından en zengin bölge olmasına rağmen en büyük kapasiteye (19.065 ton/yıl) sahip bölge Ege Bölgesidir.

İçsu/akarsu havuz işletmeleri üretim kapasiteleri, üretim amaçları, üretim metodu ve hedef pazarı gözetilerek 4 sınıfta irdelenmiştir (Tablo 4).

| Tablo 4. Üretim kapasiteleri, üretim amaçları, üretim metodu ve hedef pazara göre içsu/havuz işletmeleri grupları                          |    |
|--------------------------------------------------------------------------------------------------------------------------------------------|----|
| Table 4. Groups of inland water/pool businesses according to production capacities, production purposes, production method and target mark | et |

| Grup<br>Sıra No | Üretim<br>Kapasitesi<br>(ton/yıl) | Üretim<br>Kapasitesi<br>(ton/yıl) | İşletme<br>Sayısı (adet) | Havuz İşletmelerinin Özellikleri                                                                                                                                                                                                                                               |
|-----------------|-----------------------------------|-----------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1               | ≤29                               | 9.605                             | 767                      | Çoğunluğu kuluçkahaneli, porsiyonluk balık üreten, restoranı olan ve geleneksel<br>üretim yapan aile işletmeleridir. Bu işletmelerin Türk Somonu üretimine katkısı yok<br>denecek kadar azdır                                                                                  |
| 2               | 30-99                             | 4.729                             | 98                       | Kendi ihtiyacını karşılayacak kapasitede porsiyonluk balık üreten, çoğunlukla restoranı<br>olan, diğer restoranlı işletmelere satış yapan, teknik personel istihdam eden, ekstansif<br>üretim yapan ve Türk Somonu üretimine katkısı az olan işletmelerdir.                    |
| 3               | 100-499                           | 14.102                            | 68                       | Diğer restoranlı işletmelere satış yapan, teknik personel istihdam eden, ekstansif<br>üretim yapan, baraj gölü işletmelerine yavru temini, deniz ağ kafes işletmelerine az<br>sayıda Türk somonu adayı temini yapan ve Türk Somonu üretimine katkısı az olan<br>işletmelerdir. |
| 4               | ≥500                              | 12.254                            | 15                       | Teknik personel istihdam eden, konvansiyonel üretim tekniği kullanan, baraj gölü ağ<br>kafes işletmelerine ve deniz ağ kafes işletmelerine Türk Somonu adayı satışı yapan ve<br>Türk Somonu üretimine katkısı diğer gruplara nazaran oldukça yüksek işletmelerdir.             |

Ülkemizdeki kaynak/akarsu havuz işletmelerinin tamamına yakını üretimde akarsu kullanmaktadır. Kaynak/akarsuların miktar bakımından fazla olduğu bölgelerde (Ege, Doğu Anadolu, Akdeniz) üretim kapasitesi yüksek işletmeler yoğunlaşırken, kaynak/akarsuların sayısal olarak fazla fakat miktar (debi) olarak az olduğu Karadeniz Bölgesinde ise havuz işletmeleri sayısı fazla üretim kapasitesi düşük olan işletmeler bulunmaktadır. Marmara Bölgesinde alabalık üretimine uygun kalitede kaynak/akarsular diğer bölgelere nazaran sayısal ve miktar olarak oldukça azdır. Bu nedenle bölgede 65 adet kaynak/akarsu havuz isletmesinde 3.165 ton/yıl üretim mevcuttur. Güneydoğu Anadolu Bölgesi kaynak/akarsu bakımından zengin olmasına rağmen bölgede yalnızca 13 adet kaynak/akarsu havuz işletmesi bulunmakta ve üretim kapasitesi de (473 ton/yıl) diğer bölgelere nazaran oldukça azdır (Tablo 5). Bölgede, güçlü ve verimli Fırat ve Dicle'nin kolları olan Nizip, Göksu, Garzan, Batman ve Botan akarsuları bulunmaktadır. Güneydoğu Anadolu Bölgesinde,

yetiştiricilik sektörünün geliştirilmesi ve istihdam oluşturulması için bu akarsular küçük kollarıyla beraber değerlendirilmelidir.

Kaynak/akarsu havuz işletmelerinde hasat, tamamen müşteri tercihine uygun yapılmakta ve işletme yönetim planı da balık hasat boyu kriter alınarak oluşturulmaktadır. 1. ve 2. sınıf işletmeler genel olarak restoranı olan küçük işletmelerdir. Bu işletmeler porsiyonluk boya (200 g) kadar semirtme yapmakta ve hasat ettiği balıkları restoranında veya taze olarak yerinde pazarlamaktadır. 3. ve 4. sınıf işletmeler 20-30 g yavru balık, 200 g porsiyonluk balık ve 500 g Türk Somonu adayı üretimi yapmaktadır. Genel olarak 20-30 g yavru balıklar baraj gölü ağ kafes işletmelerine, 200 g porsiyonluk balıklar üretim tesisi olmayan restoranlara veya taze satışa ve 500 g balıklar Türk somonu adayı olarak deniz ağ kafes işletmelerine pazarlanmaktadır. Türk Somonu üretiminde kullanılan aday balıkların yaklaşık %10'u kaynak/akarsu işletmelerinden temin edilmektedir.

| Bölge Adı | Kapasite Sınıfı<br>(Ton) | İşletme Sayısı<br>(Adet) | Üretim Miktarı<br>(Ton) | Bölge Adı    | Kapasite Sınıfı<br>(Ton) | İşletme Sayısı<br>(Adet) | Üretim Miktarı<br>(Ton) |
|-----------|--------------------------|--------------------------|-------------------------|--------------|--------------------------|--------------------------|-------------------------|
|           | ≤ 29                     | 155                      | 2.062.500               |              | ≤ 29                     | 76                       | 1.051.000               |
| Akdoniz   | 30-99                    | 27                       | 1.190.500               | ic Anadolu   | 30-99                    | 12                       | 643.000                 |
| ARUEIIIZ  | 100-499                  | 10                       | 1.365.000               | iç Anauolu   | 100-499                  | 5                        | 1.580.000               |
|           | 500 ≥                    | 0                        | 0                       |              | 500 ≥                    | 1                        | 750.000                 |
|           | ≤ 29                     | 241                      | 2.33.059                |              | ≤ 29                     | 85                       | 1.571.567               |
|           | 30-99                    | 17                       | 727.000                 | Doğu Anadolu | 30-99                    | 13                       | 765.822                 |
| Karaueniz | 100-499                  | 8                        | 1.558.000               |              | 100-499                  | 13                       | 1.920.200               |
|           | 500 ≥                    | 0                        | 0                       |              | 500 ≥                    | 1                        | 500.000                 |
|           | ≤ 29                     | 51                       | 542.860                 |              | ≤ 29                     | 8                        | 160.000                 |
| Marmara   | 30-99                    | 10                       | 52.000                  | Güneydoğu    | 30-99                    | 4                        | 193.000                 |
| warmara   | 100-499                  | 1                        | 120.000                 | Anadolu      | 100-499                  | 1                        | 120.000                 |
|           | 500 ≥                    | 3                        | 2.000.000               |              | 500 ≥                    | 0                        | 0                       |
|           | ≤ 29                     | 151                      | 1.914.200               |              | ≤ 29                     | 767                      | 9.605.186               |
| Ege       | 30-99                    | 15                       | 708.000                 | Taulam       | 30-99                    | 98                       | 4.729.322               |
|           | 100-499                  | 30                       | 7.439.000               | ropiam       | 100-499                  | 68                       | 14.102.200              |
|           | 500 ≥                    | 10                       | 9.004.000               |              | 500 ≥                    | 15                       | 12.254.000              |

**Tablo 5.** Bölgeler bazında içsu/akarsu havuz işletmeleri sayısı ve kapasiteleri**Table 5.** Number and capacities of inland water/river pond enterprises by region

#### Baraj ağ kafes işletmelerinde üretim

Türkiye'de barajlar; içme suyu temininde, sulama/sanayi suyu temininde, hidroelektrik enerji üretiminde, taşkınların önlenmesinde, eğlen-dinlen alanlarının oluşturulmasında ve balık üretiminde kullanılmaktadır. Son yıllarda özellikle büyük boy alabalık yetiştiriciliğinde baraj gölleri, coğrafi ve çevresel özelliklerinden dolayı yetiştiricilik sektörünün gözdesi durumuna gelmiştir. Kuluçkahanelerde 2-5 veya 30 g ağırlığa kadar büyütülen yavru balıklar baraj gölü ağ kafes işletmelerine nakledilerek porsiyonluk (250 g), Türk Somonu adayı (500 g) veya filetoluk (>2000 g) boya kadar büyütülmektedir. Baraj gölü ağ kafes işletmeleri üretim kapasiteleri, üretim amaçları, üretim metodu ve hedef pazarı gözetilerek 4 sınıfta irdelenmiştir (Tablo 6). Türkiye'nin sahip olduğu yedi coğrafik bölgede ağ kafeslerde alabalık üretimi icin uygun cevresel kosullara sahip baraj gölleri bulunmaktadır. Farklı üretim kapasitelerine sahip toplam 622 adet baraj gölü ağ kafes işletmesi faaliyet göstermekte olup üretim kapasiteleri 164.810 ton/yıldır. Keban Baraj gölünü alabalık üretiminde avantaj olarak kullanan Doğu Anadolu Bölgesi 240 adet işletme ve 55.538 ton/yıl üretim kapasitesi ile ülkemizde ilk sırda yer almaktadır. Az sayıda ve alabalık yetiştiriciliği için uygun olmayan su kaliteli baraj göllerinin bulunduğu Marmara Bölgesi ise 11 adet işletme ve 2.854 ton/yıl kapasite ile son sırada yer almaktadır. Baraj gölü ağ kafes işletmelerinde hasat, tamamen müşteri tercihine uygun yapılmakta, işletme yönetim planının oluşturulmasında baraj gölünün su kalite kriterleri ve hasat boyu etkili olmaktadır. 1. ve 2. sınıf işletmeler genel olarak yurtiçi piyasaya porsiyonluk (200 g) balık üreten işletmelerdir.

Bu işletmelerin bir kısmı deniz ağ kafes işletmeleri ve büyük kapasiteli baraj gölü ağ kafes işletmelerinin de içinde olduğu çatı işletmelere aittir, üretim kapasiteleri küçük olmasına rağmen Türk somonu adayı (500 g) alabalık üretimi de yapmaktadırlar. 3. ve 4. sınıf işletmeler genel olarak Türk Somonu adayı üretim yapmakla beraber özellikle yaz aylarında yurtdışı filetoluk alabalık ihtiyacının tümünü karşılamaktadır. Türk Somonu üretiminde kullanılan aday balıkların yaklaşık %90'ı baraj gölü ağ kafes işletmelerinden temin edilmektedir (Tablo 7).

Tablo 6. Üretim kapasiteleri, üretim amaçları, üretim metodu ve hedef pazara göre baraj gölü ağ kafes işletmeleri grupları

Table 6. Dam lake net cage enterprise groups according to production capacities, production purposes, production method and target market

| Grup Sıra No | Üretim<br>Kapasitesi<br>(adet/yıl) | Üretim<br>Kapasitesi<br>(ton/yıl) | Toplam Sayı<br>(adet) | Kafes İşletmelerinin Özellikleri                                                                                                                                                                           |
|--------------|------------------------------------|-----------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1            | ≤29                                | 4.485                             | 178                   | Çoğunluğu yurtiçi tüketime porsiyonluk alabalık üretimi, çatı şirketlerin küçük<br>işletmesi şeklinde geleneksel üretim yapan ve Türk Somonu üretimine katkısı<br>yok denecek kadar az olan işletmelerdir. |
| 2            | 30-99                              | 2.316                             | 39                    | Genel olarak yurtiçi tüketime porsiyonluk alabalık, az miktarda Türk Somonu<br>adayı alabalık üretimi yapan ve Türk Somonu üretimine katkısı az olan<br>işletmelerdir.                                     |
| 3            | 100-499                            | 69.230                            | 289                   | Çoğunluğu Türk Somonu adayı ve filetoluk alabalık, az miktarda porsiyonluk<br>alabalık üretimi yapan ve Türk Somonu adayı alabalık üretimine katkısı<br>oldukça fazla olan işletmelerdir.                  |
| 4            | ≥500                               | 89.929                            | 119                   | Genel olarak Türk Somonu adayı alabalık üretimi ve filetoluk alabalık üretimi<br>yapan işletmelerdir. Türk Somonu adayı alabalık üretimine katkısı fazladır.                                               |

| Bölge Adı | Kapasite Sınıfı<br>(Ton) | İşletme Sayısı<br>(Adet) | Üretim Miktarı<br>(Ton) | Bölge Adı    | Kapasite Sınıfı<br>(Ton) | İşletme Sayısı<br>(Adet) | Üretim Miktarı<br>(Ton) |
|-----------|--------------------------|--------------------------|-------------------------|--------------|--------------------------|--------------------------|-------------------------|
|           | ≤ 29                     | 32                       | 753.200                 |              | ≤ 29                     | 8                        | 204.000                 |
| Akdonia   | 30-99                    | 17                       | 1.008.000               | ia Anadalu   | 30-99                    | 2                        | 125.000                 |
| AKUEIIIZ  | 100-499                  | 39                       | 7.595.000               | iç Anadolu   | 100-499                  | 22                       | 5.895.000               |
|           | 500 ≥                    | 17                       | 10.927.000              |              | 500 ≥                    | 30                       | 25.490000               |
| Kasalasia | ≤ 29                     | 20                       | 540.000                 |              | ≤ 29                     | 89                       | 2.246.500               |
|           | 30-99                    | 6                        | 449.000                 | Doğu Anadolu | 30-99                    | 12                       | 674.000                 |
| Karadeniz | 100-499                  | 50                       | 12.984.000              |              | 100-499                  | 112                      | 26.925.296              |
|           | 500 ≥                    | 12                       | 6.000.000               |              | 500 ≥                    | 30                       | 25.692.000              |
|           | ≤ 29                     | 1                        | 29.000                  |              | ≤ 29                     | 22                       | 638.000                 |
| Marmara   | 30-99                    | 1                        | 40.000                  | Güneydoğu    | 30-99                    | 0                        | 0                       |
| Marmara   | 100-499                  | 7                        | 1.215.000               | Anadolu      | 100-499                  | 20                       | 4.938.000               |
|           | 500 ≥                    | 2                        | 1.570.000               |              | 500 ≥                    | 22                       | 15.200.000              |
|           | ≤ 29                     | 6                        | 74.250                  |              | ≤ 29                     | 178                      | 4.484.950               |
| Ego       | 30-99                    | 1                        | 20.000                  | Tanlam       | 30-99                    | 39                       | 2.316.000               |
| ⊏ge       | 100-499                  | 38                       | 9.858.000               | iopiaili     | 100-499                  | 288                      | 69.080.316              |
|           | 500 ≥                    | 4                        | 4.050.000               |              | 500 ≥                    | 117                      | 88.929.000              |

| Tablo 7. Bölgeler bazında baraj gölü ağ kafes işletmeleri sayısı ve kapasiteleri    |
|-------------------------------------------------------------------------------------|
| Table 7. Number and capacities of dam lake net cage enterprises on a regional basis |

#### Deniz ağ kafes işletmeleri üretimi

Özellikle büyük boy alabalığa yurtdışından gelen talep, kültür balıkçılığı üretimindeki artışa hız kazandırmıştır. Karadeniz Bölgesi coğrafi ve çevresel özelliklerinden dolayı büyük boy alabalık üretimi için ideal bir bölgedir. Alabalık yetiştiriciliği için uygun çevresel koşullara sahip akarsu/kaynak suları, baraj gölleri ve deniz sistemlerinin Türk Somonu üretiminde sacayağı halinde kullanılabilmesi lokalitenin önemini gün geçtikçe artırmaktadır. Karadeniz'de alabalık yetiştiriciliğini ve işletme yönetimini etkileyen en önemli kriter su sıcaklığıdır.

Karadeniz'de, farklı üretim kapasitelerine sahip toplam 59 adet deniz ağ kafes işletmesi faaliyet göstermekte olup üretim kapasiteleri 57.369 ton/yıldır (BSGM, 2022). Deniz ağ kafes işletmelerinde hasat, tamamen müşteri tercihine uygun yapılmakta, işletme yönetim planının oluşturulmasında da pazar talebi dikkate alınmaktadır. Deniz suyu sıcaklığının 20°C'nin altına düştüğü 8 Ekim-7 Kasım döneminde baraj gölü ağ kafes işletmelerinden veya tatlısu havuz işletmelerinden ortalama ağırlıkları 500 g olan Türk Somonu adayı alabalıklar deniz ağ kafes işletmelerine nakledilmekte, deniz suyu sıcaklığının 18°C'ye yükseldiği 21 Mayıs-20 Haziran döneminde hasat yapılmaktadır.

Günümüzde, biyoteknolojik uygulamalar, yem teknolojisindeki gelişmeler ve balık refahına riayet sayesinde üretim dönemi içinde deniz ağ kafes sistemlerine nakledilen alabalıklarda 6-8 kat ağırlık artışı sağlanabilmektedir. Hasat ağırlığında pazar talebi dikkate alınarak üretim dönemi başında Türk Somonu adayı alabalıkların nakil ağırlığı belirlenmektedir. Ortalama 3000 g hasat ağırlığı için 500 gramlık Türk Somonu adayları tercih edilirken daha büyük hasat ağırlığı için 1000 g ve üzerindeki alabalıklar tercih edilmektedir (Tablo 8). Deniz ağ kafes işletmeleri üretim kapasitesine göre 3 sınıfa ayrılmıştır (Tablo 9).

 Tablo 8. Bölgeler bazında baraj gölü ağ kafes işletmeleri sayısı ve kapasiteleri

 Table 8. Number and capacities of dam lake net cage enterprises on a regional basis

| Bölge Adı | Kapasite Sınıfı<br>(Ton) | İşletme Sayısı<br>(Adet) | Üretim Miktarı<br>(Ton) | Bölge Adı    | Kapasite Sınıfı<br>(Ton) | İşletme Sayısı<br>(Adet) | Üretim Miktarı<br>(Ton) |
|-----------|--------------------------|--------------------------|-------------------------|--------------|--------------------------|--------------------------|-------------------------|
|           | ≤ 499                    | 0                        | 0                       |              | ≤ 499                    | 0                        | 0                       |
| Akdeniz   | 500-999                  | 1                        | 150.000                 | İç Anadolu   | 500-999                  | 0                        | 0                       |
|           | 1000 ≥                   | 0                        | 0                       |              | 1000 ≥                   | 0                        | 0                       |
|           | ≤ 499                    | 1                        | 80.000                  |              | ≤ 499                    | 0                        | 0                       |
| Karadeniz | 500-999                  | 56                       | 54.022.000              | Doğu Anadolu | 500-999                  | 0                        | 0                       |
|           | 1000 ≥                   | 0                        | 0                       |              | 1000 ≥                   | 0                        | 0                       |
|           | ≤ 499                    | 0                        | 0                       | Cünaudağu    | ≤ 499                    | 0                        | 0                       |
| Marmara   | 500-999                  | 0                        | 0                       | Anadolu      | 500-999                  | 0                        | 0                       |
|           | 1000 ≥                   | 0                        | 0                       | Anauolu      | 1000 ≥                   | 0                        | 0                       |
| Ege       | ≤ 499                    | 0                        | 0                       |              | ≤ 499                    | 1                        | 80.000                  |
|           | 500-999                  | 2                        | 1.000.000               | Toplam       | 500-999                  | 59                       | 55.172.000              |
|           | 1000 ≥                   | 0                        | 0                       |              | 1000 ≥                   | 0                        | 0                       |

|              | -                                  |                                   |                       |                                                                                                                                                                                                                                                                                                                    |
|--------------|------------------------------------|-----------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Grup Sıra No | Üretim<br>Kapasitesi<br>(adet/yıl) | Üretim<br>Kapasitesi<br>(ton/yıl) | Toplam Sayı<br>(adet) | Kafes İşletmelerinin Özellikleri                                                                                                                                                                                                                                                                                   |
| 1            | ≤ 500                              | 3.347                             | 13                    | Deniz ağ kafes sistemleri için yetiştiricilik alanlarının sınırlı ve müracaatçı<br>sayısının fazla olduğu lokalitelerde düşük üretim kapasiteli işletmelerdir. Türk<br>somonu üretimine katkısı en az olan işletmelerdir.                                                                                          |
| 2            | 500-999                            | 33.482                            | 43                    | Türk Somonu üretimine en çok katkısı olan işletmelerdir.                                                                                                                                                                                                                                                           |
| 3            | ≥1000                              | 20.540                            | 13                    | İşletme kurulumunda ve işletilmesinde yeni teknolojilerin ülkemizde<br>kullanılmaya başlaması ile büyük kapasiteli işletmelere ilgi artmıştır. Gelecekte<br>Türk Somonu üretimi için bu tür işletmelerin yaygın kullanılma olasılığı oldukça<br>yüksektir. Türk Somonu üretimine katkısı gün geçtikçe artmaktadır. |

| Tablo 9. | Uretim kapasiteleri, | üretim amaçları,   | üretim metodu   | i ve hedef pa | azara göre ( | deniz ağ kaf | es işletme | eleri grupları |        |            |        |
|----------|----------------------|--------------------|-----------------|---------------|--------------|--------------|------------|----------------|--------|------------|--------|
| Table 9. | Groups of marine n   | et cage enterprise | es according to | production    | capacities.  | production p | ourposes.  | production     | method | and target | market |

#### Türk Somonu ihracatı

Su ürünleri, dünyada en çok ticareti yapılan gıda ürünlerinden biridir. Uluslararası su ürünleri ticaretinin büyümesinde küreselleşmeye bağlı olarak ekonomik büyüme ile kültürel ve teknolojik ilerleme etkili olmuştur. Su ürünleri ticaret değeri, ticaret miktarına oranla daha fazla artış göstermektedir. Bunun nedeni ekonomik değeri yüksek türlerin işlenmesi ile katma değer kazandırılarak ticaretinin yapılmasıdır (FAO, 2022).

Türkiye'nin 2021 yılı içsu ve deniz yetiştiricilik işletmelerinin toplam alabalık üretimi 167.286 ton olarak gerçekleşmiş ve bu üretimin 50.568 tonu ihracatta kullanılmıştır (TÜİK, 2022). Kuluçkahane ve tatlısu havuz işletmelerinde üretilen 31ton alabalık canlı, baraj gölü ağ kafes işletmelerinde üretilen 18.939 ton ve deniz ağ kafes işletmelerinde üretilen 31.598 ton alabalık işlenerek ihracatta kullanılmıştır.

Aylık ihracat verileri dikkate alındığında en fazla ihracatın deniz ağ kafes işletmelerinin hasat dönemi olan Haziran ve Mayıs aylarında olduğu, en düşük ihracatın ise baraj gölü ağ kafes işletmelerine yavru nakil dönemi olan Ekim, Kasım ve Aralık aylarında gerçekleştirildiği görülmektedir (Şekil 1).





İhracatta genel olarak işleme tesislerinde işlem gören ve ürün vasfı kazanan büyük boy alabalıklar kullanılmaktadır. Bu balıklar taze veya soğutulmuş, dondurulmuş, taze veya soğutulmuş fileto, dondurulmuş fileto ve tütsülenmiş ürünler olarak ihraç edilmektedir. 2021 yılı aylık işlenmiş ürün ihracatında 33.468.438 kg ile dondurulmuş alabalık ilk sırayı alırken 90.335 kg ile taze veya soğutulmuş fileto en az ihracatta kullanılan ürün olmuştur. Farklı üretim sistemlerinden hasat edilen alabalıkların aylık ihracat dağılımına benzer şekilde işlenmiş ürün gruplarında da en fazla ihracat deniz ağ kafes hasat periyodu olan Haziran ve Mayıs aylarında gerceklestirilmiştir. En düsük miktarda ihracat ise Kasım ve Aralık aylarında yapılmıştır (Şekil 2). Deniz ağ kafes ve baraj gölü ağ kafes işletmelerinden 2021 yılı içinde hasat edilen büyük boy alabalıklar 45 ülkeye ihraç edilmiştir.

Toplam ihracat içinde 29.913.869 kg ile Rusya Federasyonu %59,54 oranla ilk sırada yer almakta, bunu AB ülkeleri ve Asya ülkeleri izlemektedir (Tablo 10). Rusya Federasyonu ve AB ülkeleri daha çok taze veya soğutulmuş ve dondurulmuş ürünleri tercih ederken diğer ülkeler dondurulmuş, fileto ve tütsülenmiş ürünleri tercih etmektedir. Bu durumda nakil işlemlerinin etkili olduğu görülmektedir (BSGM, 2022; TUİK, 2022).





**Şekil 2.** Farklı ürün gruplarının aylık ihracat dağılımı (ton) **Figure 2.** Monthly export distribution of different product groups (tons)

| Tablo 10. | 2021 yılına ait işlenmiş | ürünlerin ihraç ed | ildiği ülkeler ve ihı | racat miktarı (K | g)         |
|-----------|--------------------------|--------------------|-----------------------|------------------|------------|
| Table 10. | Countries to which prod  | cessed products ar | re exported in 202    | 21 and export a  | mount (Kg) |

| 0                | Ürün (Alabalık) (kg) |                  |                             |                        |             |            |  |
|------------------|----------------------|------------------|-----------------------------|------------------------|-------------|------------|--|
| Ulke             | Taze/<br>Soğutulmuş  | Dondurulmuş      | Fileto<br>(Taze/Soğutulmuş) | Fileto<br>(Soğutulmuş) | Tütsülenmiş | Toplam     |  |
| Çekya            | 0                    | 236.338          | 0                           | 29.280                 | 500         | 266.118    |  |
| ABD              | 1.167                | 19.476           | 850                         | 436.934                | 0           | 458.427    |  |
| Almanya          | 270.820              | 3.586.244        | 12.440                      | 378.029                | 3.614.537   | 7.862.070  |  |
| Avusturya        | 2.469                | 81.816           | 132                         | 36.560                 | 0           | 120.977    |  |
| Azerbaycan       | 14.000               | 100.295          | 600                         | 0                      |             | 114.895    |  |
| BAE              | 151 025              | 2.000            | 0                           | 10,000                 | 7.505       | 9.510      |  |
| Belcika          | 0                    | 420.005          | 0                           | 3 120                  | 13 115      | 83 020     |  |
| Birlesik Krallık | 216                  | 5 670            | 652                         | 59 458                 | 9 110       | 75 106     |  |
| Bosna Hersek     | 210                  | 18 500           | 0                           | 0                      | 0           | 18,500     |  |
| Bulgaristan      | ŏ                    | 112.310          | ŏ                           | ŏ                      | ŏ           | 112.310    |  |
| Cezayir          | Õ                    | 0                | Ō                           | 2.000                  | Õ           | 2.000      |  |
| Çin              | 0                    | 345.301          | 0                           | 0                      | 0           | 345.301    |  |
| Danimarka        | 0                    | 28.772           | 0                           | 5.640                  | 35.072      | 69.484     |  |
| Fransa           | 53                   | 768              | 0                           | 128                    | 0           | 949        |  |
| Gürcistan        | 286,541              | 397.183          | 2.721                       | 600                    | 125         | 687.170    |  |
| Hirvatistan      | U                    | 35.000           |                             | 454 700                | 000 540     | 35.000     |  |
| Hollanda         | U                    | 209.024          | 25.800                      | 451.709                | 209.548     | 940.001    |  |
| lananya          | 0                    | 00.114           | 10 800                      | 40.970                 | 0           | 97.092     |  |
| lerail           | 0                    | 74 716           | 19.000                      | 21.007                 | 0           | 74 716     |  |
| Isvec            | õ                    | 1 248            | ŏ                           | Ő                      | Ő           | 1 248      |  |
| Isvicre          | 88                   | 4 500            | ŏ                           | 18 962                 | õ           | 23 550     |  |
| Italva           | 0                    | 6.360            | ŏ                           | 301.118                | ŏ           | 307.478    |  |
| Japonya          | Õ                    | 599.901          | Ō                           | 266.719                | 3           | 866.623    |  |
| Kanada           | 0                    | 0                | 18.747                      | 73.283                 | 0           | 92.030     |  |
| Kazakistan       | 0                    | 97.200           | 0                           | 0                      | 0           | 97.200     |  |
| Kuzey Kıbrıs     | 61.156               | 3.203            | 293                         | 576                    | 265         | 65.493     |  |
| Litvanya         | Q                    | 0                | 1                           | 99.370                 | 0           | 99.371     |  |
| Macaristan       | 0                    | 124.120          | 600                         | 3.800                  | 1.200       | 129.720    |  |
| Releave          | 0                    | 3.300<br>570 665 | U                           | 60 120                 | 60 604      | 3.300      |  |
| Pomanya          | 661 007              | 1 006 660        | 3 770                       | 09.120<br>277 700      | 25 7/0      | 1 09.479   |  |
| Rusva            | 7 857 871            | 21 801 520       | 0.170                       | 254 476                | 23.740      | 29 913 867 |  |
| Sirbistan        | 0                    | 690 795          | ŏ                           | 48 100                 | 1 680       | 740 575    |  |
| Singapur         | õ                    | 11 600           | ŏ                           | 0                      | 0           | 11 600     |  |
| Slovakya         | Õ                    | 19.200           | Ō                           | Õ                      | Õ           | 19.200     |  |
| Slovenya         | 0                    | 95.435           | 0                           | 40.530                 | 0           | 135.965    |  |
| Suriye           | 64.851               | 435              | Q                           | 0                      | Q           | 65.286     |  |
| Tayland          | 0                    | 27               | 0                           | 9.695                  | 0           | 9.722      |  |
| Ukrayna          | 355,128              | 36.893           | 0                           | 0                      | 0           | 392.021    |  |
| Umman            | 61                   | 0 014            | U                           | 0                      | U           | 61         |  |
| Urdun            | 280                  | 2.014            | U                           | 2.024                  | U           | 4.318      |  |
| Vietnam          | U<br>5 3 2 8         | 2.543.744        | 6 800                       | 2 400                  | U           | 2.543.744  |  |
| i ulidilistali   | 5.520                | U                | 0.000                       | 2.400                  | U           | 14.320     |  |

#### TARTIŞMA

Su sıcaklığı balıkların davranış, beslenme, büyüme ve üreme gibi biyolojik ve fizyolojik özelliklerini etkiler. Farklı türlerin farklı su sıcaklılarına gereksinimleri vardır. Sürdürülebilir alabalık üretimi etkileyen en önemli kriterlerden biri de su sıcaklığıdır. Karadeniz, yüzey suyu sıcaklığı dikkate alındığında ancak Ekim-Haziran ayları arasında alabalık üretimi uygundur. Su Ürünleri Merkez Araştırma Enstitüsü Müdürlüğü ve diğer AR-GE kurumları tarafından denizel alanda yapılan çalışmalar sonucunda elde edilen bulgular bu durumu doğrulamaktadır (Şekil 3, 4). Derinliğe bağlı sıcaklık değişiminde, özellikle alabalık yetiştiriciliği için olumsuz şartların oluştuğu yaz aylarında 10 m derinlikten sonra sıcaklığın azaldığı, 15 m'de ise uygun şartların oluştuğu görülmektedir (Şekil 4). Bu derinliklerin suyu, uygun kafes modelleri kullanılarak Türk Somonu üretiminin yapılabileceği ayrıca değerlendirilmelidir. Türkiye denizlerinden sadece Karadeniz, sahip olduğu çevresel koşullardan dolayı ağ kafeslerde alabalık üretimi için uygundur. Deniz yüzey suyu sıcaklığının alabalık üretimi için uygun olduğu aylarda, alabalıklar baraj gölü ağ kafes işletmelerinden deniz ağ kafes işletmelerine nakledilerek büyük boya (Türk Somonu, ≥3000 g) ulaşmaları sağlanmaktadır.



Şekil 3. Karadeniz yüzey suyu sıcaklık verileri (Parlak ve diğ., 2022) Figure 3. Black Sea surface water temperature data (Parlak et al., 2022)



Şekil 4. Karadeniz'de derinliğe göre sıcaklık değişimi [TAGEM/HAYSUD/B/19/A6/P3/01 (2019-2021)] (Fidan ve diğ., 2022)
Figure 4. Temperature according to depth in the Black Sea [TAGEM/HAYSUD/B/19/A6/P3/01 (2019-2021)] (Fidan et al., 2022)

Klimatolojik, oşinografik ve su kalitesi gibi çevresel faktörler ülkelerin alabalık üretim zincirinde kullanılan halkaları belirler. Nitekim, Paisley ve ark., (2010) İskandinav ülkelerinde, üretim zinciri halkalarını sırasıyla kuluçkahaneler, kara tabanlı deniz suyu kullanılan büyütme tesisleri ve deniz ağ kafes sistemlerinden oluştuğunu bildirmektedir. Son yıllarda dünya alabalık üretiminde söz sahibi ülkelerden biri olan Şili'de ise Olsen ve Criddle, (2008) kuluçkahanede büyütülen filetoluk adayı alabalıkları deniz ağ kafes sistemlerine nakletmektedir. Ülkemizde ise yumurtadan hasada kadar üretim zinciri sırasıyla kuluçkahaneler, kara tabanlı tatlısu havuz işletmeleri, baraj gölü ve son halka olan deniz ağ kafes işletmeleri olarak sıralanmaktadır. Ülkemiz çevresel koşullarından farklı çevresel koşullara sahip olan ülkelerde alabalık üretim zinciri halkaları kısmen benzerlik göstermekte olup üretim maliyetini etkileyen farklılıklarda mevcuttur. Dünya alabalık üretiminde söz sahibi olan ülkelerden farklı olarak ülkemizde baraj gölü ağ kafes sistemlerinin kullanılıyor olması üretim maliyeti, büyüme bakımından ülkemize avantaj sağlamaktadır.

Şili'de deniz suyu sıcaklıklarından dolayı kış aylarında büyüme yavaş olmakla birlikte, deniz ağ kafes sistemlerinde alabalıkların filetoluk boya (2-5 kg) büyütülmesi 8-14 ay sürmektedir (Olsen ve Criddle, 2008). İskandinav ülkelerinde kuluçkahane veya deniz suyu kullanılan kara tabanlı işletmelerde 1 kg'a kadar büyütülen alabalıklar ilkbaharda deniz ağ kafes sistemlerinde 2-5 kg ağırlığa kadar büyütülerek hasat edilmektedir (Paisley ve ark., 2010). Ülkemizde baraj gölü ağ kafes sistemleri kullanılarak filetoluk adayı (400-600 g) boya ulaştırılan alabalıklar transfer edildikleri deniz ağ kafes sistemlerinde 6-7 aylık sürede ortalama 3 kg ağırlığa büyütülmektedir. Ülkemizde kuluçkahaneden sonra türe özgü çevresel şartlara uygun mera özellikli baraj gölü ağ kafes ve deniz ağ kafes sistemlerinin kullanılması filetoluk alabalık (Türk somonu) üretiminde büyüme süresini kısaltmakta ve üretim maliyetini azaltmaktadır.

Şili alabalık üretiminde 2000 yılına kadar Norveç'te üretilen yumurtalara bağımlı kalmış ve 2000 yılından sonra yumurta üretimini önemli ölçüde artırmıştır. 2005 yılında Şili kuluçkahanelerinde kullanılan yumurtaların %90,1'i yerel anaçlardan üretilmiştir (Verdugo, 2006). Ülkemiz 2021 yılında toplam yumurta üretimi 1.360.029.485 adet/yıl olarak gerçekleştirmiş olup, aynı yıl içerisinde 185.055.556 adet/yıl yumurta ithal edilmiştir. Bu rakam toplam yumurta üretimin %13,60'ına denk gelmektedir. Günümüzde Şili alabalık yumurtası ihraç eden sayılı ülkeler arasında yer almakla birlikte, yumurta ithalatı yaptığımız ülkeler arasında yer almaktadır. Ülkemiz çevresel koşulları özellikle alabalık üretimi için oldukça uygun olmasına rağmen günümüzde halen yumurta ithal eden ülkeler arasında yer almamız damızlık ve kuluçkahane yönetimindeki aksaklıkları ortaya koymaktadır.

Dünya gökkuşağı alabalığı yetiştiriciliğinde hayatta kalma oranı [Magerhans, (2009)'a göre %81,3-96,5 ve Butzge, (2021)'e göre %54,5-71,4] düşünüldüğünde Türkiye başarısı %30,10 ile oldukça düşüktür. Doğal çevresel koşulların avantajlarına rağmen hayatta kalma oranındaki düşüklük; hastalıkların görülmesi, yanlış tedavi yöntemlerinin uygulanmasına, damızlık yönetimi uygulamaları ve işletme yönetiminde yapılan yanlışlıklar, kontrolsüz balık nakilleri, sıhhi ve çevresel koşullar gibi pek çok faktöre bağlanabilir. Türk Somonu üretiminde hayatta kalma oranının iyileştirilmesi için;

 Balık sağlığı, sürdürülebilir üretimin temel anahtarıdır. Ülke hastalık haritası çıkarılmalı ve hastalık durumu dikkate alınarak havzalar numaralandırılmalıdır.

- (II) Tatlısu, baraj gölü ve deniz işletmelerinde kronikleşen hastalıklar belirlenmeli, hastalıklara yönelik koruyucu önlemler alınmalı ve gerekli görülmesi halinde bölgesel özel akredite balık hastalıkları laboratuvarları kurulumu desteklenmeli, ilaç ve dezenfektan kullanımı kontrolleri artırılmalıdır.
- (III) Yumurta ve yavru üretimi için uygun çevresel koşullara sahip tatlısu kaynakları belirlenmeli, bu kaynaklarda hastalıktan ari kuluçkahane işletmelerinin kurulması teşvik edilmeli ve ülke çevresel şartlarına uygun ve endemik hastalıklara dirençli damızlık stoklar üretilmelidir.
- (IV) Türk Somonu üretim zincirinde kullanılan altyapı (tank, beton/toprak havuz, kafes, su temin sistemleri vb.) ve su alabalık üretimi için doğal yaşam alanı çevresel özelliklerine uygun özelliklere sahip olmalı, balık refahı ve biyogüvenlik uygulamaları ön planda tutulmalı ve sürekli izleme yapılmalıdır.
- (V) Belirlenecek üretim havzaları arasında balık nakli, biyolojik ve genetik kirlilik gözetilerek yapılmalı hastalıkların taşınımı engellenmelidir.
- (VI) İyi balık sağlığı, yeterli biyogüvenlik uygulamaları, sanitasyon, balık refahı, uygun yetiştirme koşulları ve ekipman kullanımı, iyi beslenme, bağışıklığı yüksek tutma ve genel hastalık önleme uygulamaları, kontrol ve izleme ile sağlanmalıdır.

Doğal ortamdan yakalanan balıklar, tavuk eti ve sığır eti gibi kara kaynaklı protein kaynaklarına göre daha düşük karbon ayak izine sahiptir. Su ürünleri yetiştiriciliğinden elde edilen ürünler, en verimli kara kökenli kaynaklardan biri olan tavuğa benzer bir karbon ayak izine sahiptir. Su ürünleri vetiştiriciliğiyle ilgili mevcut emişyonların, yem kullanımını azaltarak ve ormansızlaşma içermeyen girdilere geçiş yaparak yarı yarıya azaltılabilir (Desrochers, 2022). Ayrıca alabalıkgiller, tilapya, yayın balığı ve sazan gibi canlıları yetiştirmek tıpkı tavuk yetiştiriciliği gibi karada doğaya en az zarar veren hayvansal üretimlerden biridir. Mavi gida yetiştiriciliği karada yapılan besiciliğe kıyasla daha az sera gazı yayar, daha az su kirliliği yaratır ve daha az toprak ve su kaynağı kullanır. Bunlara ek olarak alabalık, tavuğa kıyasla 19 kat omega-3 yağ asidi içerir (Hashempour, 2021). Son yıllarda yapılan bilimsel araştırmalar su ürünleri yetiştiriciliğinin yetersiz beslenme, karbon ayak izi ve ekonomik sorunları gidermek için önemli bir fırsat olacağını göstermektedir. Özellikle büyük boy alabalık üretimi için uygun çevresel koşullara sahip olan Karadeniz coğrafyası mavi gıda sektörünü çevresel, ekonomik ve sağlık faydalarını daha yukarıya taşımak amacıyla değerlendirilmelidir.

Halen çalışmaları devam eden "Denizlerde Potansiyel Su Ürünleri Yetiştiricilik Alanlarının Belirlenmesi (TAGEM/HAYSUD/ÜG/17/SU/P-01/05)" isimli proje kapsamında birçok ilin denizel alanı çalışılmıştır. Bu çalışmalarda halen üretim yapılan işletmelerle beraber toplam proje üretim kapasitesi 221.188 ton/yıl olan 160 adet işletme alanı belirlenmiştir (Parlak ve diğ., 2022). Belirlenen üretim alanlarının çoğu üretim kapasitesi artırımı için uygun özelliklere sahiptir. Son yıllarda artan pazar talebi Türk Somonu üretimine hız kazandırmıştır, talep artışının devam etmesi durumunda gelecekte sadece Karadeniz'den 361.341 ton/yıl üretimin karşılanabileceği öngörülebilir (Tablo 11).

| Tablo 11. Karadeniz'de planlanan üretim alanlar | , kapasiteleri ve potansiyel üretim kapasitesi |
|-------------------------------------------------|------------------------------------------------|
|-------------------------------------------------|------------------------------------------------|

| Table 11. Plann | ned production areas | , capacities and | potential proc | duction capacity | in the Black Sea |
|-----------------|----------------------|------------------|----------------|------------------|------------------|
|-----------------|----------------------|------------------|----------------|------------------|------------------|

| İI        | İşletme<br>Sayısı¹ | Toplam Alan<br>(m²)¹ | Üretimde<br>Kullanılan Alan<br>(m²)² | Proje<br>Kapasitesi<br>(Ton/Yıl)³ | Proje Kapasitesi<br>Artırma Olasılığı (%) <sup>4</sup> | Potansiyel Kapasite<br>(Ton/Yıl)⁴ |
|-----------|--------------------|----------------------|--------------------------------------|-----------------------------------|--------------------------------------------------------|-----------------------------------|
| Artvin    | 10                 | 600.000              | 300.000                              | 9.500                             | 80                                                     | 17.100                            |
| Rize      | 24                 | 1.440.000            | 720.000                              | 22.800                            | 80                                                     | 41.040                            |
| Trabzon   | 22                 | 1.830.000            | 915.000                              | 28.975                            | 70                                                     | 52.155                            |
| Giresun   | 18                 | 1.580.000            | 790.000                              | 25.013                            | 100                                                    | 50.026                            |
| Ordu      | 24                 | 1.440.000            | 720.000                              | 22.800                            | 70                                                     | 38.760                            |
| Samsun    | 57                 | 3.540.000            | 1.770.000                            | 56.050                            | 50                                                     | 84.075                            |
| Sinop     | 28                 | 1.680.000            | 840.000                              | 26.600                            | 50                                                     | 39.900                            |
| Zonguldak | 19                 | 1.860.000            | 930.000                              | 29.450                            | 30                                                     | 38.285                            |
| TOPLAM    | 160                | 15.650.000           | 6.985.000                            | 221.188                           |                                                        | 361.341                           |

<sup>1</sup>Denizlerde potansiyel ağ kafes alanlarının belirlenmesi projesi kapsamında belirlenen tesis sayısı.

<sup>2</sup>Denizlerde potansiyel ağ kafes alanlarının belirlenmesi çalışmalarında tesis kurulacağı alana rotasyon alanı da dâhil edilir. Üretimde kullanılacak alan tüm alanın yarısı olarak hesaplanmıştır.

<sup>3</sup>Denizlerde potansiyel proje kapasitenin hesaplanmasında ortalama 30.000 m<sup>2</sup> alan için 950 ton alınmıştır.

<sup>4</sup>Tesislerin açık deniz yönü durumu, denizin hali, hâkim rüzgâr ve derinlik kriterlerine göre hesaplanmıştır.

Türkiye'nin canlı hayvanlar ve hayvansal ürünlerde rekabet gücünün düşük olduğu belirlenmiştir. Ayrıca, HS 03 (Su ürünleri) ve HS 05 (Diğer hayvansal menşeli ürünler) ürünlerde endüstri-ici ticaret seviyesinin yüksek olduğu belirlenmistir. Buna göre Türkive'nin canlı havvanlar ve havvansal ürünlerde endüstri-ici ticaret seviyesinin yüksek olduğu ürünler arasında HS 03 (Su ürünleri) ve HS 05 (Diğer hayvansal menşeli ürünler) bulunmaktadır (Bashimov, 2018). Son yıllarda su ürünleri yetiştiriciliği ve işleme teknolojilerindeki gelişmeler Türkiye'nin su ürünleri dış ticaretinde ihracatçı konumunu sürdürmesinde etkili olmuştur. TÜİK verilerine göre, Türkiye su ürünleri ticareti 2021 yılında bir önceki yıla göre büyüme göstermiş olup, ihracatta %24 oranında artış kaydedilmiştir (FAO, 2022). Türk Somonu adayı üretim işletmeleri ile deniz ağ kafes işletmelerinin tam kapasite kullanımında ve potansiyel alanların da üretime dahil edilmesi durumunda ihracat kapasitesi yaklaşık beş kat artırılabilecektir.

#### SONUÇ

Dünyada tuzlu suda yetiştirilen alabalıklar "somon alabalığı" olarak isimlendirilmekle beraber ülkemizde Karadeniz'de yetiştiriciliği yaygınlaşan büyük boy alabalık da uluslararası pazarda "Türk somonu" olarak kabul görmektedir.Bu bağlamda, büyük boy alabalık yetiştiriciliği Türkiye su ürünleri ekonomisinde büyük bir itici güç olma yolundadır.

Çevreye duyarlı şekilde yetiştirilmesi gereken mavi gıdanın üretim alanları, üretim basamakları, üretilen canlıların ne ile beslendiği ve ürünlerin besin değeri tüketiciler tarafından sürekli merak konusu olmaktadır. Tüketici duyarlılığı dikkate alınarak pazar için üretilen su ürününün sudan çıkarılıp satış noktasına ulaşıncaya kadar tüm aşamaların şeffaf şekilde takibine tam erişim sağlanmalıdır. Dünya yetiştiricilik sektörü ile rekabet edebilir aşamaya ulaşan güvenli, sorumlu ve etik kurallara uygun büyük boy alabalık yetiştiriciliğinin daha yukarılara taşınması adına üretim zincirinin uçtan uça sertifikalandırılması sağlanmalıdır. Sektörün daha da büyüyebilmesi için daha da yüksek sürdürülebilirlik standartlarının sağlanması gerekmektedir. Bunun için yem girdisi, balık sağlığı, üretim alanlarındaki sektörel çatışmalar, doğal ekosisteme yönelik tehditler gibi zorlukları ele alarak çözüme kavuşturmak önemlidir. Türkiye daha iyi yöntemleri, daha iyi teknolojiyi, daha iyi yönetimi, daha iyi ürünleri ve daha iyi pazarlamayı başaracak bilgi ve donanıma sahiptir.

#### TEŞEKKÜR VE MADDİ DESTEK

İşleme ve muhafaza tesislerinde yılın hangi dönemlerinde hangi ürünün işlendiği dair vermiş oldukları bilgilerden dolayı Sayın Osman Parlak'a, Sayın İlker Yıldırım'a, Sayın Hasan Kuzuoğlu'na, ve Sayın Tayfun Denizer'e teşekkür ederiz.

#### ÇIKAR ÇATIŞMASI BEYANI

Yazarlar bu çalışmayı etkileyebilecek finansal çıkarlar veya kişisel ilişkiler olmadığını beyan etmektedir.

#### YAZAR KATKILARI

Çalışma kurgusu: Eyüp Çakmak, Literatür taraması: Esin Batır, Metodoloji: Eyüp Çakmak, Veri toplama: Derya Evin, Veri analizi: Eyüp Çakmak, Osman Tolga Özel, Esin Batır, Makale yazımı: Eyüp Çakmak, Denetleme: Tüm yazarlar nihai taslağı onaylamıştır.

#### ETİK ONAY BEYANI

Bu çalışmada deney hayvanları kullanılmaması nedeniyle Yerel Etik Kurul Onayı alınmamıştır.

#### VERİ KULLANILABİLİRLİK BEYANI

Bu çalışmada kullanılan veriler makul talep üzerine ilgili yazardan temin edilebilir.

#### KAYNAKLAR

- Balıkçılık ve Su Ürünleri Genel Müdürlüğü (BSGM). (2022). https://www.tarim orman.gov.tr/BSGM/Belgeler/Icerikler//Bsgm-istatistik.pdf (Erişim tarihi: 22.03.2023)
- Bashimov, G. (2018). Türkiye'de canlı hayvanlar ve hayvansal ürünlerin dış ticaret yapısının analizi. Uludağ Üniversitesi Ziraat Fakültesi. 3(1), 1-13.
- Butzge, A.J., Yoshinaga, T.T., Acosta, O.D.M., Fernandino, J.I., Sanches, E.A., Tabata, Y.A., De Oliveira, C., Takahashi, N.S., & Hattori, R.S. (2021). Early warming stress on rainbow trout juveniles impairs male reproduction but contrastingly elicits intergenerational thermotolerance. *Scientific Reports*, 11(1), 17053. https://doi.org/10.1038/s41598-021-96514-1
- Desrochers, E. (2022).Blue Food Assessment provides sustainability recommendations to seafood industry. https://www.seafoodsource.com/ news/environment-sustainability/blue-food assessment-provides-sustain ability-recommendations-to-seafood-industry. (Erişim tarihi: 18.03.2023)
- Duran, U., & Çenesiz, S. (2023). Türkiye somon yetiştiriciliğinde canlı balık transferinin biyokimyasal etkileri ve transfer koşullarının iyileştirilmesi. Ağrıbalkan 2023, V. Balkan Tarım Kongresi. (s. 169).
- Hashempour, P. (2021). A 'blue food' revolution could feed the world without ruining the planet. https://www.euronews.com/green/2021/09/25/a-bluefood-revolution-could-feed-the-world-without-ruining-the planet (Erişim tarihi: 07.03.2023)
- FAO (2022). The state of world fisheries and aquaculture 2022. Towards Blue Transformation. Rome, FAO. https://doi.org/10.4060/cc0461en.
- FAO FishStat database, (2023). FishStatJ, a tool for fishery statistics analysis. Release: 4.03.03 FAO, Fishery and Aquaculture Department, Statistics and Information Branch. http://www.fao.org/fishery/statistics/ software/fishstati/en (Erişim tarihi: 22.03.2023)
- Fidan, D., Zengin, B., Kılıç, M.B., Başçınar, S.N., Kalıpçı, Ö., Gözler, A.M. & Ağırbaş, E. (2019). Doğu Karadeniz'de karasal kaynaklı kirleticilerin kıyı ve deniz ekosistemine etkilerinin belirlenmesi (Sürekli İzleme) Proje Sonuç Raporu, TAGEM/HAYSÜD/12/11/02/01, 131 s.
- Loew, C. 2023. SeafoodSource. https://www.seafoodsource.com Erişim Tarihi: 24 Mart 2023

- Magerhans, A., Müller-Belecke, A., & Hörstgen-Schwark, G. (2009). Effect of rearing temperatures post hatching on sex ratios of rainbow trout (*Oncorhynchus mykiss*) populations. Aquaculture, 294(1–2), 25–29. https://doi.org/10.1016/j.aquaculture.2009.05.001
- Olson, T.K., & Criddle, K.R. (2008). Industrial evolution: a case study of chilean salmon aquaculture. Aquaculture Economics & Management, 12(2), 89–106. https://doi.org/10.1080/13657300802110687
- Paisley, L.G., Ariel, E., Lyngstad, T., Jónsson, G., Vennerström, P., Hellström, A., & Østergaard, P. (2010). An Overview of Aquaculture in the Nordic Countries. *Journal of the World Aquaculture Society*, 41(1), 1–17. https://doi.org/10.1111/j.1749-7345.2009.00309.x
- Parlak, R., Küçük, E., Akbulut, B., Dağtekin, M., Fidan, D., Özcelep, T., Ergün, H. & Kalıpçı, Ö. (2022). Denizlerde Potansiyel Su Ürünleri Yetiştiricilik Alanlarının Belirlenmesi. TAGEM/HAYSUD/ÜG/17/SU/P-01/05
- Rimm, E.B., Appel, L.J., Chiuve, S.E., Djoussé, L., Engler, M.B., Kris-Etherton, P.M., Mozaffarian, D., Siscovick, D.S., & Lichtenstein, A.H., (2018). On behalf of the American Heart Association Nutrition Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Epidemiology and Prevention; Council on Cardiovascular Disease in the Young; Council on Cardiovascular and Stroke Nursing; and Council on Clinical Cardiology. Seafood Long-Chain n-3 Polyunsaturated Fatty Acids and Cardiovascular Disease: A Science Advisory From the American Heart Association. *Circulation*, 138(1). https://doi.org/10.1161/CIR.0000000000000574
- Türkiye İstatistik Kurumu (TÜİK), (2022). Su Ürünleri İstatistikleri https://data.tuik.gov.tr/Bulten/Index?p=Su-Urunleri-2022-49678 (Erişim tarihi: 16.02.2024)
- Türkiye İstatistik Kurumu (TÜİK), (2023). Su Ürünleri İstatistikleri https://data.tuik.gov.tr/Bulten/Index?p=Su-Urunleri-2022-49678. (Erişim tarihi: 16.08.2023)
- Verdugo, V. V. (2006). Anuario Estadístico de Pesca. Servicio Nacional de Pesca, Ministerio de Economia, Fomento y Reconstruccion, Chile. http://www.sernapesca.cl/sites/default/files/2006\_0.pdf



