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ABSTRACT 
 
This paper describes a LQG robust controller for the load frequency control of an electrical power 
system. The controller is used in order to achieve robust stability and good dynamic performance 
against the variation of power system parameters and its load. The application of the proposed LQG 
robust control scheme is implemented through the simulation of a single area power system model.  
The proposed robust controller for power systems stability is designed using Matlab/Simulink 
program. Simulation results confirm the performance of the proposed controller for the electrical 
power system. 
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1. INTRODUCTION 
 
The dynamic behavior of electric power 
systems is heavily affected by disturbances 
and changes in the operating points. In electric 
power generation system, load frequency 
control is a very important component in 
power system operation and control for 
supplying and reliable electric power with 
good quality. The aim of load frequency 
control is to maintain zero steady state errors 
in power system [1-2]. Many investigations 
have been reported in the past pertaining to 
load frequency control of electric power 
system. In the literature, some control 
strategies have been suggested based on 
conventional linear control theory [3]. To 
some authors, a variable structure system 
control maintains stability of the system 
frequency. However, because of the inherent 
characteristics of the changing loads, the 
operating point of a power system changes 

continuously during daily cycle. Thus, a fixed 
controller may no longer be suitable in all 
operating conditions. There are some authors 
who have applied variable structure control to 
make the controller insensitive to change of 
system parameters [3, 4].  
In many control applications, it is expected 
that the behavior of the designed system will 
be insensitive (robust) to external disturbance 
and parameter variations. It is known that 
feedback in conventional control systems has 
the inherent ability of reducing the effects of 
external disturbances and parameter 
variations. Unfortunately, robustness with the 
conventional feedback configuration is 
achieved only with high loop gain, which is 
normally detrimental for stability [5,6,7]. The 
reasons given above may affect the stability of 
system. A closed loop control system should 
be stable and have an acceptable performance. 
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In the model application, the Linear Quadratic 
Gaussian (LQG) control, that is a kind of 
robust controller, is used. Also, the design of 
LQG controller in Matlab-Simulink is given. 
 
In this paper, load frequency controller based 
on LQG robust controller is proposed for a 
single area power system.  The target is to 
obtain robust stability and to improve the 
dynamic response of the power system against 
variations in the system parameters and loads. 
The problem formulation and the development 
of a LQG robust controller, based on 
‘Matching Conditions’ and the Riccati-
equation, approaches are given.  

 
2. DESIGN OF LINEAR QUADRATIC 
GAUSSIAN (LQG) CONTROLLER 
 
LQG controller is the modern state-space 
control technique for the design of optimal 
dynamic regulators [8]. It enables us to trade 
off regulation performance and control effort, 
and to take into account process disturbances 
and measurement noise. LQG design requires 
a state-space model of the plant [9, 10]. 
 
The main target in LQG control is to obtain a 
stable and reliable control. A block diagram of 
LQG control is given in Figure 1 [11]. 
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Figure 1. Feedback loop with system and LQG robust controller 
 

 
In Figure 1, u is the control input, y is the 
measured control output, x is the state vector 
or state variables, A is the state matrix, B is 
the input matrix, C is the output matrix, v is 
the disturbance input and w is the 
measurement noise, L is the feedback matrix 
in form of state space and K is the Kalman 
gain. A state observer is obtained by 
producing a state estimate x̂ . It is now time to 
combine the controller and the state observer 
by simply putting [10]. 
 

ˆ *u Lx u= − +               (1) 
 

 
 

where u*; is called as the external input. To 
analysis the effect of any of L and K pairs, (2) 
and (3) equations are written [10].  
 

0sI A BL− + =                  (2) 

0sI A KC− + =                      (3) 
 
 
By using (2) and (3) stable poles are obtained. 
The magnitudes directing the system are 
expressed with the equation sets below [10].   
 
x Ax Bu v= + +             (4) 
y Cx w= +                (5) 

ˆ *u Lx u= − +                                       (6) 
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ˆ ˆ ˆ( )x Ax Bu K y Cx= + + −         (7) 
 
Eliminating u and y by simple substitution, (8) 
is obtained. 
 

0
*

ˆ 0ˆ

A BL x I v Bx u
KC A KC BL x K w Bx

•⎛ ⎞ −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎜ ⎟ = ⋅ + ⋅ +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
                 

             (8) 
 
In Figure 1, a more compact close loop control 
system is defined and the controller may be 
seen more clearly. The second state equations 
are rearranged according to Figure 1, and then 
equations are obtained as follows. 
 

*)()( BuwCxKxBLKCAx +++−−=      
                                                                   (9) 
 

*)( BuKyxBLKCAsI +=++−                 
                                                                 (10) 
 

1ˆ ( ) ( *)x sI A KC BL Ky Bu−= − + + +            
                                                                (11) 

 
Because of ˆ *u Lx u= − +  the feedback 
controller is given by (12).   
 

1( ) ( )C s L sI A KC BL K−= − + +        (12) 
 

The poles of controller are given by the 
eigenvalues of A-KC-BL. Note that these 
poles can be unstable. Some systems can only 
be stabilized by unstable controllers. In fact, 
these systems have intermittently poles and 
zeros on the real positive axis. 
 
2.1 Preservation of Controller and 
Observer Poles 
 

The equations are given above expressing that 
the poles of the close loop control system are 
complex functions of the observer gain K and 
the controller coefficient L. That is not the case 
by taking the state error ( x ) as a part of the 
state vector instead of the estimated state x̂ .  
The estimated state vector x̂  is deducted from 
the state vector x, and the following equations 
are obtained. 
 

ˆ ˆ* ( ) ( ) *x Ax BLx v Bu A BL x BL x x v Bu
⋅
= − + + = − + − + +

                                    (13) 
 

*))()( BuKwxxKCxBLAx ++−+−=
 

(14) 
 

KwvxxKCxxBLxxBLAxx −+−−−+−−=− )()())((
                                             
                                                                    (15) 

 
( )x A KC x v Kw= − + −               

                                                                   (16) 
 

By using the equations above, the complete 
state description is expressed in the matrix 
form as follows.  
 

0
*

0 0
x A BL BL x I v B

u
x A KC x I K w

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⋅ + ⋅ +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                        
(17) 

 
Because of the zero blocks in the state matrix, 
the poles are obtained from (18).  

det det( ) det( ) 0
0

sI A BL BL
sI A BL sI A KC

sI A KC
− + −⎛ ⎞

= − + ⋅ − + =⎜ ⎟− +⎝ ⎠
                                                                    (18) 
 
The poles of the closed loop systems are 
exactly the poles obtained before in the 
separate state control problem and the state 
observer problem. The state vector x changes 
depending on the external input u* and noise 
signal (v). The question arises whether the 
optimal designed controller (L) and the 
optimal observer (K) remain optimal designs 
in the LQG optimal controller [12]. 
 
2.2 Reference Input and Error in LQG 
Controller Design 
  
The purpose of the LQG robust controller is to 
decrease the disturbances on a system. The 
disturbances are the state noise (v) and 
measurement noise (w). The sensor by its 
measurement noise and the actuator by its 
limited range introduce some constraints on 
the obtained performance. The LQG design 
must generate signals that ensure the least 
stable working of the system on a close loop 
system. If u* (exogenous input) is taken 
instead of r (t), that the output y (t) depends on 
the reference r = u* according to: 
 

1( ) ( ) *( )y s C sI A BL Bu s−= − +                
                                                                  (19) 
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The expression of the feedback LQG 
controller in “s” domain given in equation 

(12) is as in Figure 2 as a block diagram.  

C(sI-A) B-1

SystemLQG Controller

L(sI-A+KC+BL) K-1 +
+

V
W

r(s) +

-

y

 
 

Figure 2. The block diagram of a system with LQG Controller  
 
3. LOAD FREQUENCY CONTROL AND 
DESCRIPTION OF AN ELECTRIC 
POWER SYSTEM MODEL 
 
As an application model with a LQG 
controller, the load frequency robust control of 
a power system against to load variations in a 

one-area power system is implemented. A 
block diagram of a one-area power system for 
the load frequency control is given in Figure 
3. 
 
 

 

 
Figure 3. Load frequency control block diagram in Matlab-Simulink for the one-area power system 

 
By means of the fixed- gaining regulators, the 
control procedure is realized by the feedback 
state variables. By using the block diagram of 
load frequency controller on the “s” plane, the 
following state equations are obtained.     

)(1)()1( sf
R

PefsPs Vg Δ−Δ=Δ+τ  

VmT PsPs Δ=Δ+ )()1( τ  

Lm PPsfDHs Δ−Δ=Δ+ )()2(              

                                                               (20) 

Parameters that are used in the equation set 
(20); 
 
τg  :  speed regulator time constant   
ΔPV :  changing power in turbine valve 
position  
ΔPref :  reference power changing, 
R  :  regulator gain, 
 τT  :  turbine time constant, 
ΔPm :  changing on turbine mechanic output 
power  
Δf  :  changing in frequency  
ΔPL :  load changing           
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3.1 Numerical Example  
 
The parameters for the one-area power system 
are given as follows: 

Turbine time constant (τT)=0.5 sec. 

Speed regulator time constant (τg)=0.2 sec. 

Generator inertia constant (H)= 5 sec.Speed 
regulation rate (R) =0.05 pu  

The turbine output power is 250 MW at 
nominal frequency. In case a sudden 50 MW 
and 75 MW load increases occur, obtain the 
deviations of the frequency by using the state 
equations. Block diagram of the optimal LQG 
controller and the power system in Matlab-
Simulink are shown in Figure 4. 
 
 
 

 

Figure 4.  Block diagram of optimal LQG control and the power system in Matlab-Simulink 
 

Figure 5 shows that, when LQG controller is 
used there is no deviation on frequency as the 
load increases to 50 MW and 75 MW. In the 
beginning there is a negligible variation (about 
-0.0003 pu) in frequency. After that there is no 
change and the steady-state error is nearly 
zero. 
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Figure 5.  The response of generator output 

frequency in 50 MW and 75 MW load 
increase in controlled case 

 
Figure 6 shows the comparison of the 
response curves of the frequency in controlled 
and uncontrolled case when load increases to 
50 MW and 75 MW. The dynamic response 
has an excellent and robust performance with 
the proposed controller against variations of 
the power system parameters and external 

disturbances. It is also observed that when 
load increases, the variations of the frequency 
increases negatively on uncontrolled case. 
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Figure 6. The comparison of the response 
curves of the frequency in LQG controlled and 

uncontrolled case. 
 
 
4. CONCLUSION 
 
In this study, an optimal LQG controller with 
integral feedback is designed in Matlab-
Simulink to control the frequency of an 
electrical power system. The performance of 
the proposed optimal LQG controller has been 
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tested by simulation an electrical power 
system model in the presence of parameter 
uncertainty. It may be noted that tuning 
parameters play an important role to stabilize 
the uncertain power system. Also, it may be 
noted that the inverse of the system matrix 
must exist. The results show that the dynamic 
response of the system by the proposed LQG 
controller ensures stability of the closed-loop 
system for all admissible structured 
uncertainties.  
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